首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
Following the consumption of baculovirus occlusion bodies (OBs), insects may succumb to lethal disease, but the survivors can harbour sublethal covert infections and may develop, reproduce and transmit the infection to their offspring. The use of different chemical and biological stressors was examined to determine whether they could be used to activate covert infections in populations of Spodoptera exigua larvae infected by the homologous nucleopolyhedrovirus (SeMNPV). Treatment of covertly infected S. exigua second instars with Tinopal UNPA‐GX, hydroxylamine, paraquat, Bacillus thuringiensis var. kurstaki crystals, spores or mixtures of crystals + spores, or a heterologous nucleopolyhedrovirus (Chrysodeixis chalcites SNPV) did not result in the activation of SeMNPV covert infections. Similarly, virus treatments involving permissive NPVs did not result in greater mortality in covertly infected insects compared with the virus‐free controls. In contrast, 0.1% copper sulphate, 1% iron (II) sulphate and 1 mg/l sodium selenite treatments resulted in 12–41% lethal polyhedrosis disease in covertly infected larvae. A greenhouse trial using copper sulphate and sodium selenite as activation factors applied to covertly infected S. exigua larvae on sweet pepper plants resulted in very low levels of SeMNPV activation (<3%). These results highlight the important roles of copper, iron and selenium in insect immunity and baculovirus‐induced disease. However, these substances seem unlikely to prove useful for the activation of covert SeMNPV infections in S. exigua larvae under greenhouse conditions.  相似文献   

2.
Excessive use of chemical insecticides to control Spodoptera frugiperda in maize (Zea mays L.) crops in Colombia has resulted in pest resistance and environmental contamination. A Colombian multicapsid nucleopolyhedrovirus (SfMNPV) was produced in laboratory reared larvae and formulated as a wettable powder by microencapsulating the viral occlusion bodies (OBs) with a methacrylic acid polymer. Microencapsulated OBs were tested for insecticidal activity in laboratory, greenhouse and field bioassays, and were then sprayed onto a commercial crop where their effect on arthropod populations was estimated. In laboratory bioassay, microencapsulated and non-microencapsulated OBs caused a larval mortality of 98 and 96%, respectively. The percent of plants showing recent feeding damage in a greenhouse experiment oscillated between 2.5 and 7.5% when OBs were applied compared to 70% observed in the control. In two field trials, the highest dose of 1.5×1012 OBs/ha (1500 g/ha) was selected as the recommended rate for field application in maize crops, with efficacies higher than 70%. Total arthropod populations were negatively affected by chemical pesticides; whereas the OBs formulation did not affect the diversity of these organisms. Our results indicate that microencapsulated SfMNPV has the potential to be commercialised as an alternative to substitute or complement chemical insecticides in fall armyworm integrated management programmes.  相似文献   

3.
Dose– and time–mortality relationships of baculoviruses in pest insects are important for the determination of effective spraying regimes. A series of experiments with Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Spodoptera exigua MNPV (SeMNPV) against synchronized populations of S. exigua larvae in greenhouse chrysanthemum was conducted. Dose– and time–mortality relationships of different virus concentrations and S. exigua target stages were determined and the area foliage consumption was measured. Crop injury was greatly reduced when S. exigua were controlled as second or third instar larvae, whereas virus applications against fourth instar larvae could not prevent considerable crop injury, even at high concentrations. SeMNPV was approximately 10 times as infectious as AcMNPV when applied on greenhouse chrysanthemum. The relative virulence of AcMNPV and SeMNPV corresponded reasonably well with previously published laboratory bioassay data. SeMNPV killed second and fourth instar S. exigua larvae approximately 12 h faster than did AcMNPV in chrysanthemum, but no difference in speed of action was found for third instar larvae. The relative speed of action of AcMNPV and SeMNPV determined in chrysanthemum and in laboratory bioassays did not correspond for third instar S. exigua larvae; laboratory bioassay data can therefore not simply be extrapolated to the crop level.  相似文献   

