首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date, it is unknown whether reduced lipid oxidation of skeletal muscle of obese and obese type 2 diabetic (T2D) subjects partly is based on reduced oxidation of endogenous lipids. Palmitate (PA) accumulation, total oxidation and lipolysis were not different between myotubes established from lean, obese and T2D subjects, chronic exposed for PA. Complete oxidation from endogenous PA was reduced in diabetic and obese compared to lean myotubes while exogenous PA oxidation was reduced in diabetic compared to lean myotubes. The complete/incomplete ratio was significantly reduced in diabetic myotubes both for endogenous and exogenous lipids. Thus myotubes established from obese and obese T2D subjects express a reduced complete oxidation of endogenous lipids. Two cardinal principles govern the reduced lipid oxidation in obese and diabetic myotubes; firstly, an impaired coupling between endogenous lipid and mitochondria in obese and obese diabetic myotubes and secondly, a mismatch between β-oxidation and citric acid cycle in obese diabetic myotubes.  相似文献   

2.
Exercise increases while physical inactivity decrease mitochondrial content and oxidative capacity of skeletal muscles in vivo. It is unknown whether mitochondrial mass and substrate oxidation are related in non-contracting skeletal muscle. Mitochondrial mass, ATP, ADP, AMP, glucose and lipid oxidation (complete and incomplete) were determined in non-contracting myotubes established from 10 lean, 10 obese and 10 subjects with type 2 diabetes precultured under normophysiological conditions. ATP, ADP, AMP, mitochondrial mass and energy charge were not different between groups. In diabetic myotubes, basal glucose oxidation and incomplete lipid oxidation were significantly increased while complete lipid oxidation was lower. Mitochondrial mass was not correlated to glucose oxidation or incomplete lipid oxidation in human myotubes but inversely correlated to complete lipid oxidation. Thus within a stable energetic background, an increased mitochondrial mass in human myotubes was not positive correlated to an increased substrate oxidation as expected from skeletal muscles in vivo but surprisingly with a reduced complete lipid oxidation.  相似文献   

3.
The diabetic phenotype is complex, requiring elucidation of key initiating defects. It is unknown whether the reduced tricarboxylic acid cycle (TCA) flux in skeletal muscle of obese and obese type 2 diabetic (T2D) subjects is of primary origin. Acetate oxidation (measurement of TCA-flux) was significantly reduced in primary myotube cultures established from T2D versus lean subjects. Acetate oxidation was acutely stimulated by insulin and respiratory uncoupling. Inhibition of TCA flux in lean myotubes by malonate was followed by a measured decline in; acetate oxidation, complete palmitate oxidation, lipid uptake, glycogen synthesis, ATP content and increased glucose uptake, while glucose oxidation was unaffected. Acute TCA inhibition did not induce insulin resistance. Thus the reduced TCA cycle flux in T2D skeletal muscle may be of primary origin. The diabetic phenotype of increased basal glucose uptake and glucose oxidation, the reduced complete lipid oxidation and increased respiratory quotient, are likely to be adaptive responses to the reduced TCA cycle flux.  相似文献   

4.
In myotubes established from patients with type 2 diabetes (T2D), lipid oxidation and insulin-mediated glucose oxidation are reduced, whereas in myotubes from obese non-diabetic subjects, exposure to palmitate impairs insulin-mediated glucose oxidation. To determine the underlying mechanisms of these metabolic malfunctions, we studied mitochondrial respiration, uncoupled respiration and oxidative enzyme activities (citrate synthase (CS), 3-hydroxy-acyl-CoA-dehydrogenase activity (HAD)) before and after acute exposure to insulin and/or palmitate in myotubes established from healthy lean and obese subjects and T2D patients. Basal CS activity was lower (14%) in diabetic myotubes compared with myotubes from lean controls (P=0.03). Incubation with insulin (1 microM) for 4 h increased the CS activity (26-33%) in myotubes from both lean (P=0.02) and obese controls (P<0.001), but not from diabetic subjects. Co-incubation with palmitate (0.6 mM) for 4 h abolished the stimulatory effect of insulin on CS activity in non-diabetic myotubes. No differences were detected in mitochondrial respiration and HAD activity between myotubes from non-diabetic subjects and T2D patients, and none of these measures responded to high levels of insulin and/or palmitate. These results provide evidence for an intrinsic defect in CS activity, which may play a role in the pathogenesis of T2D. Moreover, the data suggest that insulin resistance at the CS level can be induced by exposure to high free fatty acid levels.  相似文献   

