首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was designed to investigate how the form of the marsupial thoracolumbar vertebrae varies to cope with the particular demands of diverse loading and locomotor behaviors. The vertebral columns of 10 species of Macropodidae, with various body masses and modes of locomotion, together with two other arboreal marsupials, koala and cuscus, were selected. Seventy-four three-dimensional landmark coordinates were acquired on each of the 10 last presacral vertebrae of the 70 vertebral columns. The interspecific variations of the third lumbar vertebra (L3, which approximates the mean) and the transitional patterns of the thoracolumbar segments were examined using the combined approach of generalized Procrustes analysis (GPA) and principal components analysis (PCA). The results of analyses of an individual vertebra (L3) and of the transitional patterns indicate significant interspecific differences. In the L3 study the first PC shows allometric shape variation, while the second PC seems to relate to adaptation for terrestrial versus arboreal locomotion. When the L3 vertebrae of the common spotted cuscus and koala are included for comparison, the vertebra of the tree kangaroo occupies an intermediate position between the hopping kangaroo and these arboreal marsupials. The L3 vertebrae in the arboreal marsupials possess a distinct dorsoventrally expanded vertebral body, and perpendicularly orientated spinous and transverse processes. The results of the present study suggest that vertebral shape in the kangaroo and wallaroos provides a structural adaptation to hopping through a relatively enlarged loading area and powerful lever system. In contrast, the small-sized bettongs (or rat kangaroos) have a relatively flexible column and elongated levers for the action of back muscles that extend and laterally flex the spine. The complex pattern of vertebral shape transition in the last 10 presacral vertebrae was examined using PCAs that compare between species information about vertebral shape variation along the thoracolumbar column. The results reinforce and emphasize important aspects of the patterns of variation seen in the detailed analysis of the third lumbar vertebra. The results also imply that size, spinal loading pattern, and locomotor behavior exert an influence on shaping the vertebra. Further, the morphological adaptations are consistent within these marsupials and this opens up the possibility that this kind of analysis may be useful in making functional inferences from fossil material.  相似文献   

2.
This paper describes the morphology of cervical vertebrae in Nacholapithecus kerioi, a middle Miocene primate species excavated from Nachola, Kenya in 1999-2002. The cervical vertebrae in Nacholapithecus are larger than those of Papio cynocephalus. They are more robust relative to more caudal vertebral bones. Since Nacholapithecus had large forelimbs, it is assumed that strong cervical vertebrae would have been required to resist muscle reaction forces during locomotion. On the other hand, the vertebral foramen of the lower cervical vertebrae in Nacholapithecus is almost the same size as or smaller than that of P. cynocephalus. Atlas specimens of Nacholapithecus resemble those of extant great apes with regard to the superior articular facet, and they have an anterior tubercle trait intermediate between that of extant apes and other primate species. Nacholapithecus has a relatively short and thick dens on the axis, similar to those of extant great apes and the axis body shape is intermediate between that of extant apes and other primates. Moreover, an intermediate trait between extant great apes and other primate species has been indicated with regard to the angle between the prezygapophyseal articular facets of the axis in Nacholapithecus. Although the atlas of Nacholapithecus is inferred as having a primitive morphology (i.e., possessing a lateral bridge), the shape of the atlas and axis leads to speculation that locomotion or posture in Nacholapithecus involved more orthograde behavior similar to that of extant apes, and, in so far as cervical vertebral morphology is concerned, it is thought that Nacholapithecus was incipiently specialized toward the characteristics of extant hominoids.  相似文献   

3.
Serial homology or the repetition of equivalent developmental units and their derivatives is a phenomenon encountered in a variety of organisms, with the vertebrate axial skeleton as one of the most notable examples. Serially homologous structures can be viewed as an appropriate model system for studying morphological integration and modularity, due to the strong impact of development on their covariation. Here, we explored the pattern of morphological integration of the cranium and the first three serially homologous structures (atlas, first, and second trunk vertebrae) in salamandrid salamanders, using micro-CT scanning and three-dimensional geometric morphometrics. We explored the integration between structures at static and evolutionary levels. Effects of allometry on patterns of modularity were also taken into account. At the static level (within species), we analyzed inter-individual variation in shape to detect functional modules and intra-individual variation to detect developmental modules. Significant integration (based on inter-individual variation) among all structures was detected and allometry is shown to be an important integrating factor. The pattern of intra-individual, asymmetric variation indicates statistically significant developmental integration between the cranium and the atlas and between the first two trunk vertebrae. At the evolutionary level (among species), the cranium, atlas, and trunk vertebrae separate as different modules. Our results show that morphological integration at the evolutionary level coincides with morphological and functional differentiation of the axial skeleton, allowing the more or less independent evolutionary changes of the cranial skeleton and the vertebral column, regardless of the relatively strong integration at the static level. The observed patterns of morphological integration differ across levels, indicating different impacts of developmental and phylogenetic constraints and functional demands.  相似文献   

