首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Lyme disease is a tick-transmitted inflammatory disorder, caused by the spirochete Borrelia burgdorferi (Bb). Recent discoveries cast new light on Bb dissemination and the ensuing pathogenesis of inflammation. Although the strong proinflammatory Bb lipoproteins have been implicated in the induction of inflammation, they do not seem to act exclusively through Toll-like receptor (TLR) engagement. In fact, mice that are deficient for MyD88, a component of the TLR signaling pathway, manifest similar or increased recruitment of cells into Bb-infected tissues. By contrast, the absence of the chemokine receptor CXCR2 results in reduced inflammation. Overall, these findings highlight the complexity of Lyme disease pathogenesis and identify chemokine pathways as novel therapeutic targets for the control of Bb-induced inflammation.  相似文献   

2.
CD1 molecules can present microbial lipid Ag to T cells, suggesting that they participate in host defense against pathogens. In this study, we examined the role of CD1d in resistance to infection with the Lyme disease spirochete, Borrelia burgdorferi (Bb), an organism with proinflammatory lipid Ag. Bb infection of CD1d-deficient (CD1d(-/-)) mouse strains normally resistant to this pathogen resulted in arthritis. Pathology correlated with an increased prevalence of spirochete DNA in tissues and enhanced production of Bb-specific IgG, including IgG to Ag rapidly down-modulated on spirochetes in vivo. CD1d(-/-) mice exhibited high-titer Bb-specific IgG2a, an isotype commonly induced in disease-susceptible mice but not in the disease-resistant control mice in this study. These results show that CD1d deficiency impairs host resistance to a spirochete pathogen, and are the first example of a mutation that imparts Bb-resistant mice with the Ab and disease profile of a susceptible mouse strain.  相似文献   

3.
4.
Although the causative agent of Lyme disease is definitively known to be the tick-borne spirochete, Borrelia burgdorferi, the etiology of chronic joint inflammation that ensues in a subset of patients remains less well understood. Persistence of arthritis after apparent eradication of the spirochete suggests an autoimmune reaction downstream of the original bacterial infection. We have generated recombinant Ab probes from synovial lesions within affected arthritic joints in an attempt to recapitulate disease-relevant Ag-binding specificities at the site of injury. Using this panel of intra-articular probes, as well as Ab fragments derived from patient peripheral blood, we have identified cytokeratin 10, present in synovial microvascular endothelium, as a target ligand and a putative autoantigen in chronic, antibiotic treatment-resistant Lyme arthritis. Furthermore, there is cross-reactivity between cytokeratin 10 and a prominent B. burgdorferi Ag, outer surface protein A. Release of the self protein in the context of inflammation-induced tissue injury and the resulting in situ response to it could set in motion a feed-forward loop, which amplifies the inflammatory process, thereby rendering it chronic and self-perpetuating, even in the absence of the inciting pathogen.  相似文献   

5.
6.
7.
The enzyme 5-lipoxygenase (5-LO) catalyzes the conversion of arachidonic acid into the leukotrienes, which are critical regulators of inflammation and inflammatory diseases, such as asthma and arthritis. Although leukotrienes are present in the synovial fluid of Lyme disease patients, their role in the development of Lyme arthritis has not been determined. In the current study, we used a murine model of Lyme arthritis to investigate the role 5-LO products might have in the development of this inflammatory disease. After infection of Lyme arthritis-susceptible C3H/HeJ mice with Borrelia burgdorferi, mRNA expression of 5-LO and 5-LO-activating protein was induced in the joints, and the 5-LO product leukotriene B(4) was produced. Using C3H 5-LO-deficient mice, we demonstrated that 5-LO activity was not necessary for the induction of Lyme arthritis, but that its deficiency resulted in earlier joint swelling and an inability to resolve arthritis as demonstrated by sustained arthritis pathology through day 60 postinfection. Although production of anti-Borrelia IgG was decreased in 5-LO-deficient mice, bacterial clearance from the joints was unaffected. Phagocytosis of B. burgdorferi and efferocytosis of apoptotic neutrophils was defective in macrophages from 5-LO-deficient mice, and uptake of opsonized spirochetes by neutrophils was reduced. These results demonstrate that products of the 5-LO metabolic pathway are not required for the development of disease in all models of arthritis and that caution should be used when targeting 5-LO as therapy for inflammatory diseases.  相似文献   