5.
Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using (31)P- and (13)C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l(-1)·min(-1) (P = 0.012) vs. 40 ± 7 μmol·l(-1)·min(-1) in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l(-1)·min(-1), P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l(-1)·min(-1), P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l(-1)·min(-1), P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates (r(s) = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect.  相似文献   

6.
In order to better understand the impact of reduced mitochondrial function for the development of insulin resistance and cellular metabolism, human myotubes were established from lean, obese, and T2D subjects and exposed to mitochondrial inhibitors, either affecting the electron transport chain (Antimycin A), the ATP synthase (oligomycin) or respiratory uncoupling (2,4-dinitrophenol). Direct inhibition of the electron transport chain or the ATP synthase was followed by increased glucose uptake and lactate production, reduced glycogen synthesis, reduced lipid and glucose oxidation and unchanged lipid uptake. The metabolic phenotype during respiratory uncoupling resembled the above picture, except for an increase in glucose and palmitate oxidation. Antimycin A and oligomycin treatment induced insulin resistance at the level of glucose and palmitate uptake in all three study groups while, at the level of glycogen synthesis, insulin resistance was only seen in lean myotubes. Primary insulin resistance in diabetic myotubes was significantly worsened at the level of glucose and lipid uptake. The present study is the first convincing data linking functional mitochondrial impairment per se and insulin resistance. Taken together functional mitochondrial impairment could be part of the pathophysiology of insulin resistance in vivo.  相似文献   

7.
Skeletal muscle is a key tissue site of insulin resistance in type 2 diabetes. Human myotubes are primary skeletal muscle cells displaying both morphological and biochemical characteristics of mature skeletal muscle and the diabetic phenotype is conserved in myotubes derived from subjects with type 2 diabetes. Several abnormalities have been identified in skeletal muscle from type 2 diabetic subjects, however, the exact molecular mechanisms leading to the diabetic phenotype has still not been found. Here we present a large-scale study in which we combine a quantitative proteomic discovery strategy using isobaric peptide tags for relative and absolute quantification (iTRAQ) and a label-free study with a targeted quantitative proteomic approach using selected reaction monitoring to identify, quantify, and validate changes in protein abundance among human myotubes obtained from nondiabetic lean, nondiabetic obese, and type 2 diabetic subjects, respectively. Using an optimized protein precipitation protocol, a total of 2832 unique proteins were identified and quantified using the iTRAQ strategy. Despite a clear diabetic phenotype in diabetic myotubes, the majority of the proteins identified in this study did not exhibit significant abundance changes across the patient groups. Proteins from all major pathways known to be important in type 2 diabetic subjects were well-characterized in this study. This included pathways like the trichloroacetic acid (TCA) cycle, lipid oxidation, oxidative phosphorylation, the glycolytic pathway, and glycogen metabolism from which all but two enzymes were found in the present study. None of these enzymes were found to be regulated at the level of protein expression or degradation supporting the hypothesis that these pathways are regulated at the level of post-translational modification. Twelve proteins were, however, differentially expressed among the three different groups. Thirty-six proteins were chosen for further analysis and validation using selected reaction monitoring based on the regulation identified in the iTRAQ discovery study. The abundance of adenosine deaminase was considerably down-regulated in diabetic myotubes and as the protein binds propyl dipeptidase (DPP-IV), we speculate whether the reduced binding of adenosine deaminase to DPP-IV may contribute to the diabetic phenotype in vivo by leading to a higher level of free DPP-IV to bind and inactivate the anti-diabetic hormones, glucagon-like peptide-1 and glucose-dependent insulintropic polypeptide.  相似文献   

