首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A procedure was established for the induction of regenerable calli from immature inflorescence segments of high-tannin cultivars of sorghum (Sorghum bicolor (L.) Moench). Murashige & Skoog's medium with several components altered was utilized for inducing, maintaining, and regenerating the cultures. Embryogenic calli formed at a frequency of 8–70% depending on the genotype. During a ten-month period, 3600 plants were regenerated from eight genotypes tested. Among the developmental stages of immature inflorescence tested (from differentiation of secondary branch primordia to floret formation) no critical differences were found in potential for callusing, embryogenesis or regeneration. Genotypic differences were observed in pigment production, embryogenic callus formation, shoot differentiation, and in maintenance of regeneration capacity.Abbreviations 2,4-D dichlorophenoxyacetic acid This is Journal Paper Number 11972 from the Purdue University Agricultural Experiment Station  相似文献   

2.
Fifty genotypes of each of three cultivars of alfalfa (Medicago spp.) were tested in three medium protocols for their capacity to produce somatic embryos and plantlets from callus cultures. Highly productive genotypes produced somatic embryos regardless of medium protocol or explant source, while other genotypes produced somatic embryos in a medium-specific or explant-specific fashion. The results showed that embryogenesis in mature leaf-derived calli could be predicted from the frequency of embryo formation in cotyledon-derived calli of the same genotype. The results also indicated that highly productive genotypes can be selected from cultivars with a low frequency of regeneration.  相似文献   

3.
Summary Callus cultures were initiated from immature embryos of oneTriticum aestivum and threeT. durum cultivars. Growing morphogenic calli were exposed to different concentrations of NaCl (0, 0.3, 0.5, and 0.7%) added to the culture medium during two subsequent subcultures (4 wk each). The growth rate of the calli was determined by the relative fresh weight callus growth (RFWCG). The callus growth of all investigated genotypes was slightly changed in the presence of 0.3 and 0.5% NaCl, but strongly inhibited by 0.7% NaCl. Selected NaCl-tolerant clones were isolated and plants were regenerated on MS-based regeneration medium without NaCl. The regeneration capacity of the selected calli was highly reduced compared to the control. The highest number of regenerants was scored for cv. Gladiator (T. aestivum). All regenerated plants were morphologically normal and many developed to maturity and set seeds. Seedlings from the R1 generation of selected and control plants were treated with 0.5% NaCl in vivo in liquid cultures for 6 wk. Salt tolerance of the progenies of selected plants appeared in all cultivars, but those derived from calli grown on medium with 0.7% NaCl showed the highest survival rate.T. aestivum showed higher tolerance to NaCl salinity thanT. durum.  相似文献   

4.
This study describes the impact of sorbitol on plantlets regeneration frequency (PRF) of four rice cultivars (japonica, Oryza sativa L.) both of which mature and immature embryo-derived calli were investigated. The variance analysis results showed that PRF of the three elite upland rice cultivars, Handao297 (HD297), Handao502 (HD502), Handao65 (HD65) and one lowland rice cultivar Zhongzuo93 (ZZ93) were significantly increased with addition of appropriate amount of sorbitol in culture media. Supplementing appropriate sorbitol in the media of a continous culture from induction and maintenance to regeneration for mature embryo-derived calli could improve PRF dramatically, originally from 27.6% up to a maximum of 71.8%. Especially to low regenerative capacity (LRC) cultivar HD65, the PRF was increased over 7-fold (from 9.7% to 74.0%). The optimum concentrations of sorbitol for calli induction, subculture and differentiation were 5, 20 and 40 g/l, respectively. Adding sorbitol, only in maintenance media at concentration of 20 g/l, also enhanced the PRF greatly in all the cultivars from 27.6% to 43.3%. Similar results were observed when incorporating with maltose in regenerating media both in immature and mature embryo-derived calli. The optimal concentration was 25 g/l sorbitol + 20 g/l maltose and 20 g/l sorbitol + 25 g/l maltose, respectively. HD297 appeared to be the most responsive genotype compared to other cultivars in PRF, 99.2% in immature embryo-derived calli and 76.8% in mature embryo-derived calli. The results and relevant conclusions might be valuable to establish an efficient plant regeneration system from somatic embryogenesis culture in upland rice.  相似文献   