8.
The chronic persistence of rheumatoid synovitis, an inflammation driven by activated T cells, macrophages, and fibroblasts causing irreversible joint damage, suggests a failure in physiologic mechanisms that down-regulate and terminate chronic immune responses. In vitro CD8(+)CD28(-)CD56(+) T cells tolerize APCs, prevent the priming of naive CD4(+) T cells, and suppress memory CD4(+) T cell responses. Therefore, we generated CD8(+)CD28(-)CD56(+) T cell clones from synovial tissues, expanded them in vitro, and adoptively transferred them into NOD-SCID mice engrafted with synovial tissues from patients with rheumatoid arthritis. Adoptively transferred CD8(+)CD28(-)CD56(+) T cells displayed strong anti-inflammatory activity. They inhibited production of IFN-gamma, TNF-alpha, and chemokines in autologous and HLA class I-matched heterologous synovitis. Down-regulation of costimulatory ligands CD80 and CD86 on synovial fibroblasts was identified as one mechanism of immunosuppression. We propose that rheumatoid synovitis can be suppressed by cell-based immunotherapy with immunoregulatory CD8(+) T cells.  相似文献   

9.
10.
The development of experimental Lyme arthritis has been correlated with the expression of a number of chemokines and cytokines, however, none of these have been measured directly from the arthritic joint. We examined the temporal expression of IL-1beta, IL-4, IL-6, IL-10, IL-12p70, GM-CSF, IFN-gamma, TNF-alpha, macrophage inflammatory protein-2, KC, macrophage inflammatory protein-1alpha, and monocyte chemoattractant protein-1 directly from the tibiotarsal joint in arthritis-resistant C57BL/6 (B6) and -susceptible C3H/He (C3H) mice. Only the chemokines KC and monocyte chemoattractant protein-1 were differentially expressed in joints of B6 and C3H mice and correlated with the development of Lyme arthritis. Infection of CXCR2(-/-) mice on either genetic background resulted in a significant decrease in the development of pathology, although infection of CCR2(-/-) mice had little or no effect. Neutrophils in CXCR2(-/-) mice were marginalized within blood vessels and could not enter the joint tissue. These results suggest that chemokine-mediated recruitment of neutrophils into the infected joint is a key requirement for the development of experimental Lyme arthritis.  相似文献   

11.
The pathogenesis of chronic inflammatory joint diseases such as adult and juvenile rheumatoid arthritis and Lyme arthritis is still poorly understood. Central to the various hypotheses in this respect is the notable involvement of T and B cells. Here we develop the premise that the nominal antigen-independent, polyclonal activation of preactivated T cells via Toll-like receptor (TLR)-2 has a pivotal role in the initiation and perpetuation of pathogen-induced chronic inflammatory joint disease. We support this with the following evidence. Both naive and effector T cells express TLR-2. A prototypic lipoprotein, Lip-OspA, from the etiological agent of Lyme disease, namely Borrelia burgdorferi, but not its delipidated form or lipopolysaccharide, was able to provide direct antigen-nonspecific co-stimulatory signals to both antigen-sensitized naive T cells and cytotoxic T lymphocyte (CTL) lines via TLR-2. Lip-OspA induced the proliferation and interferon (IFN)-γ secretion of purified, anti-CD3-sensitized, naive T cells from C57BL/6 mice but not from TLR-2-deficient mice. Induction of proliferation and IFN-γ secretion of CTL lines by Lip-OspA was independent of T cell receptor (TCR) engagement but was considerably enhanced after suboptimal TCR activation and was inhibitable by monoclonal antibodies against TLR-2.  相似文献   

