首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
The formation of chlorophyll triplet states during illumination of Photosystem I reaction center samples depends upon the redox state of P-700, X and ferredoxin Centers A and B. When the reaction centers are in the states P-700+A1XFdBFd?A and P-700 A1XFd?BFd?A prior to illumination, we observe electron paramagnetic resonance (EPR) spectra from a triplet species which has zero-field splitting parameters (|D| and |E|) larger than those of either the chlorophyll a or chlorophyll b monomer triplet, and a polarization which results from population of the triplet spin sublevels by an intersystem crossing mechanism. We interpret this triplet as arising from photoexcited chlorophyll antenna species associated with reaction centers in the states P-700+Fd?A and P-700+X?, respectively, which undergo de-excitation via intersystem crossing. When the reaction centers are in the states P-700A1XFd?BFd?A and P-700A1X?Fd?BFd?A prior to illumination, we observe a triplet EPR signal with a polarization which results from population of the triplet spin sublevels by radical pair recombination, and which has a |D| value similar to that of chlorophyll a monomer. We interpret this triplet (the radical pair-polarized triplet) as arising from 3P-700 which has been populated by the process P-700+A?13P-700A1. We observe both the radical pair-polarized triplet and the chlorophyll antenna triplet when the reaction centers are in the state P-700 A1XFd?BFd?A, presumably because the processes P-700+A?1X → P-700+A1X? and P-700+A?1X3P-700 A1X have similar rate constants when Centers A and B are reduced, i.e., the forward electron transfer time from A?1 to X is apparently much slower in the redox state P-700 A1XFd?BFd?A than it is in state P-700 A1XFdBFdA. The amplitude of the radical pair-polarized triplet EPR signal does not decrease in the presence of a 13.5-G-wide EPR signal centered at g 2.0 which was recorded in the dark prior to triplet measurements in samples previously frozen under intense illumination. This g 2.0 signal, which has been attributed to phototrapped A?1 (Heathcote, P., Timofeev, K.N. and Evans, M.C.W. (1979) FEBS Lett. 101, 105–109), corresponds to as many as 12 spins per P-700 and can be photogenerated during freezing without causing any apparent attenuation of the radical pair-polarized triplet amplitude. We conclude that species other than A?1 contribute to the g 2.0 signal.  相似文献   

2.
Flash-induced absorption changes of Triton-solubilized Photosystem I particles from spinach were studied under reducing and/or illumination conditions that serve to alter the state of bound electron acceptors. By monitoring the decay of P-700 following each of a train of flashes, we found that P-430 or components resembling it can hold 2 equivalents of electrons transferred upon successive illuminations. This requires the presence of a good electron donor, reduced phenazine methosulfate or neutral red, otherwise the back reaction of P-700+ with P-430 occurs in about 30 ms. If the two P-430 sites, designated Centers A and B, are first reduced by preilluminating flashes or chemically by dithionite under anaerobic conditions, then subsequent laser flashes generate a 250 μs back reaction of P-700+, which we associate with a more primary electron acceptor A2. In turn, when A2 is reduced by background (continuous) illumination in presence of neutral red and under strongly reducing conditions, laser flashes then produce a much faster (3 μs) back reaction at wavelengths characteristic of P-700. We associate this with another more primary electron acceptor, A1, which functions very close to P-700. The organization of these components probably corresponds to the sequence P-700-A1-A2-P-430[AB]. The relation of the optical components to acceptor species detected by EPR, by electron-spin polarization or in terms of peptide components of Photosystem I is discussed.Preliminary experiments with broken chloroplasts suggest that an analogous situation occurs there, as well.  相似文献   