5.
Fertile rice plants have been regenerated from protoplasts of two japonica rice varieties (Radon and Baldo) using a protocol initially developed for plant regeneration from protoplasts of an indica rice. Embryogenic calli were developed from immature embryos of Radon and Baldo rice on a callus induction medium, and then used to establish cell suspensions. Protoplasts were isolated from the cell suspensions, and cultured on a Millipore filter placed on a Kao/agarose medium that contained cell clusters from suspensions of IR52 or IR45. The protoplasts grew vigorously on Kao medium and developed into embryogenic calli within two to three weeks. Somatic embryo development occurred during a subsequent transfer of the calli to an LS medium for two to three weeks. The calli were then transferred to MS or N6 plant regeneration medium, and within one to three weeks, plants regenerated from 21 to 32% of the Radon calli, and 33 to 35% of the Baldo calli. Based upon these results and the previous success in regenerating an indica variety from protoplasts, this procedure has great promise for regenerating a range of rice varieties, and probably for regeneration of other monocotyledonous plants from protoplasts  相似文献   

6.
The aim of the presented work was the search for the relationship between the level of soluble carbohydrates in callus tissues of eight meadow fescue (Festuca pratensis Huds.) cultivars and their growth ability on media containing Bipolaris sorokiniana and Drechslera dictyoides metabolites. Calli were induced from mature grains using the method previously described (Płażek 1994). Callus obtained from single caryopsis was cut into three pieces which were weighted and put on the media with or without pathogen metabolites. Tissue selection was performed by means of “double-layer culture” technique (Lepoivre et al. 1986). After two-week culture in the darkness at temp. of 25°C the calli were weighted again. The sugar level in tissue was measured by means of colorimetric method of Klein & Weissman according to Snell (1961). Fresh mass decrease of calli developing on the media with fungus metabolites was observed by all studied object. The tolerance of calli of the tested cultivars to metabolites of both pathogens was significantly different. However, significant similarity between the tolerance of calli of particular varietes to both fungi was noted. The soluble carbohydrate contents in control tissue of all studied cultivars were similar and their values ranged between 2.4 and 3 % of fresh mass. B. sorokiniana metabolites caused a significant decrease of the sugar content in calli, while D. dictyoides metabolites did not decrease the sugar level.  相似文献   

7.
Summary Calli derived from immature embryos of barley and wheat genotypes were screened for their resistance to purified culture filtrate produced by the fungus Helminthosporium sativum P.K. and B. Two selection methods were used: a continuous method in which four cycles of selection were performed one after another on toxic medium and a discontinuous method in which a pause on non-toxic medium was given after the second or third cycle of selection. The latter was superior as it allowed the calli to regain their regeneration ability. About 3,000 calli from two barley genotypes and 2,000 from two wheat genotypes were used for selection. The selection with the pathotoxins resulted in 6% to 17% surviving calli. Toxin tolerant callus lines of barley were characterised by protein isozymes. Zymograms showed one more isozyme than with the unselected sensitive callus. Barley and wheat plants have been regenerated from callus lines surviving the toxin treatment and in vivo testing against pathogen revealed that the majority of these plants were less sensitive.  相似文献   

8.
An efficient and rapid regeneration protocol was developed using shoot apices from germinating seedlings of two cultivars of sorghum, SPV-462 and M35-1, as explants. A vertical slit given from the base of each dissected apex enhanced the efficiency of callusing response by two fold. MS medium containing 0.5 mg dm−3 each of 2,4-D and kinetin was most effective in producing friable and embryogenic calli. Scanning electron microscopy of these calli detected somatic embryogenesis. Calli thus induced gave rise to approximately 42 green shoots per callus in both the genotypes when transferred to regeneration medium containing 1.5 mg dm−3 kinetin.  相似文献   