8.
The purpose of this study was to test the hypothesis that metabolic inflexibility is an intrinsic defect. Glucose and lipid oxidation were studied in human myotubes established from healthy lean and obese subjects and patients with type 2 diabetes (T2D). In lean myotubes, glucose oxidation is raised by increasing glucose concentrations (0-20 mmol/l) and acute insulin stimulation (P < 0.05), whereas it is inhibited by palmitate (PA). PA oxidation is raised by increasing PA concentrations (0-0.6 mmol/l), whereas 1.0 mmol/l PA inhibits its own oxidation (P < 0.05). Furthermore, PA oxidation is increased by acute insulin stimulation (P < 0.05) and inhibited by glucose. Even 0.05 mM PA and 2.5 mM glucose significantly reduce glucose and PA oxidation (P < 0.05), respectively. Glucose and PA oxidation are insulin-sensitive in myotubes established from lean (46% and 17% glucose and PA oxidation, respectively; P < 0.05 vs. basal), obese (31% and 14%; P < 0.05), and T2D (17% and 8%; P < 0.05) subjects. PA supplementation reduces both basal and insulin-stimulated glucose oxidation by 33-44% (P < 0.05), and myotubes are still insulin-sensitive in all three groups (P < 0.05). Therefore, the metabolic inflexibility described in obese and diabetic patients is not an intrinsic defect; rather, it is based on an extramuscular mechanism (i.e., the inability to vary extracellular fatty acid concentrations during insulin stimulation). Thus, skeletal muscles are metabolic-flexible per se.  相似文献   

9.
Insulin resistance is a characteristic feature of type 2 diabetes and obesity. Insulin-resistant individuals manifest multiple disturbances in free fatty acid (FFA) metabolism and have excessive lipid accumulation in insulin target tissues. Although much evidence supports a causal role for altered FFA metabolism in the development of insulin resistance, i.e., "lipotoxicity", the intracellular mechanisms by which elevated plasma FFA levels cause insulin resistance have yet to be completely elucidated. Recent studies have implicated a possible role for mitochondrial dysfunction in the pathogenesis of insulin resistance in skeletal muscle. We examined the effect of FFA metabolites [palmitoyl carnitine (PC), palmitoyl-coenzyme A (CoA), and oleoyl-CoA] on ATP synthesis in mitochondria isolated from mouse and human skeletal muscle. At concentrations ranging from 0.5 to 2 microM, these FFA metabolites stimulated ATP synthesis; however, above 5 microM, there was a dose-response inhibition of ATP synthesis. Furthermore, 10 microM PC inhibits ATP synthesis from pyruvate. Elevated PC concentrations (> or =10 microM) inhibit electron transport chain activity and decrease the mitochondrial inner membrane potential. These acquired mitochondrial defects, caused by a physiological increase in the concentration of FFA metabolites, provide a mechanistic link between lipotoxicity, mitochondrial dysfunction, and muscle insulin resistance.  相似文献   

10.
Mitochondrial dysfunction in skeletal muscle has been suggested to underlie the development of insulin resistance and type 2 diabetes mellitus. Reduced mitochondrial capacity will contribute to the accumulation of lipid intermediates, desensitizing insulin signaling and leading to insulin resistance. Why mitochondrial function is reduced in the (pre-)diabetic state is, however, so far unknown. Although it is tempting to suggest that skeletal muscle insulin resistance may result from an inherited or acquired reduction in mitochondrial function in the pre-diabetic state, it cannot be excluded that mitochondrial dysfunction may in fact be the consequence of the insulin-resistant/diabetic state. Lipotoxicity, the deleterious effects of accumulating fatty acids in skeletal muscle cells, may lie at the basis of mitochondrial dysfunction: next to producing energy, mitochondria are also the major source of reactive oxygen species (ROS). Fatty acids accumulating in the vicinity of mitochondria are vulnerable to ROS-induced lipid peroxidation. Subsequently, these lipid peroxides could have lipotoxic effects on mtDNA, RNA and proteins of the mitochondrial machinery, leading to mitochondrial dysfunction. Indeed, increased lipid peroxidation has been reported in insulin resistant skeletal muscle and the mitochondrial uncoupling protein-3, which has been suggested to prevent lipid-induced mitochondrial damage, is reduced in subjects with an impaired glucose tolerance and in type 2 diabetic patients. These findings support the hypothesis that fat accumulation in skeletal muscle may precede the reduction in mitochondrial function that is observed in type 2 diabetes mellitus.  相似文献   