4.
P. H. Smits  J. M. Vlak 《BioControl》1988,33(3):299-308
The virulence of 5 nuclear polyhedrosis viruses infectious for larvae of beet armyworm,Spodoptera exigua, was studied and their potential as biological control agents of this accidentally introduced pest in Dutch greenhouse crops is discussed. Three of the virus isolates were collected from deceased beet armyworm larvae found in Dutch greenhouses. Based on restriction endonuclease patterns of their DNA they appeared to be closely related toMamestra brassicae nuclear polyhedrosis virus (MbMNPV) and therefore were named MbMNPV-NL80, MbMNPV-NL82 and MbMNPV-NL83. These isolates were not related toAutographa californica MNPV (AcMNPV) or toSpodoptera exigua MNPV (SeMNPV), both originating from the USA. Comparison of the oiological activity of these 5 isolates showed that the SeMNPV was more virulent against beet armyworm than the other isolates. There was no significant difference in virulence between MbMNPV-NL80, NL82, NL83 and AcMNPV forS. exigua. The LD-50 values of the 5 isolates for 2nd instar larvae were 3, 26, 14, 17 and 18 polyhedra, respectively. Despite compensating qualities of the other MNPVs, such as a broader host range and potential production in alternate hosts or cell-lines, SeMNPV is considered to be the most suitable candidate as biological control agent of beet armyworm.   相似文献   

5.
  • 1 Cabbage loopers Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) are serious pests in greenhouses growing tomatoes, cucumbers and bell peppers. A potential microbial control, now in development, is the broad host‐range virus Autographa californica multiple nucleopolyhedrovirus (AcMNPV).
  • 2 The relationships between the three host plants and the feeding behaviour, larval movement and performance of cabbage looper larvae that might relate to their interaction with AcMNPV applications were investigated.
  • 3 Larvae reared on cucumber plants consumed approximately ten‐fold more leaf area than larvae reared on pepper plants and almost five‐fold more than larvae reared on tomato plants. This could influence the amount of AcMNPV consumed if it were used as a microbial spray because increased consumption can be associated with increased probability of infection. Survival from neonate to pupa also varied, with the greatest being on cucumber, followed by tomato and pepper plants. Larvae fed cucumber were approximately four‐fold heavier than larvae fed tomato and over 15‐fold heavier than larvae fed pepper plants.
  • 4 The distribution of larvae on plants in commercial greenhouses where a single crop was being grown also varied with food plant with 73% being found on the bottom and middle portions of tomato plants and 87% occurring in the top portions of pepper plants. Larvae tended to be distributed on the middle portion of cucumber plants, the lower portion of tomato plants and the top portion of pepper plants. Larval movement did not vary between AcMNPV‐infected and uninfected controls.
  • 5 It is predicted that the higher leaf area consumption and location of larvae in the middle portion of cucumber plants may make them more susceptible to viral sprays. Furthermore, given their greater survival than larvae fed tomato and pepper, there may be a greater need for virus applications.
  相似文献   

6.
The commercial production of baculovirus insecticides is limited by the need to produce the virus in living insects. The influence of juvenile hormone analogs (JHA) on the growth and survival of Spodoptera exigua larvae placed on treated diet in the fifth instar was examined. Weight increases observed in methoprene- and fenoxycarb-treated larvae were over three-fold greater than that of control insects, whereas other compounds resulted in lower weight gains (pyriproxyfen) or highly variable responses (hydroprene). Approximately 90% and 70% of fenoxycarb and methoprene-treated larvae, respectively, molted to a supernumerary sixth instar and attained a final weight at 8–10 days post-treatment that was approximately double the maximum weight observed in control larvae. Inoculation of fenoxycarb and methoprene-treated sixth instars with a nucleopolyhedrovirus (SeMNPV) resulted in 2.4- or 2.9-fold increases in final weights, compared to control larvae inoculated in the fifth instar. The total yield of SeMNPV occlusion bodies (OBs) per larva was 2.7- and 2.9-fold greater in fenoxycarb- and methoprene-treated larvae, respectively, compared to fifth instar controls. A significant but small increase in the yield of OBs/mg larval weight was observed in fenoxycarb-treated insects but not in the methoprene treatment. The LC50 value of OBs harvested from fenoxycarb-treated insects was slightly higher than that of OBs from control insects, whereas no such difference was observed in OBs from methoprene-treated insects. We conclude that appropriate use of JHA technology is likely to provide considerable benefits for the mass production of baculoviruses.  相似文献   

