首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Two of the major themes resulting from recent macroecological research are the central roles that body size and niche breadth may play as determinants of species geographical distribution. Unanswered questions, however, linger regarding how similarities in body size or niche breadth affect the allocation of α‐ and β‐diversity across spatial scales. Using data on moth diversity in the eastern deciduous forest of North America, we tested the predictions that smaller‐bodied and diet‐restricted species would have lower levels of α‐diversity within forest stands and greater β‐diversity at higher sampling scales compared to larger or more generalist species. Moths were sampled using a nested sampling design consisting of three hierarchical levels: 20 forest stands, 5 sites and 3 ecoregions. Body size for 492 species was estimated as mean forewing length, and diet breadth was assessed from the published literature. Moth species were then classified according to body size (small or large) or diet breadth (generalist or restricted), and partitioning was conducted on each group. Diversity partitions for large‐ and small‐bodied species yielded similar patterns. When observed diversity components differed from those derived from our null model, a consistent pattern was observed: α‐diversity was greater than expected, β‐diversity among forest stands was less than expected, and β‐diversity among sites and ecoregions was higher than expected. In contrast, diet‐restricted moths contributed significantly less to stand‐level α‐diversity than generalist feeders. Furthermore, specialists contributed to a greater proportion of β‐diversity across scales compared to generalist moths. Because absolute measures of β‐diversity among stands were greater for generalists than for restricted feeders, we suggest that regional β‐diversity of forest moths may be influenced by several possible factors: intraspecific aggregation of diet‐restricted species, local fluctuations in population size of eruptive generalists and small geographical distributions of generalist moths than predicted by the geographical extent of putative host plants  相似文献   

2.
Mammals flex, extend, and rotate their spines as they perform behaviors critical for survival, such as foraging, consuming prey, locomoting, and interacting with conspecifics or predators. The atlas–axis complex is a mammalian innovation that allows precise head movements during these behaviors. Although morphological variation in other vertebral regions has been linked to ecological differences in mammals, less is known about morphological specialization in the cervical vertebrae, which are developmentally constrained in number but highly variable in size and shape. Here, we present the first phylogenetic comparative study of the atlas–axis complex across mammals. We used spherical harmonics to quantify 3D shape variation of the atlas and axis across a diverse sample of species, and performed phylogenetic analyses to investigate if vertebral shape is associated with body size, locomotion, and diet. We found that differences in atlas and axis shape are partly explained by phylogeny, and that mammalian subclades differ in morphological disparity. Atlas and axis shape diversity is associated with differences in body size and locomotion; large terrestrial mammals have craniocaudally elongated vertebrae, whereas smaller mammals and aquatic mammals have more compressed vertebrae. These results provide a foundation for investigating functional hypotheses underlying the evolution of neck morphologies across mammals.  相似文献   

3.
Parasitoid wasps (Hymenoptera) are a highly diverse component of terrestrial habitats, yet very little is known about how their community structure and functional diversity is influenced by habitat variables. Parasitoids were sampled using Malaise traps in early and late summer across ten forest sites in the Waitakere Ranges, New Zealand. At each trap, a range of local habitat variables were measured in a 20 × 20 m plot and landscape cover data were obtained for a 2-km radius. Species from two families, Ichneumonidae and Braconidae, were identified using morphological and molecular methods. Functional groups (idiobiosis, koinobiosis), key life history traits (endoparasitism, ectoparasitism, host taxa), and morphological traits (ovipositor length, body size) were measured to calculate functional diversity indices. The abundance, species richness, composition, and functional groups of parasitoids were chiefly influenced by vegetation type, plant diversity, coarse woody debris, and seasonal sampling. However, different taxa showed different patterns to habitat variables. Functional diversity measures were strongly linked to vegetation type. Kauri conifer forest was found to support a specialised parasitoid community, with lower abundance and species richness than broadleaved forest, but with higher functional evenness and high functional dispersion; indicating a community of co-existing species with a high utilisation of resources. The lack of congruence in the habitat relationships of different parasitoid groups highlights that preservation of a wide range of different forest habitats is required to adequately conserve parasitoid diversity.  相似文献   