12.
Antibiotic treatment-resistant Lyme arthritis is a chronic inflammatory joint disease that follows infection with Borrelia burgdorferi (BB:). A marked Ab and T cell response to BB: outer surface protein A (OspA) often develops during prolonged episodes of arthritis. Furthermore, cross-reaction between the bacterial OspA and human LFA-1alpha(L) at the T cell level and the inability to detect BB: in the joint implicate an autoimmune mechanism. To analyze the nature of response to OspA and LFA-1alpha(L), we used OspA-specific T cell hybrids from DR4 transgenic mice, as well as cloned human cells specific for OspA(165-184), the immunodominant epitope, from five DRB1*0401(+) patients, using OspA-MHC class II tetramers. Although OspA(165-184) stimulated nearly all OspA-specific human T cell clones tested to proliferate and secrete IFN-gamma and IL-13, LFA-1alpha(L326-345) stimulated approximately 10% of these clones to proliferate and a greater percentage to secrete IL-13. Assays with LFA- or OspA-DR4 monomers revealed that higher concentrations of LFA-DR4 were needed to stimulate dual-reactive T cell hybrids. Our analysis at the clonal level demonstrates that human LFA-1alpha(L326-345) behaves as a partial agonist, perhaps playing a role in perpetuating symptoms of arthritis.  相似文献   

13.
MicroRNAs have been shown to be important regulators of inflammatory and immune responses and are implicated in several immune disorders including systemic lupus erythematosus and rheumatoid arthritis, but their role in Lyme borreliosis remains unknown. We performed a microarray screen for expression of miRNAs in joint tissue from three mouse strains infected with Borrelia burgdorferi. This screen identified upregulation of miR-146a, a key negative regulator of NF-κB signaling, in all three strains, suggesting it plays an important role in the in vivo response to B. burgdorferi. Infection of B6 miR-146a−/− mice with B. burgdorferi revealed a critical nonredundant role of miR-146a in modulating Lyme arthritis without compromising host immune response or heart inflammation. The impact of miR-146a was specifically localized to the joint, and did not impact lesion development or inflammation in the heart. Furthermore, B6 miR-146a−/− mice had elevated levels of NF-κB-regulated products in joint tissue and serum late in infection. Flow cytometry analysis of various lineages isolated from infected joint tissue of mice showed that myeloid cell infiltration was significantly greater in B6 miR-146a−/− mice, compared to B6, during B. burgdorferi infection. Using bone marrow-derived macrophages, we found that TRAF6, a known target of miR-146a involved in NF-κB activation, was dysregulated in resting and B. burgdorferi-stimulated B6 miR-146a−/− macrophages, and corresponded to elevated IL-1β, IL-6 and CXCL1 production. This dysregulated protein production was also observed in macrophages treated with IL-10 prior to B. burgdorferi stimulation. Peritoneal macrophages from B6 miR-146a−/− mice also showed enhanced phagocytosis of B. burgdorferi. Together, these data show that miR-146a-mediated regulation of TRAF6 and NF-κB, and downstream targets such as IL-1β, IL-6 and CXCL1, are critical for modulation of Lyme arthritis during chronic infection with B. burgdorferi.  相似文献   

14.
CD28 is required to achieve optimal T cell activation to an Ag. To determine the role CD28 costimulation plays in collagen-induced arthritis, we have generated DQ8 transgenic, CD28-deficient mice. DQ8 mice deficient for CD28 had comparable numbers of CD4 and CD8 T cells as DQ8.CD28(+/+) mice. DQ8.CD28(-/-) mice develop collagen-induced arthritis with delayed onset and less severity than DQ8.CD28(+/+) mice. T cells from DQ8.CD28(-/-) mice did not respond to type II collagen efficiently in vitro, although the response to DQ8-restricted peptides was similar to that in the parent mice. There was no functional defect in T cells as observed by proliferation with Con A. Cytokine analysis from in vitro study showed the production of high levels of the inflammatory cytokine, IFN-gamma, in response to type II collagen. We observed an increase in CD4(+)CD28(-)NKG2D(+) cells after immunization, suggesting an important role for cells bearing this receptor in the disease process. CD28(-/-) mice also have an increased number of DX5(+) cells compared with CD28(+/+) mice, which can lead to the production of high levels of IFN-gamma. DQ8.CD28(-/-) mice had an increased number of cells bearing other costimulatory markers. Cells from DQ8.CD28(-/-) mice exhibited a lower proliferation rate and were resistant to activation-induced cell death compared with DQ8.CD28(+/+) mice. This study supports the idea that CD28 plays a crucial role in the regulation of arthritis. However, in the absence of CD28 signaling, other costimulatory molecules can lead to the development of disease, thus indicating that the requirement for CD28 may not be absolute in the development of arthritis.  相似文献   

15.