7.
The relative activities of the granulovirus (PxGV) and the nucleopolyhedrovirus (PxMNPV) of the diamondback moth, Plutella xylostella (L.), against this insect were evaluated in the laboratory. Similar numbers of occlusion bodies (OBs) of PxGV and PxMNPV were required to kill P. xylostella. However, cadavers of insects infected with PxGV contained more OBs per unit weight than did cadavers infected with PxMNPV. Less cadaver material was thus required to kill insects with PxGV. Larvae that were killed by PxGV survived approximately 2 d longer than did those killed by PxMNPV. When P. xylostella larvae were fed both viruses together, mortality was higher than that caused by either virus alone. The virulence of PxMNPV produced in P.␣xylostella did not differ from that of PxMNPV produced in the beet armyworm, Spodoptera exigua (Hübner). S. exigua was less susceptible to PxMNPV than to its homologous nucleopolyhedrovirus, SeMNPV. Use of trade names does not imply endorsements by USDA-ARS of products named nor criticism of similar ones not mentioned.  相似文献   

8.
The predatory mite Iphiseius degenerans (Berlese) is commercially available as a biological control agent of thrips and spider mites in greenhouse crops. Developmental duration and immature survival of I. degeneransreared on nine types of food (almond pollen, apple pollen, castor bean pollen, plum pollen, sweet pepper pollen, Tetranychus urticaeKoch, Frankliniella occidentalis(Pergande), Ephestia kuehniella Zeller eggs and Artemia franciscana Kellogg cysts) and on three substrates (Multicel, sweet pepper leaf, and bean leaf) were determined in the laboratory. All experiments were carried out at 25 °C. On Multicel, mean developmental times on pollen ranged from 6.0 to 7.1 days, with the lowest value recorded on almond pollen and the highest on sweet pepper pollen. When reared on castor bean pollen significantly longer developmental times were obtained on a sweet pepper leaf compared to a bean leaf or Multicel. Developmental duration when offered T. urticaeon Multicel ranged between 6.1 and 6.9 days, on a bean leaf development was completed in 8.0 days. The longest developmental times on Multicel were recorded on Ephestia eggs (7.0 days) and on decapsulated Artemia cysts (7.5 days). No development beyond the protonymphal stage occurred in the absence of food or when encapsulated Artemia cysts or thrips larvae were offered on Multicel. On a sweet pepper leaf and a bean leaf, respectively 6.7 and 10.0% of the eggs reached adulthood when thrips larvae were provided as food; developmental times recorded here, were 9.0 and 8.3 days. Overall, immature mortality occurred mainly in the protonymphal stage and ranged from 0.0 to 36.7%. In conclusion, I. degenerans is able to feed on a variety of natural and unnatural foods, but thrips larvae and sweet pepper pollen are unfavourable food for immature development. This could compromise the establishment of this biological control agent when used against thrips in sweet pepper crops.  相似文献   