11.
Skeletal muscle mitochondrial dysfunction is hypothesized to contribute to the pathophysiology of insulin resistance and Type 2 diabetes. Whether thiazolidinedione therapy enhances skeletal muscle mitochondrial function as a component of its insulin-sensitizing effect is unknown. To test this, we evaluated skeletal muscle mitochondria and exercise capacity in Type 2 diabetic subjects with otherwise normal cardiopulmonary function in response to rosiglitazone therapy. Twenty-three subjects were treated for 12 wk and underwent pre- and posttherapy metabolic stress testing and skeletal muscle biopsies. Rosiglitazone significantly ameliorated fasting glucose, insulin, and free fatty acid levels but did not augment the subjects' maximal oxygen consumption (Vo(2max)) or their skeletal muscle mitochondrial copy number. The baseline Vo(2max) correlated strongly with muscle mitochondrial copy number (r = 0.56, P = 0.018, n = 17) and inversely with the duration of diabetes (r = -0.67, P = 0.004, n = 23). Despite the global lack of effect of rosiglitazone-mediated insulin sensitization on skeletal muscle mitochondria, subjects with the most preserved functional capacity demonstrated some plasticity in their mitochondria biology as evidenced by an upregulation of electron transfer chain proteins and in citrate synthase activity. This study demonstrates that the augmentation of skeletal muscle mitochondrial electron transfer chain content and/or bioenergetics is not a prerequisite for rosiglitazone-mediated improved insulin sensitivity. Moreover, in diabetic subjects, Vo(2max) reflects the duration of diabetes and skeletal muscle mitochondrial content. It remains to be determined whether longer-term insulin sensitization therapy with rosiglitazone will augment skeletal muscle mitochondrial bioenergetics in those diabetic subjects with relatively preserved basal aerobic capacity.  相似文献   

12.
Insulin resistance in skeletal muscle is a hallmark feature of type 2 diabetes. An increasing number of enzymes and metabolic pathways have been implicated in the development of insulin resistance. However, the primary cellular cause of insulin resistance remains uncertain. Proteome analysis can quantitate a large number of proteins and their post-translational modifications simultaneously and is a powerful tool to study polygenic diseases like type 2 diabetes. Using this approach on human skeletal muscle biopsies, we have identified eight potential protein markers for type 2 diabetes in the fasting state. The observed changes in protein expression indicate increased cellular stress, e.g. up-regulation of two heat shock proteins, and perturbations in ATP (re)synthesis and mitochondrial metabolism, e.g. down-regulation of ATP synthase beta-subunit and creatine kinase B, in skeletal muscle of patients with type 2 diabetes. Phosphorylation appears to play a key, potentially coordinating role for most of the proteins identified in this study. In particular, we demonstrated that the catalytic beta-subunit of ATP synthase is phosphorylated in vivo and that the levels of a down-regulated ATP synthase beta-subunit phosphoisoform in diabetic muscle correlated inversely with fasting plasma glucose levels. These data suggest a role for phosphorylation of ATP synthase beta-subunit in the regulation of ATP synthesis and that alterations in the regulation of ATP synthesis and cellular stress proteins may contribute to the pathogenesis of type 2 diabetes.  相似文献   

13.

Background

Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle.

Methodology/Principal Findings

Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP)-activated protein kinase (AMPK) pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells.

Conclusion/Significance

Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation.  相似文献   

14.
The relationship between insulin resistance and mitochondrial function is of increasing interest. Studies looking for such interactions are usually made in muscle and only a few studies have been done in liver, which is known to be a crucial partner in whole body insulin action. Recent studies have revealed a similar mechanism to that of muscle for fat-induced insulin resistance in liver. However, the exact mechanism of lipid metabolites accumulation in liver leading to insulin resistance is far from being elucidated. One of the hypothetical mechanisms for liver steatosis development is an impairment of mitochondrial function. We examined mitochondrial function in fatty liver and insulin resistance state using isolated mitochondria from obese Zucker rats. We determined the relationship between ATP synthesis and oxygen consumption as well as the relationship between mitochondrial membrane potential and oxygen consumption. In order to evaluate the quantity of mitochondria and the oxidative capacity we measured citrate synthase and cytochrome c oxidase activities. Results showed that despite significant fatty liver and hyperinsulinemia, isolated liver mitochondria from obese Zucker rats display no difference in oxygen consumption, ATP synthesis, and membrane potential compared with lean Zucker rats. There was no difference in citrate synthase and cytochrome c oxidase activities between obese and lean Zucker rats in isolated mitochondria as well as in liver homogenate, indicating a similar relative amount of hepatic mitochondria and a similar oxidative capacity. Adiponectin, which is involved in bioenergetic homeostasis, was increased two-fold in obese Zucker rats despite insulin resistance. In conclusion, isolated liver mitochondria from lean and obese insulin-resistant Zucker rats showed strictly the same mitochondrial function. It remains to be elucidated whether adiponectin increase is involved in these results.  相似文献   