4.
Although the examination of latitudinal gradients of species richness is common, little attention has been devoted to other components of biodiversity such as phenetic diversity. Because the phenotype reflects aspects of an organism's environment, ecological relationships and evolutionary history, measures of phenetic diversity likely provide complimentary information to that of species richness, and may provide unique insights for understanding the mechanistic basis to patterns of biodiversity. Herein, we evaluate latitudinal gradients in the phenetic diversity of 32 New World bat communities. Seven morphological characters were used to estimate phenotypic variation among bat species within local communities. Principal components analysis decomposed this variation into axes of size and shape. Three measures of phenetic diversity were calculated separately for size and for shape axes. The range of species scores on a particular axis described the amount of phenetic variation encompassed by species in a community. The standard deviation of minimum spanning‐tree segment lengths described uniformity of species. Average nearest‐neighbor distances described local packing. We separately regressed these six measures on local species richness and latitude separately. Variation in species richness accounted for a significant amount of variation in each measure of phenetic diversity. Latitude also accounted for significant variation in phenetic diversity except for the standard deviation of minimum‐spanning tree segment lengths and the average nearest‐neighbor distance on the shape axis. More importantly, gradients in phenetic diversity were significantly different than would be expected as a consequence of latitudinal gradients in species richness. Nonetheless, when variation among communities regarding the richness and composition of their regional faunas was taken into consideration, differences between empirical and simulated gradients were nonsignificant. Thus, factors that determine the composition of regional faunas have a great impact on the phenetic diversity of communities and ultimately the latitudinal gradient in biodiversity.  相似文献   

5.
Are latitudinal gradients in regional diversity random or biased with respect to body size? Using data for the New World avifauna, I show that the slope of the increase in regional species richness from the Arctic to the equator is not independent of body size. The increase is steepest among small and medium‐sized species, and shallowest among the largest species. This is reflected in latitudinal variation in the shape of frequency distributions of body sizes in regional subsets of the New World avifauna. Because species are added disproportionately in small and medium size classes towards low latitudes, distributions become less widely spread along the body size axis than expected from the number of species. These patterns suggest an interaction between the effects of latitude and body size on species richness, implying that mechanisms which vary with both latitude and body size may be important determinants of high tropical diversity in New World birds.  相似文献   

6.
Being ectotherms, insects are predicted to suffer more severely from climate change than warm-blooded animals. We forecast possible changes in diversity and composition of butterflies, grasshoppers and dragonflies in Belgium under increasingly severe climate change scenarios for the year 2100. Two species distribution modelling techniques (Generalised Linear Models and Generalised Additive Models), were combined via a conservative version of the ensemble forecasting strategy to predict present-day and future species distributions, considering the species as potentially present only if both modelling techniques made such a prediction. All models applied were fair to good, according to the AUC (area under the curve of the receiver operating characteristic plot), sensitivity and specificity model performance measures based on model evaluation data. Butterfly and grasshopper diversity were predicted to decrease significantly in all scenarios and species-rich locations were predicted to move towards higher altitudes. Dragonfly diversity was predicted to decrease significantly in all scenarios, but dragonfly-rich locations were predicted to move upwards only in the less severe scenarios. The largest turnover rates were predicted to occur at higher altitudes for butterflies and grasshoppers, but at intermediate altitudes for dragonflies. Our results highlight the challenge of building conservation strategies under climate change, because the changes in the sites important for different groups will not overlap, increasing the area needed for protection. We advocate that possible conservation and policy measures to mitigate the potentially strong impacts of climate change on insect diversity in Belgium should be much more pro-active and flexible than is the case presently.  相似文献   

7.
The Florida Sand Skink (Plestiodon reynoldsi), the Florida Scrub Lizard (Sceloporus woodi), and the Six-lined Racerunner (Aspidoscelis sexlineata) occur in the threatened and fire-maintained Florida scrub habitat. Fire may have different consequences to local genetic diversity of these species because they each have different microhabitat preference. We collected tissue samples of each species from 3 sites with different time-since-fire: Florida Sand Skink n = 73, Florida Scrub Lizard n = 70, and Six-lined Racerunner n = 66. We compared the effect of fire on genetic diversity at microsatellite loci for each species. We screened 8 loci for the Florida Sand Skink, 6 loci for the Florida Scrub Lizard, and 6 loci for the Six-lined Racerunner. We also tested 2 potential driving mechanisms for the observed change in genetic diversity, a metapopulation source/sink model and a local demographic model. Genetic diversity varied with fire history, and significant genetic differentiation occurred among sites. The Florida Scrub Lizard had highest genetic variation at more recently burned sites, whereas the Florida Sand Skink and the Six-lined Racerunner had highest genetic variation at less recently burned sites. Habitat preferences of the Florida Sand Skink and the Florida Scrub Lizard may explain their discordant results, and the Six-lined Racerunner may have a more complicated genetic response to fire or is acted on at a different geographic scale than we have investigated. Our results indicate that these species may respond to fire in a more complicated manner than predicted by our metapopulation model or local demographic model. Our results show that the population-level responses in genetic diversity to fire are species-specific mandating conservation management of habitat diversity through a mosaic of burn frequencies.  相似文献   