9.
Frankliniella occidentalis (Pergande) and Thrips tabaci Lindeman (Thysanoptera: Thripidae) are major pests of sweet pepper for direct damage and tospovirus transmission. To control their infestations, Orius laevigatus (Fieber) (Heteroptera: Anthocoridae) is produced by many commercial insectaries and widely used on IPM vegetable crops of Europe. This predator is naturally widespread along the Mediterranean and Atlantic coasts, and not in more continental areas, where other Orius spp. are more common. Research was conducted in a continental area of Northwest Italy in 2002–2003 to assess the natural presence of anthocorids on pepper, and to compare their colonization and predatory ability with those of the species artificially introduced. Experiments were conducted in 12 sweet pepper greenhouses, in six of which O. laevigatus release was made. From late May to early October, thrips and anthocorids were sampled on pepper by collecting flowers; Orius spp. were also collected on neighboring wild flora. Independently of the releases, Orius specimens were found in all surveyed greenhouses, but O. niger Wolff, also captured on various wild plants, was the most abundant species. It naturally colonized crops from late June and proved to be the most efficient predator on sweet pepper in the surveyed area, if not disturbed by pesticide application. Contrarily, O. laevigatus was rarely found and only in the greenhouses in which it had been released. However its introduction resulted in thrips control before natural colonization by the native species occurred.  相似文献   

10.
The incorporation of baculovirus into semi-synthetic diets has been used for the inoculation of large batches of insect larvae reared under gregarious conditions. The preparation of most artificial diets involves heating to dissolve the agar gelling agent followed by cooling to ~55–60°C whereupon virus occlusion bodies (OBs) are incorporated into the diet. To avoid exposure of thermolabile OBs to high temperatures, a cool-textured diet using soy fiber was evaluated as a simple method to inoculate batches of larvae with the baculovirus OBs. Spodoptera exigua larvae that fed on a diet with 120, 140 or 160?g/l of soy fiber, as a substitute for agar, had a similar weight gain over a 24?h period than larvae that consumed a standard agar diet. The larval weight gain with cool-textured diets with 140?g/l of soy fiber was not improved by the addition of chlorophyll, green food dye colour, or by the removal of ascorbic acid, sodium benzoate and potassium sorbate. Preliminary tests performed to determine the optimal OBs concentration needed for the inoculation of groups of four instar larvae in agar and soy fiber diets revealed no virus inactivation in heated diets with a similar optimal concentration of 36?OBs?mg?1 for both diets. Moreover, no significant differences were observed in OB production when each type of diet was used to inoculate groups of 250 larvae reared gregariously in plastic containers. Cool-textured diets could be of interest for the production of baculoviruses that require a diet that can be prepared quickly and easily.  相似文献   

11.
Spodoptera exigua nuclear polyhedrosis virus was produced in late fourth instar S. exigua larvae, reared on semi-artificial diet. A maximum amount of virus, 1–2 × 109 polyhedra/larva, was produced in individually-reared larvae after 7 days of incubation, with an inoculum of 7–5 × 104 polyhedra/cm2 diet surface. Virus yield was slightly reduced to 9 × 108 polyhedra/larva when production was carried out in groups of 400 and 600 larvae per container. Biological activity of virus harvested from living larvae and from dead cadavers was similar. Microbial contaminants, predominantly bacteria, in the virus product numbered 1–6% of the number of polyhedra. Tests for the presence of vertebrate-pathogenic bacteria in the virus product were all negative.  相似文献   

12.
《Biological Control》2002,23(1):47-55
This paper describes the validation and sensitivity analysis of a process-based simulation model (BACSIM) for the control of beet armyworm, Spodoptera exigua, with baculoviruses. Model predictions are compared to results of independent greenhouse experiments in which second, third, or fourth instar larvae of S. exigua in chrysanthemum plots are treated with different concentrations of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and S. exigua MNPV (SeMNPV), two viruses with distinct differences in infectivity and mean time to kill. BACSIM provides robust predictions for the control of S. exigua populations in greenhouse chrysanthemum with both AcMNPV and SeMNPV. Mortality levels caused by AcMNPV and SeMNPV were generally predicted within a 25% margin of error compared to the observed values. None of the deviations was higher than 40%. All values of simulated foliage consumption, caused by S. exigua populations treated with AcMNPV or SeMNPV applications, fell within 95% confidence intervals of measurements. Simulated time to kill was, in general, lower than the measurements. This discrepancy may be caused by the behavior of S. exigua larvae which feed on the underside of chrysanthemum leaves where they are protected from polyhedra. This suggests that the larval foraging behavior may play an important role in the efficacy of baculovirus applications and should be further studied experimentally. This validated model can be used for the pretrial evaluation of the efficacy of genetically modified baculoviruses as biological control agents and for the optimization of spraying regimes in chrysanthemum cultivation.  相似文献   