3.
A.W.D. Larkum  Jan M. Anderson 《BBA》1982,679(3):410-421
A Photosystem II reaction centre protein complex was extracted from spinach chloroplasts using digitonin. This complex showed (i) high rates of dichloroindophenol and ferricyanide reduction in the presence of suitable donors, (ii) low-temperature fluorescence at 685 nm with a variable shoulder at 695 nm which increased as the complex aggregated due to depletion of digitonin and (iii) four major polypeptides of 47, 39, 31 and 6 kDa on dissociating polyacrylamide gels. The Photosystem II protein complex, together woth the P-700-chlorophylla protein complex and light-harvesting chlorophyll ab-protein complex (LHCP) also isolated using digitonin, were reconstituted with lipids from spinach chloroplasts to form proteoliposomes. The low-temperature (77 K) fluorescence properties of the various proteoliposomes were analysed. The F685F695 ratios of the Photosystem II reaction centre protein complex-liposomes decreased as the lipid to protein ratios were increased. The F681F697 ratios of LHCP-liposomes were found to behave similarly. Light excitation of chlorophyll b at 475 nm stimulated emission from both the Photosystem II protein complex (F685 and F695) and the P-700-chlorophyll a-protein complex (F735) when LHCP was reconstituted with either of these complexes, demonstrating energy transfer between LHCP and PS I or II complexes in liposomes. No evidence was found for energy transfer from the PS II complex to the P-700-chlorophyll a-protein complex reconstituted in the same proteoliposome preparation. Proteoliposome preparations containing all three chlorophyll-protein complexes showed fluorescence emission at 685, 700 and 735 nm.  相似文献   

4.
A.J. Hoff  J.H. Van Der Waals 《BBA》1976,423(3):615-620
Microwave induced transitions in zero magnetic field have been observed in the photoinduced triplet of chloroplasts treated with dithionite by monitoring changes in the intensity of the 735 nm fluorescence band at 2°K. Similar results were obtained with chloroplasts treated with hydroxylamine plus 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination. The zero field parameters are D = 0.02794 ± 0.00007 cm?1, E = 0.00382 ± 0.00007 cm?1, i.e. equal to those of monomeric chlorophyll a to within the experimental error. The photoinduced triplet appears to be linked to Photosystem II. This indicates that the low temperature 735 nm fluorescence band of chloroplasts is at least partly due to Photosystem II.  相似文献   

5.
Sally Reinman  Paul Mathis 《BBA》1981,635(2):249-258
The influence of temperature on the rate of reduction of P-680+, the primary donor of Photosystem II, has been studied in the range 5–294 K, in chloroplasts and subchloroplasts particles. P-680 was oxidized by a short laser flash. Its oxidation state was followed by the absorption level at 820 nm, and its reduction attributed to two mechanisms: electron donation from electron donor D1 and electron return from the primary plastoquinone (back-reaction).Between 294 and approx. 200 K, the rate of the back-reaction, on a logarithmic scale, is a linear function of the reciprocal of the absolute temperature, corresponding to an activation energy between 3.3 and 3.7 kcal · mol?1, in all of the materials examined (chloroplasts treated at low pH or with Tris; particles prepared with digitonin). Between approx. 200 K and 5 K the rate of the back-reaction is temperature independent, with t12 = 1.6 ms. In untreated chloroplasts we measured a t12 of 1.7 ms for the back-reaction at 77 and 5 K.The rate of electron donation from the donor D1 has been measured in darkadapted Tris-treated chloroplasts, in the range 294–260 K. This rate is strongly affected by temperature. An activation energy of 11 kcal · mol?1 was determined for this reaction.In subchloroplast particles prepared with Triton X-100 the signals due to P-680 were contaminated by absorption changes due to the triplet state of chlorophyll a. This triplet state has been examined with pure chlorophyll a in Triton X-100. An Arrhenius plot of its rate of decay shows a temperature-dependent region (292–220 K) with an activation energy of 9 kcal · mol?1, and a temperature-independent region (below 200 K) with t12 = 1.1 ms.  相似文献   