Introduction

The protein platform called the NOD-like-receptor -family member (NLRP)-3 inflammasome needs to be activated to process intracellular caspase-1. Active caspase-1 is able to cleave pro-Interleukin (IL)-1β, resulting in bioactive IL-1β. IL-1β is a potent proinflammatory cytokine, and thought to play a key role in the pathogenesis of Lyme arthritis, a common manifestation of Borrelia burgdorferi infection. The precise pathways through which B. burgdorferi recognition leads to inflammasome activation and processing of IL-1β in Lyme arthritis has not been elucidated. In the present study, we investigated the contribution of several pattern recognition receptors and inflammasome components in a novel murine model of Lyme arthritis.

Methods

Lyme arthritis was elicited by live B. burgdorferi, injected intra-articularly in knee joints of mice. To identify the relevant pathway components, the model was applied to wild-type, NLRP3-/-, ASC-/-, caspase-1-/-, NOD1-/-, NOD2-/-, and RICK-/- mice. As a control, TLR2-/-, Myd88-/- and IL-1R-/- mice were used. Peritoneal macrophages and bone marrow-derived macrophages were used for in vitro cytokine production and inflammasome activation studies. Joint inflammation was analyzed in synovial specimens and whole knee joints. Mann-Whitney U tests were used to detect statistical differences.

Results

We demonstrate that ASC/caspase-1-driven IL-1β is crucial for induction of B. burgdorferi-induced murine Lyme arthritis. In addition, we show that B. burgdorferi-induced murine Lyme arthritis is less dependent on NOD1/NOD2/RICK pathways while the TLR2-MyD88 pathway is crucial.

Conclusions

Murine Lyme arthritis is strongly dependent on IL-1 production, and B. burgdorferi induces inflammasome-mediated caspase-1 activation. Next to that, murine Lyme arthritis is ASC- and caspase-1-dependent, but NLRP3, NOD1, NOD2, and RICK independent. Also, caspase-1 activation by B. burgdorferi is dependent on TLR2 and MyD88. Based on present results indicating that IL-1 is one of the major mediators in Lyme arthritis, there is a rationale to propose that neutralizing IL-1 activity may also have beneficial effects in chronic Lyme arthritis.  相似文献   

16.
IL-17 is a proinflammatory cytokine suspected to be involved in inflammatory and autoimmune diseases such as rheumatoid arthritis. In the present study, we report that IL-17R signaling is required in radiation-resistant cells in the joint for full progression of chronic synovitis and bone erosion. Repeated injections of Gram-positive bacterial cell wall fragments (streptococcal cell wall) directly into the knee joint of naive IL-17R-deficient (IL-17R-/-) mice had no effect on the acute phase of arthritis but prevented progression to chronic destructive synovitis as was noted in wild-type (wt) mice. Microarray analysis revealed significant down-regulation of leukocyte-specific chemokines, selectins, cytokines, and collagenase-3 in the synovium of IL-17R-/- mice. Bone marrow (BM) chimeric mice revealed the need for IL-17R expression on radiation-resistant joint cells for destructive inflammation. Chimeric mice of host wt and donor IL-17R-/- BM cells developed destructive synovitis in this chronic reactivated streptococcal cell wall arthritis model similar to wt-->wt chimeras. In contrast, chimeric mice of host IL-17R-/- and donor wt BM cells were protected from chronic destructive arthritis similar as IL-17R-/- -->IL-17R-/- chimeras. These data strongly indicate that IL-17R signaling in radiation-resistant cells in the joint is required for turning an acute macrophage-mediated inflammation into a chronic destructive synovitis.  相似文献   