8.
The contribution of sponges to marine surveys is often underestimated due to problems of identification, synonymous species and limited numbers of specialists in the field. Bell & Barnes (2001) illustrated how sponge morphological diversity (diversity of body forms) might be used as a predictor of sponge species diversity and richness. This study investigated these relationships at six tropical West Indian Ocean localities in a number of habitat types. These habitats included tropical coral reefs, soft substratum (seagrass, mangrove and sand), caves and boulders. Sampling was undertaken at three depth zones in coral reef habitats only (intertidal, 10–15 m and 20–25 m), with the other habitats sampled in less than 10m of water. Species diversity and richness were significantly correlated (P < 0.05) with morphological diversity at all localities and depths in coral reef and soft substratum habitats. However, no significant correlation was found between these variables in cave or boulder habitats. The slope of the linear regression found between morphological diversity and species diversity did not significantly differ between coral reef, soft substratum and temperate reef (data taken from Bell & Barnes 2001) habitats. Similarly coral reefs showed the same relationship between morphological diversity and species richness as temperate reefs, however the relationship between morphological diversity and species richness was significantly different at both habitats compared with soft substratum environments. Sponge morphological diversity therefore may be more useful as a predictor of sponge species diversity, rather than species richness, as the former relationship is common between more habitats than the latter.  相似文献   

9.
Changes to primary producer diversity can cascade up to consumers and affect ecosystem processes. Although the effect of producer diversity on higher trophic groups have been studied, these studies often quantify taxonomy‐based measures of biodiversity, like species richness, which do not necessarily reflect the functioning of these communities. In this study, we assess how plant species richness affects the functional composition and diversity of higher trophic levels and discuss how this might affect ecosystem processes, such as herbivory, predation and decomposition. Based on six different consumer traits, we examined the functional composition of arthropod communities sampled in experimental plots that differed in plant species richness. The two components we focused on were functional variation in the consumer community structure (functional structure) and functional diversity, expressed as functional richness, evenness and divergence. We found a consistent positive effect of plant species richness on the functional richness of herbivores, carnivores, and omnivores, but not decomposers, and contrasting patterns for functional evenness and divergence. Increasing plant species richness shifted the omnivore community to more predatory and less mobile species, and the herbivore community to more specialized and smaller species. This was accompanied by a shift towards more species occurring in the vegetation than in the ground layer. Our study shows that plant species richness strongly affects the functional structure and diversity of aboveground arthropod communities. The observed shifts in body size (herbivores), specialization (herbivores), and feeding mode (omnivores) together with changes in the functional diversity may underlie previously observed increases in herbivory and predation in plant communities of higher diversity.  相似文献   

10.
Ontogenetic allometry, how species change with size through their lives, and heterochony, a decoupling between shape, size, and age, are major contributors to biological diversity. However, macroevolutionary allometric and heterochronic trends remain poorly understood because previous studies have focused on small groups of closely related species. Here, we focus on testing hypotheses about the evolution of allometry and how allometry and heterochrony drive morphological diversification at the level of an entire species‐rich and diverse clade. Pythons are a useful system due to their remarkably diverse and well‐adapted phenotypes and extreme size disparity. We collected detailed phenotype data on 40 of the 44 species of python from 1191 specimens. We used a suite of analyses to test for shifts in allometric trajectories that modify morphological diversity. Heterochrony is the main driver of initial divergence within python clades, and shifts in the slopes of allometric trajectories make exploration of novel phenotypes possible later in divergence history. We found that allometric coefficients are highly evolvable and there is an association between ontogenetic allometry and ecology, suggesting that allometry is both labile and adaptive rather than a constraint on possible phenotypes.  相似文献   