6.
In flash-illuminated, oxygen-evolving spinach chloroplasts and green algae, a free radical transient has been observed with spectral parameters similar to those of Signal II (g ≈ 2.0045, ΔHpp ≈ 19 G). However, in contrast with ESR Signal II, the transient radical does not readily saturate even at microwave power levels of 200 mW. This species is formed most efficiently with “red” illumination (λ < 680 nm and occurs stoichiometrically in a 1 : 1 ratio with P-700+. The Photosystem II transient is formed in less than 100 μs and decays via first-order kinetics with a halftime of 400–900 μs. Additionally, the t12 for radical decay is temperature independent between 20 and 4 °C; however, below 4 °C the transient signal exhibits Arrhenius behavior with an activation energy of approx. 10 kcal · mol?1. Inhibition of electron transport through Photosystem II by o-phenanthroline, 3-(3,4-dichlorophenyl)-1,1-dimethylurea or reduced 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone suppresses the formation of the light-induced transient. At low concentrations (0.2 mM), 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone partially inhibits the free radical formation, however, the decay kinetics are unaltered. High concentrations of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (1–5 mM) restore both the transient signal and electron flow through Photosystem II. These findings suggest that this “quinoidal” type ESR transient functions as the physiological donor to the oxidized reaction center chlorophyll, P-680+.  相似文献   

7.
8.
R.L. Pan  S. Izawa 《BBA》1979,547(2):311-319
NH2OH-treated, non-water-splitting chloroplasts can oxidize H2O2 to O2 through Photosystem II at substantial rates (100–250 μequiv · h?1 · mg?1 chlorophyll with 5 mM H2O2) using 2,5-dimethyl-p-benzoquinone as an electron acceptor in the presence of the plastoquinone antagonist dibromothymoquinone. This H2O2 → Photosystem II → dimethylquinone reaction supports phosphorylation with a Pe2 ratio of 0.25–0.35 and proton uptake with H+e values of 0.67 (pH 8)–0.85 (pH 6). These are close to the Pe2 value of 0.3–0.38 and the H+e values of 0.7–0.93 found in parallel experiments for the H2O → Photosystem II → dimethylquinone reaction in untreated chloroplasts. Semi-quantitative data are also presented which show that the donor → Photosystem II → dibromothymoquinone (→O2) reaction can support phosphorylation when the donor used is a proton-releasing reductant (benzidine, catechol) but not when it is a non-proton carrier (I?, ferrocyanide).  相似文献   

9.
J. Haveman  P. Mathis 《BBA》1976,440(2):346-355
A comparative study is made, at 15 °C, of flash-induced absorption changes around 820 nm (attributed to the primary donors of Photosystems I and II) and 705 nm (Photosystem I only), in normal chloroplasts and in chloroplasts where O2 evolution was inhibited by low pH or by Tris-treatment.At pH 7.5, with untreated chloroplasts, the absorption changes around 820 nm are shown to be due to P-700 alone. Any contribution of the primary donor of Photosystem II should be in times shorter than 60 μs.When chloroplasts are inhibited at the donor side of Photosystem II by low pH, an additional absorption change at 820 nm appears with an amplitude which, at pH 4.0, is slightly higher than the signal due to oxidized P-700. This additional signal is attributed to the primary donor of Photosystem II. It decays (t12 about 180 μs) mainly by back reaction with the primary acceptor and partly by reduction by another electron donor. Acid-washed chloroplasts resuspended at pH 7.5 still present the signal due to Photosystem II (t12 about 120 μs). This shows that the acid inhibition of the first secondary donor of Photosystem II is irreversible.In Tris-treated chloroplasts, absorption changes at 820 nm due to the primary donor of Photosystem II are also observed, but to a lesser extent and only after some charge accumulation at the donor side. They decay with a half-time of 120 μs.  相似文献   