4.
We assessed the influence of a variety of aspects of locomotion and ecology including gait and locomotor types, maximal running speed, home range, and body size on postcranial shape variation in small to medium-sized mammals, employing geometric morphometric analysis and phylogenetic comparative methods. The four views analyzed, i.e., dorsal view of the penultimate lumbar vertebra, lateral view of the pelvis, posterior view of the proximal femur and proximal view of the tibia, showed clear phylogenetic signal and interesting patterns of association with movement. Variation in home range size was related to some tibia shape changes, while speed was associated with lumbar vertebra, pelvis and tibia shape changes. Femur shape was not related to any locomotor variables. In both locomotor type and high-speed gait analyses, locomotor groups were distinguished in both pelvis and tibia shape analyses. These results suggest that adaptations to both typical and high-speed gaits could explain a considerable portion of the shape of those elements. In addition, lumbar vertebra and tibia showed non-significant relationships with body mass, which suggests that they might be used in morpho-functional analyses and locomotor inferences on fossil taxa, with little or no bias for body size. Lastly, we observed morpho-functional convergences among several mammalian taxa and detected some taxa that achieve similar locomotor features following different morphological paths.  相似文献   

5.
The vertebral column plays a key role in maintaining posture, locomotion, and transmitting loads between body components. Cervical vertebrae act as a bridge between the torso and head and play a crucial role in the maintenance of head position and the visual field. Despite its importance in positional behaviors, the functional morphology of the cervical region remains poorly understood, particularly in comparison to the thoracic and lumbar sections of the spinal column. This study tests whether morphological variation in the primate cervical vertebrae correlates with differences in postural behavior. Phylogenetic generalized least-squares analyses were performed on a taxonomically broad sample of 26 extant primate taxa to test the link between vertebral morphology and posture. Kinematic data on primate head and neck postures were used instead of behavioral categories in an effort to provide a more direct analysis of our functional hypothesis. Results provide evidence for a function-form link between cervical vertebral shape and postural behaviors. Specifically, taxa with more pronograde heads and necks and less kyphotic orbits exhibit cervical vertebrae with longer spinous processes, indicating increased mechanical advantage for deep nuchal musculature, and craniocaudally longer vertebral bodies and more coronally oriented zygapophyseal articular facets, suggesting an emphasis on curve formation and maintenance within the cervical lordosis, coupled with a greater resistance to translation and ventral displacement. These results not only document support for functional relationships in cervical vertebrae features across a wide range of primate taxa, but highlight the utility of quantitative behavioral data in functional investigations. Am J Phys Anthropol 156:531–542, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large‐scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2–C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints.  相似文献   

7.
Postnatal growth patterns within the vertebral column may be informative about body proportions and regionalization. We measured femur length, lengths of all pre‐sacral vertebrae, and lengths of intervertebral spaces, from radiographs of a series of 21 Eublepharis macularius, raised under standard conditions and covering most of the ontogenetic body size range. Vertebrae were grouped into cervical, sternal, and dorsal compartments, and lengths of adjacent pairs of vertebrae were summed before analysis. Femur length was included as an index of body size. Principal component analysis of the variance‐covariance matrix of these data was used to investigate scaling among them. PC1 explained 94.19% of total variance, interpreted as the variance due to body size. PC1 differed significantly from the hypothetical isometric vector, indicating overall allometry. The atlas and axis vertebrae displayed strong negative allometry; the remainder of the vertebral pairs exhibited weak negative allometry, isometry or positive allometry. PC1 explained a markedly smaller amount of variance for the vertebral pairs of the cervical compartment than for the remainder of the vertebral pairs, with the exception of the final pair. The relative standard deviations of the eigenvalues from the PCAs of the three vertebral compartments indicated that the vertebrae of the cervical compartment were less strongly integrated by scaling than were the sternal or dorsal vertebrae, which did not differ greatly between themselves in their strong integration, suggesting that the growth of the cervical vertebrae is constrained by the mechanical requirements of the head. Regionalization of the remainder of the vertebral column is less clearly defined but may be associated with wave form propagation incident upon locomotion, and by locomotory changes occasioned by tail autotomy and regeneration. Femur length exhibits negative allometry relative to individual vertebral pairs and to vertebral column length, suggesting a change in locomotor requirements over the ontogenetic size range.  相似文献   