13.
An indigenous betabaculovirus (PapyGV) of the Pandemis leafroller, Pandemis pyrusana (Kearfott), was studied in the laboratory and greenhouse to determine how the virus affected leafroller mortality and foliar damage. Probability of mortality increased with virus concentration as observed after 7 and 10 days of feeding on virus treated diet in neonates and second instar larvae. LC50 estimates for neonates at 7 and 10 days was 2743 and 389 occlusion bodies (OBs)/mm2. For second instars, LC50 was 139,487 and 813 OBs/mm2 at 7 and 10 days. There was no biologically significant mortality response to increasing virus concentrations by fourth instar larvae; however, when fourth instar larvae were infected with virus on diet and then fed apple leaves, the leaf area consumed declined up to 50% with higher virus concentrations. In a greenhouse study, neonate larvae that fed on seedlings treated with water showed >90% survival and 80% pupation rate of larvae after being transferred to diet. In contrast, larvae that fed on apple seedlings sprayed with 3×106 OBs/ml showed poor survival when transferred to diet after acquiring the virus and failed to reach the pupal stage. This virus shows promise for population regulation and can produce reduction in feeding damage.  相似文献   

14.
Nitrogen (N) is one of the most critical chemical elements for plant and animal growth, exerting a variety of bottom‐up effects. Development and oviposition of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), were studied in relation to varying N fertilization levels (42, 112, 196, and 280 p.p.m.) in cotton [Gossypium hirsutum L. (Malvaceae)]. Low N fertilization of cotton plants led to reduced plant biomass and a lower percentage of N in leaf blades and in leaf petioles. Development of S. exigua larvae fed with plants with reduced N applications (42 and 112 p.p.m.) was prolonged relative to treatments receiving higher N fertilization. Almost all larvae reared on artificial diets underwent only five instars before pupation. However, most larvae reared on cotton plants, irrespective of N levels, experienced a supernumerary sixth larval instar. Furthermore, significantly more larvae reared on lower N cotton plants underwent supernumerary development compared to larvae reared on higher N cotton plants. Life‐time feeding damage per larva ranged from 55 to 65 cm2, depending on the nutritional quality of the food plant, although the differences were not statistically significant. Larvae distinguished between cotton plants with various nutritional qualities and fed preferentially on higher N plants. Female moth oviposition choice was also affected by host plant nutritional quality: cotton plants with higher N levels were preferentially chosen by S. exigua females for oviposition. The mechanisms of these effects are unclear, but they can have important implications for population dynamics and pest status of beet armyworms in the field.  相似文献   

15.
Zoophytophagous predators of the family Miridae (Heteroptera), which feed both on plant and prey, often maintain a close relationship with certain host plants. In this study, we aimed to select a suitable mirid predatory bug for aphid control in sweet pepper. Four species were compared: Macrolophus pygmaeus (Rambur), Dicyphus errans (Wolff), Dicyphus tamaninii Wagner and Deraeocoris pallens (Reuter). They were assessed on their establishment on sweet pepper plants with and without supplemental food (eggs of the flour moth Ephestia kuehniella Zeller and decapsulated cysts of the brine shrimp Artemia franciscana Kellogg) and on their effects on aphids with releases before and after aphid infestations. None of the predator species was able to control an established population of aphids on sweet pepper plants; however, the predators M. pygmaeus and D. tamaninii could successfully reduce aphid populations when released prior to an artificially introduced aphid infestation. The best results were achieved with M. pygmaeus in combination with a weekly application of supplemental food. Hence, our results demonstrate that the order and level of plant colonization by mirid predators and aphids determines how successful biological control is. Further studies are needed to evaluate the performance of mirid predatory bugs in sweet pepper crops in commercial greenhouses with multiple pests and natural enemies, in particular to understand how increased variation in food sources affects their feeding behaviour and preferences.  相似文献   