10.
W.S. Chow  R.C. Ford  J. Barber 《BBA》1981,635(2):317-326
Salt-induced chlorophyll fluorescence and spillover changes in control and briefly sonicated chloroplasts have been studied under conditions where Photosystem II traps are closed. In a low-salt medium containing 10 mM KCl, control envelope-free chloroplasts exhibited good spillover, as measured by low chlorophyll fluorescence yield at room temperature, a high ratio of the fluorescence peaks F735F685 at 77 K, and increased Photosystem I activity in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and Photosystem II light. In contrast, when stacked chloroplasts were briefly sonicated and subsequently diluted into a low-salt medium, a high fluorescence yield at room temperature and a low ratio of F735F685 at 77 K persisted. When unstacked chloroplasts were sonicated and then diluted into a high-salt medium, the room temperature fluorescence yield remained low. The results are interpreted in terms of a model relating the changes in chlorophyll fluoresecence with the lateral diffusion of Photosystem I and Photosystem II chlorophyll-protein complexes in the plane of the thylakoid membrane creating randomized or segregated domains, depending on the degree of electrostatic screening of surface charges (Barber, J. (1980) FEBS Lett. 188, 1–10). It is argued that brief sonication of stacked chloroplasts separates stromal membranes from granal stacks, thus limiting the inter-mixing of the photosystems via lateral diffusion even when the ionic composition of the medium is varied. Consequently energy transfer from Photosystem II to Photosystem I is relatively poor and chlorophyll fluorescence from Photosystem II is enhanced. The loss of the salt effect on sonicated unstacked membranes can also be accommodated by the model. In this case it seems that the generation of small membrane fragments does not allow the normal salt-induced phase separation of the pigment-protein complexes to occur.  相似文献   

11.
Thylakoid membrane protein phosphorylation affects photochemical reactions of Photosystem II. Incubation of thylakoids in the light with ATP leads to: (1) an increase in the amplitude of three components (4–6, 25–45 and 280–300 μs) of delayed light emission after a single flash without any change in their kinetics; (2) a reduction of the flash-dependent binary oscillations of chlorophyll a fluorescence yield associated with electron transfer from the primary quinone acceptor, Q, to the secondary quinone acceptor, B; (3) an increase in the B?B ratio resulting from an increase in stability of the semiquinone anion during dark adaptation; and (4) no change in the redox state of the plastoquinone pool as determined by flash-induced photooxidation of the Photosystem I reaction center, P-700. All the above observations are reversible upon dephosphorylation of the thylakoid membranes. These data are explained by a protein phosphorylation-induced stabilization of the bound semiquinone anion, B?. It is proposed that this increased stability may be due to an alteration in the accessibility of an endogenous reductant to B, or to an increase in dissipative cycling of charge around Photosystem II.  相似文献   

12.
Infinite cis uptake of cyclic AMP into red blood cell ghosts has been measured. The Kicoi is calculated from two different integrated rate equations that are applicable when the substrate concentration is unsufficient to cause volume changes. Values of 0.69 mM and 0.66 mM are obtained for the infinite cisKm at 30°C using these procedures. These values are only slightly higher than that predicted from zero trans net flux experiments.Lowering the temperature reduces Kicoi from 0.69 mM at 30°C to 0.478 mM at 20°C, 0.108 mM at 10°C and 0.072 mM at 4°C (Q10 = 2.4). The Q10 for activation of influx permeability of 10?5 M cyclic AMP is 1.55.  相似文献   

13.
The immobilization of Rhodopseudomonas capsulata chromatophores by entrapment in an alginate gel is described. Alginate beads were prepared with Ba2+, Sr2+ and Ca2+ as gel-forming agents and compared for their mechanical strength, chemical resistance against disruption by phosphate-induced swelling, and yield of photophosphorylation activity. Barium alginate beads proved to have better physico-chemical properties than the more commonly used calcium alginate beads. After embedding in barium alginate gel, R. capsulata chromatophores retained a high yield (up to 70%) of their photophosphorylation capacity. Alginate entrapment did not cause a large increase in the Michaelis constant for ADP and phosphate, the substrates of adenosinetriphosphatase (ATPase). These constants were KADPm = 1.4 × 10?5m and KPim = 2.2 × 10?4m for free chromatophores and KADPm = 2.3 × 10?4m and KPim = 5.6 × 10?4m for chromatophores entrapped in barium alginate gel. However, embedding gave no additional protection against rapid inactivation of chromatophores upon storage at 3°C. Preliminary results with a batch reactor for continuous ATP regeneration are presented. The barium alginate method has two features which are not generally encountered at the same time, extremely mild conditions for entrapment and excellent physical properties of the gels beads, which make this method a suitable tool for the construction of bioreactors with immobilized cells or organelles.  相似文献   