11.
Traditional diversity indices are computed from the abundances of species present and are insensitive to taxonomic differences between species. However, a community in which most species belong to the same genus is intuitively less diverse than another community with a similar number of species distributed more evenly between genera. In this paper, we propose an information-theoretical measure of taxonomic diversity that reflects both the abundances and taxonomic distinctness of the species. Unlike previous measures of taxonomic diversity, such as Rao's quadratic entropy, in this new measure the analyzed taxonomic properties are associated with the single species instead of species pairs.  相似文献   

12.
Many social insects exhibit morphologically distinct worker and queen castes that perform different functions. These functional differences may generate unique selection regimes operating on body size. For example, queens may be under directional selection for large body size, whereas directional selection on worker body size may be limited. Such contrasting selection pressures may differentially affect levels of genetic variation associated with size variation in the two castes. This study sought to determine if genetic effects underlying phenotypic differences varied between the worker and queen castes of the social wasp Vespula maculifrons. We predicted that directional selection would remove genetic variation associated with size differences in the queen caste, whereas a lack of directional selection would tend to maintain genetic variation associated with size differences in the worker caste. We thus (1) calculated broad and narrow sense heritabilities for several morphological traits, (2) examined whether some paternal genotypes produced more morphologically diverse offspring than others, and (3) determined whether trait size variation was associated with genetic variation within colonies. We found that few morphological traits were significantly heritable, indicating that little genetic variance for those traits existed within our study population. We also found that some patrilines produced more morphologically variable offspring than others, suggesting a role of genotype in phenotypic plasticity. And finally, no significant correlations between genetic diversity arising from multiple mating by queens within colonies and trait variation in either caste were found. Overall, our findings indicate a weak effect of genotype on both worker and queen body size variation and are suggestive of a large environmental influence on morphological trait size. Moreover, our results do not indicate that levels of genetic variation underlying size variation differ substantially between castes in this species.  相似文献   

13.
Body size, coupled with abundance and taxonomy, may help to understand the mechanisms shaping community structure. Since the body size of fish is closely related to their trophic niche, size diversity (based on individual body size) of fish communities may capture intraspecific variations in fish trophic niches that are not detected by species diversity. Thus, the relationship between size diversity and species diversity may help to integrate variation at both intraspecific and interspecific levels. We studied the relationship between species diversity and size diversity as a measure of the degree of overlap in size among species and thereby the potential overlap in niches in a community. We hypothesized that the relationship between size diversity and species would be different across the European continent due to different levels of size overlap in fish communities. The data were derived from samplings of fish communities using standardised benthic gill nets in 363 lakes. At the continental scale, size diversity increased with species diversity; at the ecoregion scale, the slope of the relation changed across the continent, with the greatest mismatch occurring in northern Europe where communities comprised only one or a few species, but each of which exhibited a great range in size. There was an increase in slope towards the south with significant relations for four out of six ecoregions. The steeper size diversity‐species diversity slope at lower latitudes is attributable to a lower overlap in fish size and thus likely to finer niche separation. Our results also suggest that size diversity is not a strong surrogate for species diversity in European lake fish communities. Thus, particularly in fish communities composed of few species, measuring size diversity may help to detect potential functional variation which may be neglected by measuring species diversity alone.  相似文献   

14.
Fire plays an important role in determining the structure of savannas, so that frequent fires tend to favor the herbaceous species in savannas. Functional diversity is a measure of the range of the species functional traits and is thought to be related to many functions and properties like community stability, nutrient cycling, and productivity, for example. We examined if functional diversity of herbaceous species was different along a fire gradient, and if observed functional diversity differed from a random assembly of species traits. We sampled three sites with different fire frequencies. According to the intermediate disturbance hypothesis, we expected the functional diversity to be higher in the intermediate fire frequency site. Subsequently, we excluded rare species from the analyses – species with less than ten individuals in each site – to verify their contribution to the observed patterns of functional diversity. We expected to find no difference with the exclusion of rare species. Functional diversity values, either considering all species or excluding the rare ones, were not different among sites, suggesting that (1) frequent fires may not affect overall functioning of the herbaceous community in savannas and (2) rare herbaceous species seem to present lower functional complementarity. According to the neutral theory, most of the herbaceous species may have evolved stochastically in niches more similar than competitive exclusion could allow. Also, functional diversity was not different from what one may expect by chance in any of the three sites. We also calculated the floristic similarity among sites. When we considered qualitative data, we found floristic differences between the sites of high and intermediate as well as between high and low fire frequency sites, but there was no difference between the intermediate and low fire frequency situation. Floristic similarities were different among all the three sites when the abundances of species were considered. Consequently, different fire conditions may change species composition without affecting the functional diversity of the herbaceous layer of savannas, corroborating the idea that savannas are more stable in functional than in floristic terms.  相似文献   