8.
Phenotypic integration and modularity represent important factors influencing evolutionary change. The mammalian cervical vertebral column is particularly interesting in regards to integration and modularity because it is highly constrained to seven elements, despite widely variable morphology. Previous research has found a common pattern of integration among quadrupedal mammals, but integration patterns also evolve in response to locomotor selective pressures like those associated with hominin bipedalism. Here, I test patterns of covariation in the cervical vertebrae of three hominoid primates (Hylobates, Pan, Homo) who engage in upright postures and locomotion. Patterns of integration in the hominoid cervical vertebrae correspond generally to those previously found in other mammals, suggesting that integration in this region is highly conserved, even among taxa that engage in novel positional behaviors. These integration patterns reflect underlying developmental as well as functional modules. The strong integration between vertebrae suggests that the functional morphology of the cervical vertebral column should be considered as a whole, rather than in individual vertebrae. Taxa that display highly derived morphologies in the cervical vertebrae are likely exploiting these integration patterns, rather than reorganizing them. Future work on vertebrates without cervical vertebral number constraints will further clarify the evolution of integration in this region.  相似文献   

9.
To explore the relationship between morphological change and species diversification, we reconstructed the evolutionary changes in skull size, skull shape, and body elongation in a monophyletic group of eight species that make up salamander genus Triturus. Their well‐studied phylogenetic relationships and the marked difference in ecological preferences among five species groups makes this genus an excellent model system for the study of morphological evolution. The study involved three‐dimensional imagery of the skull and the number of trunk vertebrae, in material that represents the morphological, spatial, and molecular diversity of the genus. Morphological change largely followed the pattern of descent. The reconstruction of ancestral skull shape indicated that morphological change was mostly confined to two episodes, corresponding to the ancestral lineage that all crested newts have in common and the Triturus dobrogicus lineage. When corrected for common descent, evolution of skull shape was correlated to change in skull size. Also, skull size and shape, as well as body shape, as inferred from the number of trunk vertebrae, were correlated, indicating a marked impact of species' ecological preferences on morphological evolution, accompanied by a series of niche shifts, with the most pronounced one in the T. dobrogicus lineage. The presence of phylogenetic signal and correlated evolutionary changes in skull and body shape suggested complex interplay of niche shifts, natural selection, and constraints by a common developmental system. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 243–255.  相似文献   

10.
Body shape variation is integrally related to many aspects of fish ecology, including locomotion and foraging, and can indicate the functional diversity of fish assemblages. Few studies have thoroughly characterized body shape in a diverse marine fish clade, or investigated both temporal and spatial patterns of variation in body shape disparity. Here, I use digital photographs to measure geometric body shape in 66 species of north‐east Pacific rockfish (Sebastes spp.), including a correction for error introduced by arching of specimens. Different components of interspecific shape variation show associations with fish size, depth habitat, trophic niche and phylogenetic relationships. Overall, the accumulation of body shape disparity appears to have been near‐constant over time, and shows little variation across the latitudinal range of rockfish.  相似文献   

11.
Recent functional studies of human vertebrae have revealed that loads borne by the axial skeleton during bipedal postures and locomotion pass through the pedicles and posterior elements as well as through the bodies and discs. Accordingly, particular morphological attributes of these vertebral elements have been linked exclusively with bipedalism. In order to test the validity of current form-function associations in human vertebral anatomy, this study considers the morphology of human thoracolumbar vertebral bodies and pedicles in the context of a wide comparative primate sample. The last lumbar vertebra of STS 14 (Australopithecus africanus) is also included in the analysis. Results indicate that certain features of human vertebrae previously thought to reflect bipedalism are characteristic of several nonhuman primates, including those whose posture is habitually pronograde. These features include the decrease in vertebral body surface area and the increase in cross-sectional area of the pedicle between the penultimate and last lumbar vertebra. In addition, although humans have relatively large and wide last lumbar pedicles, the enlargement and widening of the pedicle between the penultimate and last lumbar vertebra is not unique to humans. On the other hand, human vertebrae do exhibit several unique adaptations to bipedal posture and locomotion: (1) the vertebral body surface areas of the lower lumbar vertebrae and the cross-sectional areas of the last lumbar pedicles are large relative to body size, and (2) the last lumbar pedicles are wider relative to length and to body size than are those of nonhuman primates. The last lumbar vertebra of STS 14 does not exhibit any of these human-like vertebral features—its pedicles and body surface areas are relatively small, and its pedicles are not relatively wide, but relatively short.  相似文献   