9.
Two successive cycles of mature embryo-derived callus culture separated by one cycle of sexual reproduction of R0 regenerated plants were performed using two rice (Oryza sativa L.) cultivars in order to gain information upon the nature of somaclonal variation in this species. Plants regenerated after one cycle of tissue culture exhibited higher variability and lower performances than those of initial cultivar. A second cycle performed using R1 embryos as explants showed that the cellular component of salt resistance in terms of growth and regenerating abilities selected during the first cycle could be transmitted to the progenies. The extent and the nature of somaclonal variation depended on the identity of R0 mother plant and culture conditions, somaclonal variation being strongly reduced in some families obtained from salt-treated calli.  相似文献   

10.
Culture filtrate of Colletotrichum lindemuthianum caused dark brown lesions on the lower surface veins of bean leaves. This phenomenon was used as a bioassay to study the production of toxic fungal metabolites. Calli from anthracnose-susceptible bean cultivars 'Collacia', 'Andecha' and 'Seronda' were sensitive to a 12.5% solution of race 38 filtrate or to a 25% solution of race 7 filtrate. In contrast, calli from anthracnose-resistant bean genotypes A 247, TU, PI 207262, 'Collacia' × 'Tu', 'Collacia' × AB 136 and 'Collacia' × PI 207262 did not develop browning. Culture filtrates were passed through an ionic-exchange resin and a gel filtration resin. Toxic activity of fractions from two races of the fungal pathogen was different, although in both races slight necrosis was produced by the same nine fractions. Pathogenicity could be related with common substances and toxicity could be identified with differential compounds. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Protoplasts from a total of thirty-six genotypes of Brassica species – B. napus, B. campestris (syn. B. rapa), B. juncea, and three distant relatives, Orychophragmus violaceus, Isatis indigotica and Xinjiang wild rape – were analysed for shoot regeneration using a feeder culture system. With the exception of B. campestris and Xinjiang wild rape, some genotypes of all the species could regenerate plants with high efficiency (above 20% of isolated calli initiating shoots). Several genotypes with high regeneration ability were elite breeding lines. Culture conditions as well as genotype had a significant impact on shoot regeneration frequency. In particular, silver nitrate added to the regeneration medium at doses of 6 and 30 μM improved shoot regeneration frequency to 25.4% and 52.2% of isolated calli, respectively, compared to 7.3% percent shoot regeneration without silver nitrate in seven responsive genotypes. Addition of silver nitrate to the regeneration medium also induced shoot regeneration in non-responsive genotypes. Intact plants could be obtained within three months from protoplast isolation in the regenerative genotypes using the current culture system. Advantages of mesophyll protoplasts as compared to protoplasts isolated from hypocotyls for genetic manipulation in Brassica species are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Summary Nucellar calli from four Citrus cultivars with known resistance to the Phytophthora citrophthora pathogen were chosen as experimental material to test the pathogen's response to culture filtrate (CF). Sensitivity of the four calli to CF of the fungus was in reverse order to what is known on the susceptibility of the cultivars in vivo. Sensitivity of protoplasts derived from the same four calli to 2,4-dichlorophenoxyacetic acid (2,4-D) was in the same order as that of calli to CF. Protoplasts derived from calli selected for tolerance to CF showed a higher plating efficiency with increasing concentration of CF in the medium. TLC and GLC determinations showed the presence of indole acetic acid in the culture filtrate. Results indicate that CF of P. citrophthora cannot be used as a selection tool in vitro.Contribution No. 1655-E, 1986 series, from the Agricultural Research Organization, Bet-Dagan, Israel  相似文献   

13.
Plant regeneration from calli of three cultivars of Allium cepa (Senshuki, O·Pki and Shojovaka) was investigated. Callus was induced on four variations of BDS medium containing different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (BAP). The regeneration frequency of calli of cvs. Senshuki and O·Pki subcultured on solid MS medium supplemented with BAP ranged from 50% to 80%; this frequency decreased to less than 30% after subculture in the dark in liquid BDS medium. By repeating the dark/light transitions of the culture protocol and by selecting for green cell clusters, we were able to increase the regeneration frequency to more than 80% in all three cultivars. These cell clusters maintained a high regeneration capacity in subsequent subcultures in the absence of light for 2 months. Most (97%) of the regenerated plantlets had a normal diploid karyotype (2n=16) that was identical to that of the mother plants, although 3% of the regenerated plants of cv. Shojovaka had a tetraploid karyotype.Abbreviations BAP 6-Benzyladenine - 2,4-D 2,4-Dichlorophenoxyacetic acid  相似文献   