15.
Species richness is unevenly distributed on the Earth, with biodiversity gradients of various spatial scales supposedly being affected by abiotic as well as biotic factors including community traits such as body size spectra and relative abundance patterns. To explore large-scale spatial variation in species diversity and their processes, tidepool fish communities were investigated through an intensive field work conducted on 55 shore sites in south-western Japan. Multiple ecological measures were taken into account to assess changes in local community structures with changes in the number of species. Biomass (total fish wet weight) per unit area showed no systematic change with latitude, while taxa richness and number of individuals tended to increase toward lower latitudes. In addition, median fish body weight scaled positively with latitude, which was more conspicuous in Blenniidae than in Gobiidae. The latitudinal gradient of diversity in tidepool fish assemblages appears to be characterized by partitioning of total biomass that tends to stay constant across latitudes, suggesting the phenomenon of “biomass compensation” whereby body size and abundance/diversity change in opposite directions with latitude. Our study highlights that biomass compensation can be part of processes involved in generating gradients of species richness even without an apparent energy/resource gradient.  相似文献   

16.
Geckos are a highly diverse group of lizards, with more than 1,700 species that exhibit a wide range of behaviors, ecologies, and sizes. However, no study has examined links between habitat use and body shape in pad-bearing geckos. We set out to answer a basic question using a data set of pad-bearing geckos (112 species, 103 pad-bearing, 9 padless, 42 genera): Do geckos that occur in different habitats also differ in body shape? Overall, we found that body shape was surprisingly similar among our sample of pad-bearing species, with the exception of the genus Uroplatus, which was clearly distinct from other geckos due to its depressed body and long limbs. However, the padless geckos differed in body shape from the pad-bearing geckos by having longer arms and legs and less rotund bodies. We found that about half of the pad-bearing species primarily inhabit trees, with the other half, divided approximately equally among rocks, the ground, and mixed habitats. We found no significant links between habitat use and body shape, nor any propensity for larger species to occupy different habitats than smaller species. Padless species tend to inhabit rock and ground substrates. Our results indicate that pad-bearing geckos have a relatively uniform body form, which contrasts with to their diversity in color, size, and behavior. Indeed, our data show that the general gecko body shape is suitable for a wide range of habitats, ranging from arboreal to terrestrial. This pattern is a departure from other ecomorphological studies and suggests that geckos may not easily fit into the mold of adaptive radiation, as suggested by prior studies.  相似文献   

17.
The efficiency of social groups is generally optimized by a division of labour, achieved through behavioural or morphological diversity of members. In social insects, colonies may increase the morphological diversity of workers by recruiting standing genetic variance for size and shape via multiply mated queens (polyandry) or multiple‐breeding queens (polygyny). However, greater worker diversity in multi‐lineage species may also have evolved due to mutual worker policing if there is worker reproduction. Such policing reduces the pressure on workers to maintain reproductive morphologies, allowing the evolution of greater developmental plasticity and the maintenance of more genetic variance for worker size and shape in populations. Pheidole ants vary greatly in the diversity of worker castes. Also, their workers lack ovaries and are thus invariably sterile regardless of the queen mating frequency and numbers of queens per colony. This allowed us to perform an across‐species study examining the genetic effects of recruiting more patrilines on the developmental diversity of workers in the absence of confounding effects from worker policing. Using highly variable microsatellite markers, we found that the effective mating frequency of the soldier‐polymorphic P. rhea (avg. meN = 2.65) was significantly higher than that of the dimorphic P. spadonia (avg. meN = 1.06), despite a significant paternity skew in P. rhea (avg. B = 0.10). Our findings support the idea that mating strategies of queens may co‐evolve with selection to increase the diversity of workers. We also detected patriline bias in the production of different worker sizes, which provides direct evidence for a genetic component to worker polymorphism.  相似文献   