16.
The role of insecticidal application and host plant resistance in managing Spodoptera exigua has been well documented, but the effect of different host plants, on which the pest cycles its population in the field, has seldom been investigated. Therefore, we have studied the vulnerability of S. exigua against commonly used insecticides (cypermethrin, chlorpyrifos, lufenuron, and emamectin benzoate) with different mode of actions when it switches its generations from natal to auxiliary hosts and vice versa. Different field populations being established on different host plants including castor, cauliflower, cotton, okra, and spinach were collected and reared in the laboratory before insecticidal bioassays. The role of larval diet and host plant switching on their response to tolerate applied insecticides was studied using leaf‐dip bioassay methods. Host switching demonstrated a significant role in altering the vulnerability of S. exigua populations to tested insecticides. Spodoptera exigua sourced from castor, when switched host to okra and spinach, exhibited 50% higher mortality when treated with emamectin benzoate. This trend in mortality was consistent upon complete host switch cycle (natal—auxiliary—natal host). However, the highest increase (92%) in vulnerability was recorded when the larvae were shifted to spinach from cotton. In general, chlorpyrifos and lufenuron had highest efficacies in terms of larval mortality. The findings of present studies provide insights to a better understanding the behavior of polyphagous pests and the role of different host plants in altering the susceptibility of these pests against applied insecticides. Ultimately the results warrant that due consideration should be given to cropping patterns and time of host switching by pest population during planning and executing chemical control.  相似文献   

17.
The insecticidal effect of Mamestra brassicae nucleopolyhedrovirus (MabrNPV) and the enhancing activity of proteins derived from occlusion bodies (OBs) of Xestia c-nigrum granulovirus (GVPs) on the infectivity of MabrNPV were evaluated in a bioassay with second-instar larvae of Autographa nigrisigna (Walker) fed virus-applied cabbage plants. The lethal concentrations of MabrNPV achieving 50 and 95% mortality for A. nigrisigna were estimated to be 1.4 × 105 and 3.1 × 106 OBs/ml, respectively. When larvae were fed cabbage plants treated with MabrNPV and various concentrations of GVPs, the requisite concentration of GVPs achieving 95% mortality of A. nigrisigna was estimated to be 26.2–138.8 μg/ml in combination with 104 OBs/ml MabrNPV and 8.46–24.09 μg/ml with 105 OBs/ml MabrNPV. Increases in the concentration of MabrNPV or GVPs caused larval death at younger instars. A. nigrisigna has lower susceptibility to MabrNPV than M. brassicae and Helicoverpa armigera reported in Mukawa and Goto (J Econ Entomol 103:257–264, 2010). We estimated that the requisite concentration of MabrNPV for the control of A. nigrisigna was 105 OBs/ml, which is a tenfold higher concentration than that for M. brassicae and H. armigera, with the increase achieved by adding 10 μg/ml GVPs.  相似文献   

18.
The sweetpotato whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), is a major pest on greenhouse crops including sweet pepper (Capsicum annuum L.), which is one of the leading greenhouse crops in South Korea. Synthetic insecticides, especially the neonicotinoids, have been used to conventionally control this pest. There have been continuous efforts to develop plant‐derived compounds as insecticides, deterrents, and repellents to reduce spraying synthetic insecticides. To develop new plant‐extract insecticides, we investigated the insecticidal effects of Perilla sp. (Perilla frutescens var. crispa) extract on B. tabaci in laboratory conditions. The Perilla sp. extract induced 90 % mortality within one hour, but phytotoxicity symptoms on sweet pepper leaves were also observed. We monitored the population change and spatial distribution of adult B. tabaci in an experimental sweet pepper greenhouse using yellow sticky traps, and analyzed distribution patterns by spatial analysis with distance indices (SADIE). Based on monitoring data and SADIE analysis, we concluded that B. tabaci aggregated near the greenhouse entrances, and it showed aggregation and association pattern as time passed. Therefore, we recommend spraying Perilla sp. extract near the entrances or wild host before the pest population penetrates. It will be one of the alternative pest management strategies to reduce B. tabaci population with fewer negative effects from chemical insecticide. Further study is required to reduce the phytotoxicity symptoms from Perilla sp. extract spray and insecticidal effect should be evaluated under field conditions.  相似文献   