14.
Response of twenty eight cultivars of durum wheat (Triticum turgidum var. durum) to immature embryo culture, callus production and in vitro salt tolerance was evaluated. For assessment of cultivars to salt tolerance, growing morphogenic calli were exposed to different concentrations of NaCl (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.1% w/v) added to the culture medium during two subsequent subcultures (4 weeks each). Comparison of cultivars for callus induction from immature embryo was based on callus induction frequency and fresh weight growth of callus (FWG). While, for salt tolerance, the relative fresh weight growth (RFWG) and necrosis percent of callus were used. There were significant differences among cultivars for potential of regeneration from immature embryo, and ‘Shahivandi’ a native durum wheat cultivar originating from western Iran was superior among the cultivars tested. The FWG distinguished cultivars more than callus induction frequency did for callus induction evaluation. Hence, a range of FWG from 1.23 to 14.65 g was observed in ‘Mexical-75’ and ‘Omrabi-5’ cultivars, respectively. Growing calli derived from cultivars ‘PI 40100’ and ‘Dipper-6’ showed superiority for tolerating salinity under in vitro conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Sweet potato [Ipomoea batatas (L.) Lam] is considered to be recalcitrant to transformation and regeneration because of its genotype-dependent in vitro responses. The lack of a genotype-independent transformation and regeneration system limits biotechnological applications in this plant species. To establish a transformation system for a diverse group of sweet potato genotypes, we examined sweet potato regeneration after transformation in five cultivars. An Agrobacterium tumefaciens transformation system was used for the introduction of mammalian cytochrome P450 genes, which are capable of conferring herbicide tolerance. Among the different factors studied, including explant type, plasmid vectors, and auxin type in the initiation media, auxin type had the greatest effect on the regeneration response. Of the auxins tested, only 4-fluorophenoxyacetic acid (4FA) induced regeneration from all cultivars. In terms of the quality of calli, 4FA promoted the induction of type I calli, which were capable of somatic embryo formation, whereas type II calli fail to produce somatic embryos. The frequency of somatic embryo formation was also affected by the composition of the embryo-induction media. Transgenic plants were regenerated from all cultivars. The stable integration and expression of transgenes was confirmed by several approaches. This Agrobacterium-mediated transformation system should be applicable to a wide range of sweet potato cultivars.  相似文献   

16.
The influence of donor plant growth conditions in years 2003, 2004, and 2005 on tissue culture response (TCR) traits of 96 wheat genotypes was evaluated. Immature embryos, collected 12–15 days after anthesis from field-grown plants, were cultured on Murashige and Skoog medium containing 2 mg/l 2,4-D followed by their transfer to a growth regulator-free medium. Donor plants growth in a season 2003 characterized by drought and heat stress, as compared to favorable growth seasons 2004 and 2005, resulted in a increased variability and a decreased percentage of callus formation and the number of regenerating calli and plants regenerated per embryo in all genotypes, except genotype Florida that exhibited a significantly increased number of regenerating calli in 2003. The reduction rate of regenerating callus formation depended on genotype, and it was the highest in Magnif 41, NS66/92, and Mexico 3. The results suggest that the impact of donor plant growth conditions on TCR traits can be as large as the effect of the genotype, which should be taken into account when planning transformation work with wheat. Published in Russian in Fiziologiya Rastenii, 2009, vol. 56, No. 4, pp. 596–602. This text was submitted by the authors in English.  相似文献   