18.
Selective pressures favor morphologies that are adapted to distinct ecologies, resulting in trait partitioning among ecomorphotypes. However, the effects of these selective pressures vary across taxa, especially because morphology is also influenced by factors such as phylogeny, body size, and functional trade-offs. In this study, we examine how these factors impact functional diversification in mammals. It has been proposed that trait partitioning among mammalian ecomorphotypes is less pronounced at small body sizes due to biomechanical, energetic, and environmental factors that favor a “generalist” body plan, whereas larger taxa exhibit more substantial functional adaptations. We title this the Divergence Hypothesis (DH) because it predicts greater morphological divergence among ecomorphotypes at larger body sizes. We test DH by using phylogenetic comparative methods to examine the postcranial skeletons of 129 species of taxonomically diverse, small-to-medium-sized (<15 kg) mammals, which we categorize as either “tree-dwellers” or “ground-dwellers.” In some analyses, the morphologies of ground-dwellers and tree-dwellers suggest greater between-group differentiation at larger sizes, providing some evidence for DH. However, this trend is neither particularly strong nor supported by all analyses. Instead, a more pronounced pattern emerges that is distinct from the predictions of DH: within-group phenotypic disparity increases with body size in both ground-dwellers and tree-dwellers, driven by morphological outliers among “medium”-sized mammals. Thus, evolutionary increases in body size are more closely linked to increases in within-locomotor-group disparity than to increases in between-group disparity. We discuss biomechanical and ecological factors that may drive these evolutionary patterns, and we emphasize the significant evolutionary influences of ecology and body size on phenotypic diversity.  相似文献   

19.
This study examined adapoid and omomyoid euprimate dietary and body size diversity from the Eocene of North America and Europe. Estimates of body weights and shearing quotients calculated from lower molars were plotted on a coordinate graph as a representation of dietary niche space (dietary ecospace) occupied by extinct species. By computing the areas, average intertaxon distances, and average distances from the centroid of the resulting polygons, comparisons of Eocene euprimate dietary and body size diversity were made. Results indicate that euprimate dietary niche space expanded significantly in North America from the Early to Middle Eocene, and at all times during the Early and Middle Eocene, the niche space occupied by North American euprimates exceeded that of corresponding European euprimates. These results confirm that fossil euprimate diversity, as measured by diet and body size, significantly differed across biogeographic areas. There are many possible explanations as to why North American euprimates were significantly more diverse in terms of diet and body size than their European counterparts. The explanation advocated here as most responsible for the increased diversity during the Early and Middle Eocene relates to the existence and increased sampling of more ecologically diverse environments, such as basin margins in the western interior of North America. These diverse environments could have promoted biological processes that led to the generation of increased diversity in North America compared to the isolated island refugia of Western Europe during this time.  相似文献   

20.
The cichlids of East Africa are renowned as one of the most spectacular examples of adaptive radiation. They provide a unique opportunity to investigate the relationships between ecology, morphological diversity, and phylogeny in producing such remarkable diversity. Nevertheless, the parameters of the adaptive radiations of these fish have not been satisfactorily quantified yet. Lake Tanganyika possesses all of the major lineages of East African cichlid fish, so by using geometric morphometrics and comparative analyses of ecology and morphology, in an explicitly phylogenetic context, we quantify the role of ecology in driving adaptive speciation. We used geometric morphometric methods to describe the body shape of over 1000 specimens of East African cichlid fish, with a focus on the Lake Tanganyika species assemblage, which is composed of more than 200 endemic species. The main differences in shape concern the length of the whole body and the relative sizes of the head and caudal peduncle. We investigated the influence of phylogeny on similarity of shape using both distance-based and variance partitioning methods, finding that phylogenetic inertia exerts little influence on overall body shape. Therefore, we quantified the relative effect of major ecological traits on shape using phylogenetic generalized least squares and disparity analyses. These analyses conclude that body shape is most strongly predicted by feeding preferences (i.e., trophic niches) and the water depths at which species occur. Furthermore, the morphological disparity within tribes indicates that even though the morphological diversification associated with explosive speciation has happened in only a few tribes of the Tanganyikan assemblage, the potential to evolve diverse morphologies exists in all tribes. Quantitative data support the existence of extensive parallelism in several independent adaptive radiations in Lake Tanganyika. Notably, Tanganyikan mouthbrooders belonging to the C-lineage and the substrate spawning Lamprologini have evolved a multitude of different shapes from elongated and Lamprologus-like hypothetical ancestors. Together, these data demonstrate strong support for the adaptive character of East African cichlid radiations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号