19.
During the building of a process-based simulation model for the epidemiology of the multicapsid nucleopolyhedrovirus of S. exigua (SeMNPV) in populations of Spodoptera exigua (Hübner) in greenhouse chrysanthemum, it was found that the effect of host plants had been under-rated. 'Missing links' included (i) the 'natural' background mortality of larvae of S. exigua in practical cropping conditions; (ii) the developmental rate of larvae of S. exigua on plant substrate in a glasshouse as compared to artificial medium in the laboratory; (iii) the validity of the results of dose-mortality and time-mortality bioassays conducted on artificial medium as compared to natural plant substrate; (iv) the distribution of inoculum released from deceased caterpillars over chrysanthemum leaves; and (v) the leaf visit rate of healthy caterpillars (as it affects horizontal transmission). Experiments were carried out to quantify these processes. Developmental rates of S. exigua larvae on greenhouse chrysanthemum were 36% lower than on an artificial diet. The fraction survival during the first, second, third and fourth instar S. exigua larvae in greenhouse chrysanthemum was 0.60, 0.80, 0.88 and 0.95, respectively. Forty percent of the first instar larvae reached the fifth larval stage. Second instar S. exigua larvae reared on chrysanthemum were significantly more susceptible to SeMNPV than larvae reared on an artificial diet. The food source had no effect on the time to kill S. exigua larvae. Cadavers of second, third and fourth instar S. exigua larvae contaminated on average 1.4, 2.5 and 3.3 chrysanthemum leaves. Second to fourth instar S. exigua larvae visited 2–3 leaves per day and spent 15–55% of the time on the underside of leaves. The above information is of critical importance for a trustworthy simulation of the epidemiology of SeMNPV in chrysanthemum.  相似文献   

20.
《Biological Control》2013,64(3):279-286
Silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), western flower thrips, Frankliniella occidentalis (Pergande), and chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), are key pests of vegetable crops in the US. The present study established ornamental peppers as banker plants supporting Amblyseius swirskii (Acari: Phytoseiidae) against the three pests. Specifically, this study (a) evaluated survival and population buildup of A. swirskii on three ornamental pepper varieties, Masquerade (MA), Red Missile (RM), and Explosive Ember (EE) in both laboratory and greenhouses and (b) determined the predation of A. swirskii reared on ornamental pepper plants to the targeted pests under greenhouse conditions. The results showed that the three pepper varieties were excellent banker plants and able to support at least ∼1000 of all stages of A. swirskii per plant in greenhouse conditions and allow them to complete their life cycle. A. swirskii dispersed or released from the banker plants to target plants, resulting in significant suppression of the three pests, i.e., after 14 d post-release, a significantly lower average of 2.75 B. tabaci and 13.4 all stages of thrips (chilli thrips and western flower thrips) were found per bean plant, respectively, compared to 379.5 B. tabaci and 235.4 all stages of thrips per plant in the control. Furthermore, our experiment observed that the sweet pepper seedlings closed to banker plants were healthy, whereas those without banker plants were heavily infested by chilli thrips; their growth seriously stunted or died. This is the first report of ornamental pepper as banker plants supporting A. swirskii against three notorious pests. This established banker plant system could be a new addition to the integrated pest management programs for sustainable control of these three pests in greenhouse vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号