17.
The genetic and environmental factors that control the development of Sj?gren's syndrome, an autoimmune disease mainly involving the salivary and lacrimal glands, are poorly understood. Viruses which infect the glands may act as a trigger for disease. The ability of sialotropic murine CMV (MCMV) to induce acute and chronic glandular disease was characterized in an autoimmune-prone mouse strain, NZM2328. MCMV levels were detectable in the salivary and lacrimal glands 14-28 days after i.p. infection and correlated with acute inflammation in the submandibular gland. After latency, virus was undetectable in the glands by PCR. At this stage, NZM2328 female mice developed severe chronic periductal inflammation in both submandibular and lacrimal glands in contrast to the much milder infiltrates found in female B6-lpr and male NZM2328. The focal infiltrates consisted of CD4+ and B220+ cells as opposed to diffuse CD4+, CD8+, and B220+ cells during acute infection. Salivary gland functional studies revealed a gender-specific progressive loss of secretory function between days 90 and 125 postinfection. Latent MCMV infection did not significantly affect the low incidence of autoantibodies to Ro/SSA and La/SSB Ags in NZM2328 mice. However, reactivities to other salivary and lacrimal gland proteins were readily detected. MCMV infection did not significantly alter the spontaneous onset of kidney disease in NZM2328. Thus, chronic inflammation induced by MCMV with decreased secretory function in NZM2328 mice resembles the disease manifestations of human Sj?gren's syndrome.  相似文献   

18.
The secreted goblet cell-derived protein resistin-like molecule beta (RELMbeta) has been implicated in divergent functions, including a direct effector function against parasitic helminths and a pathogenic function in promoting inflammation in models of colitis and ileitis. However, whether RELMbeta influences CD4(+) T cell responses in the intestine is unknown. Using a natural model of intestinal inflammation induced by chronic infection with gastrointestinal helminth Trichuris muris, we identify dual functions for RELMbeta in augmenting CD4(+) Th1 cell responses and promoting infection-induced intestinal inflammation. Following exposure to low-dose Trichuris, wild-type C57BL/6 mice exhibit persistent infection associated with robust IFN-gamma production and intestinal inflammation. In contrast, infected RELMbeta(-/-) mice exhibited a significantly reduced expression of parasite-specific CD4(+) T cell-derived IFN-gamma and TNF-alpha and failed to develop Trichuris-induced intestinal inflammation. In in vitro T cell differentiation assays, recombinant RELMbeta activated macrophages to express MHC class II and secrete IL-12/23p40 and enhanced their ability to mediate Ag-specific IFN-gamma expression in CD4(+) T cells. Taken together, these data suggest that goblet cell-macrophage cross-talk, mediated in part by RELMbeta, can promote adaptive CD4(+) T cell responses and chronic inflammation following intestinal helminth infection.  相似文献   

19.
20.
The selectins, along with very late antigen-4 and CD44, have been implicated in mediating leukocyte rolling interactions that lead to joint recruitment and inflammation during the pathogenesis of rheumatoid arthritis. Previously, we showed that P-selectin deficiency in mice resulted in accelerated onset of joint inflammation in the murine collagen-immunized arthritis model. Here, we report that mice deficient either in E-selectin or in E-selectin and P-selectin (E/P-selectin mutant) also exhibit accelerated development of arthritis compared with wild type mice in the CIA model, suggesting that these adhesion molecules perform overlapping functions in regulating joint disease. Analyses of cytokine and chemokine expression in joint tissue from E/P-selectin mutant mice before the onset of joint swelling revealed significantly higher joint levels of macrophage inflammatory protein-1α and IL-1β compared to wild-type mice. IL-1β remained significantly increased in E/P-selectin mutant joint tissue during the early and chronic phases of arthritis. Overall, these data illustrate the novel finding that E-selectin and P-selectin expression can significantly influence cytokine and chemokine production in joint tissue, and suggest that these adhesion molecules play important regulatory roles in the development of arthritis in E/P-selectin mutant mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号