12.
The comparative vertebral morphology of the atlas–axis complex in cordyliforms, xantusiid and several skinks is studied here. These lizards are particularly interesting because of their different ecological adaptations and anti‐predation strategies, where conformation ranges from the lizard‐like body to a snake‐like body. This transition to serpentiform morphology shows several evolutionary patterns in the atlas–axis complex: 1) the zygapophyseal articulations are lost in the early stage of the transition. In contrast to mammals, the atlas is more or less locked to the axis in lepidosaurs, but the absence of zygapophyseal articulation releases this locking for rotation. However despite its serpentiform morphology, Chamaesaura is different, in possessing this articulation; 2) the first intercentrum of Chamaesaura and Tetradactylus africanus (serpentiform grass‐swimmers) is fully curved anteriorly, underlying the occipital condyle. While this limits ventral skull rotation beyond a certain angle, it locks the skull, which is a crucial adaptation for a sit‐and‐wait position in grassland habitats that needs to keep the head stabilized; and 3) in Acontias, most of the atlas articular surface with the occipital condyle is formed by the lateral aspect of the articulation area relative to the area located in the dorsal region of the slightly reduced intercentrum. A similar state occurs in amphisbaenians, most likely reflecting a fossorial lifestyle of the limbless lizards. Although Chamaesaura and Tetradactylus live sympatrically in grasslands, Chamaesaura differs in several ways in atlas–axis complex: for example, aforementioned presence of the atlas–axis zygapophyseal articulation, and long posterodorsal processes. Its occipital condyle protrudes further posteriorly, placing the atlas–axis complex further from the endocranium than in Tetradactylus. Hence, adaptation in the same niche, even among sister clades, can lead to different atlas–axis morphology due to different lifestyle strategies, for example, different foraging mode, while similar atlas–axis morphology can evolve in two lineages occupying different niches, as in Ablepharus and Scelotes. J. Morphol. 277:512–536, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Within carnivorans, cats show comparatively little disparity in overall morphology, with species differing mainly in body size. However, detailed shape analyses of individual osteological structures, such as limbs or skulls, have shown that felids display significant morphological differences that correlate with their observed ecological and behavioural ranges. Recently, these shape analyses have been extended to the felid axial skeleton. Results demonstrate a functionally-partitioned vertebral column, with regions varying greatly in level of correlation between shape and ecology. Moreover, a clear distinction is evident between a phylogenetically-constrained neck region and a selection-responsive posterior spine. Here, we test whether this regionalisation of function reflected in vertebral column shape is also translated into varying levels of phenotypic integration between this structure and most other skeletal elements. We accomplish this comparison by performing pairwise tests of integration between vertebral and other osteological units, quantified with 3D geometric morphometric data and analysed both with and without phylogenetic correction. To our knowledge, this is the first study to test for integration across a comprehensive sample of whole-skeleton elements. Our results show that, prior to corrections, strong covariation is present between vertebrae across the vertebral column and all other elements, with the exception of the femur. However, most of these significant correlations disappear after correcting for phylogeny, which is a significant influence on cranial and limb morphology of felids and other carnivorans. Our results thus suggest that the vertebral column of cats displays relative independence from other skeletal elements and may represent several distinct evolutionary morphological modules.  相似文献   

14.
The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar–molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals.  相似文献   

15.
Conspecific populations inhabiting different environments may exhibit morphological differences, potentially reflecting differential local adaptation. In anuran amphibians, morphology of the pelvis and hindlimbs may often experience strong selection due to effects on locomotion. In this study, we used the cane toad Rhinella marina to test the hypothesis that populations experiencing a higher abundance of predators should suffer higher mortality rates and exhibit morphological traits associated with enhanced locomotor performance (narrower pelvis and head, longer pelvis and hindlimbs, shorter presacral vertebral column). We investigated inter-population variation in survival rate, abundance of predators, and body shape across five populations in rivers in western Mexico. We conducted (1) mark-recapture experiments to calculate survival rates, (2) linear transects with point counts to estimate abundance of predatory spiders, snakes, and birds, and (3) geometric morphometric analyses to investigate body shape variation. We found significant differences among populations in survival rates, abundance of predators, and body shape. However, these three variables were not necessarily inter-related. Increased predator abundance did not result in decreased survival rates, suggesting other causes of mortality affect these populations. While some morphological differences supported our predictions (trend for longer pelvis, shorter presacral vertebral column, and narrower head in sites with increased abundance of spiders and snakes), other aspects of morphology did not. We discuss alternative explanations for the lack of clear associations between predation, survival, and morphology.  相似文献   