14.
Photosystem I particles prepared from spinach chloroplast using Triton X-100 were frozen in the dark with the bound iron-sulphur Centre A reduced. Illumination at cryogenic temperatures of such samples demonstrated the photoreduction of the second bound iron-sulphur Centre B. Due to electron spin-electron spin interaction between these two bound iron-sulphur centres, it was not possible to quantify amounts of Centre B relative to the other components of the Photosystem I reaction centre by simulating the line-shape of its EPR spectrum. However, by deleting the free radical signal I from the EPR spectra of reduced Centre A alone or both Centres A plus B reduced, it was possible to double integrate these spectra to demonstrate that Centre B is present in the Photosystem I reaction centre in amounts comparable to those of Centre A and thus also signal I (P-700) and X.Oxidation-reduction potential titrations confirmed that Centre A had Em ? ?550 mV, Centre B had Em ? ?585 mV. These results, and those presented for the photoreduction of Centre B, place Centre B before Centre A in the sequence of electron transport in Photosystem I particles at cryogenic temperatures. When both A and B are reduced, P-700 photooxidation is reversible at low temperature and coupled to the reduction of the component X. The change from irreversible to reversible P-700 photooxidation and the photoreduction of X showed the same potential dependence as the reduction of Centre B with Em ? ?585 mV, substantiating the identification of X as the primary electron acceptor of Photosystem I.  相似文献   

15.
J. Barber  G.F.W. Searle  C.J. Tredwell 《BBA》1978,501(2):174-182
The MgCl2-induced chlorophyll fluorescence yield changes in broken chloroplasts, suspended in a cation-free medium, treated with 3,-(3′,4′-dichlorophenyl)-1,1-dimethylurea and pre-illuminated, has been investigated on a picosecond time scale. Chloroplasts in the low fluorescing state showed a fluorescence decay law of the form exp ?At12, where A was found to be 0.052 ps?12, and may be attributed to the rate of spillover from Photosystem II to Photosystem I. Addition of 10 mM MgCl2 produced a 50% increase in the steady-state fluorescence quantum yield and caused a marked decrease in the decay rate. The fluorescence decay law was found to be predominantly exponential with a 1/e lifetime of 1.6 ns. These results support the hypothesis that cation-induced changes in the fluorescence yield of chlorophyll are related to the variations in the rate of energy transfer from Photosystem II to Photosystem I, rather than to changes in the partitioning of absorbed quanta between the two systems.  相似文献   

16.
V.A. Shuvalov  V.V. Klimov 《BBA》1976,440(3):587-599
Experimental evidence for electron transfer, photosensitized by bacteriochlorophyll, from cytochrome c to a pigment complex P-760 (involving bacteriopheophytin-760 and also bacteriochlorophyll-800) in the reaction centers of Chromatium minutissimum has been described. This photoreaction occurs between 77 and 293 °K at a redox potential of the medium between ?250 and ?530 mV. Photoreduction of P-760 is accompanied by development of a wide absorption band at 650 nm and of an EPR signal with g = 2.0025±0.0005 and linewidth of 12.5±0.5 G, which are characteristic of the pigment radical anion.It is suggested that the photoreduction of P-760 occurs under the interaction of reduced cytochrome c with the reaction center state P+-890 · P?-760 which is induced by light. The existence of short-lived state P+-890 · P?-760 is indicated by the recombination luminescence with activation energy of 0.12 eV and τ12 < 6 ns. This luminescence is excited and emitted by bacteriochlorophyll and disappears when P-760 is reduced.At low redox potentials, the flash-induced absorbance changes related to the formation of the carotenoid triplet state with τ12 = 6 μs at 20 °C are observed. This state is not formed when P-760 is reduced at 293 and 160 °K. It is assumed that this state is formed from the reaction center state P+-890 · P?-760, which appears to be a primary product of light reaction in the bacterial reaction centers and which is probably identical with the state PF described in recent works.  相似文献   