17.
Duckweed(Lemna gibba) is a useful model system for elucidating plant development, but the techniques needed for regenerating fronds from calli are not yet well established. This study examined the effects of auxin, sucrose, and gelling agents on callus and frond formation inL. gibba G3. After three weeks of culturing on a solid medium, two types of calli were observed: watery, pale-green, and undifferentiated; or white, compact calli that were organized into nodules and which resembled somatic embryogenie calli. Homogeneous callus lines were produced through selective subculture. To induce nodular calli, auxin (2,4-D) was absolutely required, with an effective concentration of 5 to 20 μM; induction was found to be possible with up to a maximum concentration of 4.4%. The calli were then maintained on a medium with a reduced 2,4-D concentration (1 μM), and were transferred every three weeks. Optimal callus induction and growth were obtained by using 3% sucrose with a combination of 0.15% Gelrite and 0.4% agar. Fronds, however, could be regenerated only on distilled water solidified with a combination of 0.4% agar and 0.15% Gelrite. On this medium, 87% of the callus expiants regenerated into fronds after four weeks of culture. These new fronds were morphologically normal but small, approximately 15 to 20% of the size of stock fronds. Continued culture of these fronds in an SH medium produced normal duckweeds, and histological examination of the cultures revealed several distinct types of callus nodules. Nonetheless, because zygotic embryogenesis inL. gibba does not produce distinct bipolar structures, the developmental pathway of frond regeneration from these nodular cultures remains unknown.  相似文献   

18.
早熟棉体细胞胚胎发生和植株再生体系的建立   总被引:4,自引:0,他引:4  
以8个早熟或特早熟棉花为材料,通过不同激素组合(1.0 mg/L IBA+0.5 mg/L KT;0.1 mg/L 2,4-D+0.1 mg/L KT)诱导其愈伤组织,为早熟棉花的遗传转化以及基因功能研究奠定基础.结果表明,2种激素组合均能诱导产生4种主要类型的愈伤组织:淡黄色颗粒状愈伤组织,褐化的愈伤组织,翠绿致密的愈伤组织,疯长型愈伤组织.4种愈伤组织转入增殖培养基中前2种愈伤组织能够分化出胚性愈伤组织,胚性愈伤组织再转到分化培养基上培养能够产生胚状体,即体细胞胚;体细胞胚进一步发育成为再生小苗.用该组织培养再生系统,成功地使晋棉5号、中棉27号和辽棉10号等3个早熟棉品种在5~7个月内通过体细胞胚胎分化获得再生小苗.  相似文献   

19.
The changes in the activities of antioxidant enzymes and amounts of proteins, phenols, and flavonoids in regenerating and non-regenerating calli during organogenesis of Sterculia urens were monitored. Maximum growth of calli and the most efficient regeneration of shoots occurred on Murashige and Skoog (MS) medium supplemented with 0.5 mg dm?3 benzylaminopurine (BAP) + 2 or 4 mg dm?3 naphtalene acetic acid (NAA). Peroxidase (POD), catalase, and superoxide dismutase activities increased in the regenerating calli but decreased in the non-regenerating calli. Six POD isoenzymes were detected. Protein content decreased in the non-regenerating calli and increased significantly during regeneration of shoots from callus. Total phenols and flavonoids increased in the non regenerating calli. SDS-PAGE analysis revealed a role of many proteins in organogenesis.  相似文献   

20.
Improved Regeneration Efficiency from Mature Embryos of Barley Cultivars   总被引:6,自引:0,他引:6  
A reliable protocol for plant regeneration from mature embryo derived calli of nine barley (Hordeum vulgare) cultivars has been developed. The auxins 2,4-dichlorophenoxyacetic acid, picloram and dicamba proved effective in inducing callus from mature embryos of most of the barley cultivars. The induced primary callus was loose, friable and translucent. It ultimately yielded creamy white and compact callus after 2 - 3 transfers on fresh medium of the same composition. Callus induction and regeneration capacity were highly cultivar dependent. Addition of a high concentration of picloram (4 mg dm-3) promoted regeneration in 3 cultivars (Tallon, Grimmett and Sloop). In cv. Arapiles, abscisic acid and betaine were crucial in generating morphogenic callus from the mature embryos. Plants regenerated from these calli were hardy and developed roots readily when transferred to hormone free medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号