16.
We report on the first detailed study of the atlas–axis complex in the lizard clade Dibamidae, a family of poorly known fossorial squamates distributed in tropical or subtropical climates. This skeletal bridge is characterized by several features, such as the complete absence of the first intercentrum or the appearance of the first free cervical rib on the axis (usually less developed in Dibamus relative to that in Anelytropsis). Our study shows morphological differences of the atlas–axis complex in the Mexican blind lizard Anelytropsis relative to those of Asian Dibamus, the only two known extant genera of this clade. With regard to taxonomy and phylogenetic topology of the Dibamidae within Squamata, a huge conflict exists between morphology versus molecules. The morphology of the atlas–axis complex is therefore compared with several potential sister clades + Sphenodon. Dibamids share several features with limbless Gekkota, Scincoidea, and Amphisbaenia. The complete absence of the first intercentrum is observed in Rhineura floridana and in Ateuchosaurus chinensis as well, and the free rib associated with the synapophyses of the axis is also present in Acontias meleagris. However, some of these features may result from a limbless, burrowing ecology and thus could represent homoplastic characters. In any case, the morphology of the atlas–axis shows that dibamids share most character states with skinks. Although the atlas–axis complex forms only an additional source of information, this conclusion is consistent with most morphological rather than molecular tree topologies.  相似文献   

17.
Vertebrates exhibit tremendous diversity in body shape, though quantifying this variation has been challenging. In the past, researchers have used simplified metrics that either describe overall shape but reveal little about its anatomical basis or that characterize only a subset of the morphological features that contribute to shape variation. Here, we present a revised metric of body shape, the vertebrate shape index (VSI), which combines the four primary morphological components that lead to shape diversity in vertebrates: head shape, length of the second major body axis (depth or width), and shape of the precaudal and caudal regions of the vertebral column. We illustrate the usefulness of VSI on a data set of 194 species, primarily representing five major vertebrate clades: Actinopterygii, Lissamphibia, Squamata, Aves, and Mammalia. We quantify VSI diversity within each of these clades and, in the course of doing so, show how measurements of the morphological components of VSI can be obtained from radiographs, articulated skeletons, and cleared and stained specimens. We also demonstrate that head shape, secondary body axis, and vertebral characteristics are important independent contributors to body shape diversity, though their importance varies across vertebrate groups. Finally, we present a functional application of VSI to test a hypothesized relationship between body shape and the degree of axial bending associated with locomotor modes in ray-finned fishes. Altogether, our study highlights the promise VSI holds for identifying the morphological variation underlying body shape diversity as well as the selective factors driving shape evolution.  相似文献   

18.
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi‐aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc‐shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool‐shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.  相似文献   

19.
Aim  To explore variation in the number of vertebrae in fishes in the context of Jordan's rule and other ecogeographical rules.
Location  Global.
Methods  The study is based on literature review.
Results  The number of vertebrae varies very widely across the diversity of fishes. Jordan's rule states that vertebral number increases with latitude, and this is widely attributed to ambient temperatures during ontogeny of individual fishes. However, the number of vertebrae may depend on both the ontogenetic environment and inheritance. Diverse other aspects of fish development and ecology are suggested as influencing vertebral number, including fish size, phyletic position, body shape and swimming mode.
Main conclusions  The number of different factors that influence the number of vertebrae in fishes makes for highly complex patterns of variation, and means that unravelling causes is difficult. The question needs to be addressed at the population/species/species group scale; moreover, the lack of discrimination between environmental and inherited causes of variation adds to the complexity.  相似文献   

20.
In vertebrates, changes in cranial modularity can evolve rapidly in response to selection. However, mammals have apparently maintained their pattern of cranial integration throughout their evolutionary history and across tremendous morphological and ecological diversity. Here, we use phylogenetic, geometric morphometric and comparative analyses to test the hypothesis that the modularity of the mammalian skull has been remodelled in rhinolophid bats due to the novel and critical function of the nasal cavity in echolocation. We predicted that nasal echolocation has resulted in the evolution of a third cranial module, the ‘nasal dome’, in addition to the braincase and rostrum modules, which are conserved across mammals. We also test for similarities in the evolution of skull shape in relation to habitat across rhinolophids. We find that, despite broad variation in the shape of the nasal dome, the integration of the rhinolophid skull is highly consistent with conserved patterns of modularity found in other mammals. Across their broad geographical distribution, cranial shape in rhinolophids follows two major divisions that could reflect adaptations to dietary and environmental differences in African versus South Asian distributions. Our results highlight the potential of a relatively simple modular template to generate broad morphological and functional variation in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号