17.
M. Kitajima  W.L. Butler 《BBA》1975,376(1):105-115
The quenching action of dibromothymoquinone on fluorescence and on primary photochemistry was examined in chloroplasts at ?196 °C. Both the initial (F0) and final (FM) levels of fluorescence as well as the fluorescence of variable yield (Fv = FM ? F0) were quenched at ?196 °C to a degree which depended on the concentration of dibromothymoquinone added prior to freezing. The initial rate of photoreduction of C-550 at — 196 °C, which was assumed to be proportional to maximum yield for primary photochemistry, ?Po, was also decreased in the presence of dibromothymoquinone. Simple theory predicts that the ratio FVFM should equal ?Po. Excellent agreement was found in a comparison of relative values of ?Po with relative values of FVFM at various degrees of quenching by dibromothymoquinone. These results are taken to indicate that F0 and FV are the same type of fluorescence, both emanating from the bulk chlorophyll of Photosystem II.Dibromothymoquinone appears to create quenching centers in the bulk chlorophyll of Photosystem II which compete with the reaction centers for excitation energy. The rate constant for the quenching of excitation energy by dibromothymoquinone is directly proportional to the concentration of the quencher. Rate constants for the de-excitation of excited chlorophyll molecules by fluorescence, kF, by nonradiative decay processes, kD, by photochemistry, kP, and by the specific quenching of dibromothymoquinone, kQ, were calculated assuming the absolute yield of fluorescence at F0 to be either 0.02 or 0.05.  相似文献   

18.
The apparent Arrhenius energy of activation (Ea) of the water osmotic permeability (Posc) of the basolateral plasma cell membrane of isolated rabbit proximal straight tubules has been measured under control conditions and after addition of 2.5 mM of the sulfhydryl reagent, para-chloromercuribenzenesulfonic acid (pCMBS), of mersalyl and of dithiothreitol. Ea (kcal/mol) was 3.2 ± 1.4 (controls) and 9.2 ± 2.2 (pCMBS), while Posc decreased with pCMBS to 0.26 ± 0.17 of its control value. Mersalyl also decreased Posc both in vitro and in vivo (using therapeutical doses). These actions of pCMBS and mersalyl were quickly reverted with 5 mM dithiothreitol and prevented by 0.1 M thiourea. Ea for free viscous flow is 4.2 and greater than 10 for non-pore-containing lipid membranes. By analogy with these membranes and with red blood cells, where similar effects of pCMBS on Pos are observed, it is concluded that cell membranes of the proximal tubule are pierced by aqueous pores which are reversibly shut by pCMBS. Part of the action of mercurial diuretics can be explained by their action on Posc.  相似文献   

19.
In an accompanying publication by Duckwitz-Peterlein, Eilenberger and Overath ((1977) Biochim. Biophys. Acta 469, 311–325) it is shown that the exchange of lipid molecules between negatively charged vesicles consisting of total phospholipid extracts from Escherichia coli occurs by the transfer of single lipid monomers or small micelles through the water. Here a kinetic interpretation is presented in terms of a rate constant, k?, for the escape of lipid molecules from the vesicle bilayer into the water. The evaluated rate constants are k?P = (0.86 ± 0.05) · 10?5s?1 and k?E = (1.09 ± 0.13) · 10?6s?1 for phospholipid molecules with trans-Δ9-hexadecenoate and trans-Δ9-octadecenoate, respectively, as the predominant acyl chain component. The rate constants are discussed in terms of the acyl chain and polar head group composition of the lipids.  相似文献   

20.
10?5 M cyclic AMP has high permeability in human erythrocyte ghosts (p = 0.061 · 10?6cm · s?1). Saturation of influx and efflux occurs. Kztoi = 4.43 mM. Vztoi = 259.6 μM · min?1. Kztio = 0.475 μM. Vztio = 28.3 μM · min?1 at 30°C. Equilibrium exchange entry of cyclic AMP has similar kinetics to zero trans influx, though the system does show counterflow. Cythochalasin B is an apparent competitive inhibitor of cyclic AMP exit. (Ki = 3.9 · 10?7M).Control experiments indicated that cyclic AMP remains intact during incubation with red blood cell ghosts and is contained within the intravesicular space during the transport experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号