15.
16.
Gpx4 protects mitochondrial ATP generation against oxidative damage   总被引:2,自引:0,他引:2  
Mitochondrial ATP production can be impaired by oxidative stress. Glutathione peroxidase 4 (Gpx4) is an antioxidant defense enzyme found in mitochondria as well as other subcellular organelles that directly detoxifies membrane lipid hydroperoxides. To determine if Gpx4 protects ATP production in vivo, we compared mitochondrial ATP production between wild-type mice and Gpx4 transgenic mice using a diquat model. Diquat (50 mg/kg) significantly decreased mitochondrial ATP synthesis in livers of wild-type mice; however, no decrease in mitochondrial ATP synthesis was detected in Gpx4 transgenic mice after diquat. We observed no differences in activities of mitochondrial respiratory chain complexes between Gpx4 transgenic mice and wild-type mice. However, compared to wild-type mice, diquat-induced loss of mitochondrial membrane potential was attenuated in Gpx4 transgenic mice. Therefore, our results indicate that decreased ATP production under oxidative stress is primarily due to reduced mitochondrial membrane potential and overexpression of Gpx4 maintains mitochondrial membrane potential under oxidative stress.  相似文献   

17.
The effects of streptozotocin-induced diabetes mellitus upon mitochondria from rat skeletal muscle and kidney were examined. The rate of amino acid incorporation in vitro by isolated skeletal muscle mitochondria from diabetic animals was decreased by 50–60% from control values. Treatment of diabetic animals with insulin lowered blood glucose levels to control values and restored the rate of muscle mitochondrial protein synthesis in vitro to control levels. The rates of skeletal muscle mitochondrial protein synthesis were also decreased 23–27% by a 2-day fast. Comparison of the translation products synthesized by isolated muscle mitochondria from control and diabetic rats by dodecyl sulfate polyacrylamide-gel electrophoresis revealed a uniform decrease in the synthesis of all polypeptides. Aurintricarboxylic acid and pactamycin, inhibitors of chain initiation, blocked protein synthesis to a greater extent in muscle mitochondria from control as compared to diabetic animals suggesting that mitochondria from diabetics are unable to initiate protein synthesis at a rate comparable to control. Phenotypic changes observed in diabetic muscle mitochondria included a 36% decrease in the content of cytochromes aa3 and a 27% decrease in cytochrome b, both established as containing mitochondrial translation products in lower eucaryotes. State 3 respiration with glutamate as substrate decreased by 27% and uncoupler-stimulated respiration decreased by 23% in the diabetic mitochondria. By contrast, the specific activities of NADH and succinate dehydrogenases, established as products of cytoplasmic protein synthesis in lower eucaryotes, were not decreased in skeletal muscle mitochondria from the diabetic animals. These results suggest that the considerable muscular atrophy observed in diabetics may involve decreases in both cytoplasmic and mitochondrial protein synthesis, the latter reflected in profound changes in the respiratory chain. By contrast, comparison of kidney mitochondria from control and diabetic rats revealed no differences in the rates of protein synthesis in vitro, nor in the mitochondrial translation products, which corresponded closely to liver and skeletal muscle translation products. Similarly, the mitochondrial content of cytochromes b, c + c1, and aa3, the specific activity of succinate dehydrogenase, the rate of state 3 respiration, and the recovery of mitochondria from kidney homogenates did not differ in control and diabetic animals. Kidney mitochondria are thus like liver mitochondria in being relatively unaffected by insulin deprivation.  相似文献   

18.
The goal of this study was to determine whether changes in cardiac metabolism in Type 2 diabetes are associated with contractile dysfunction or impaired response to ischemia. Hearts from Zucker diabetic fatty (ZDF) and lean control rats were isolated and perfused with glucose, lactate, pyruvate, and palmitate. The rates of glucose, lactate, pyruvate, and palmitate oxidation rates and glycolysis were determined during baseline perfusion and low-flow ischemia (LFI; 0.3 ml/min for 30 min) and after LFI and reperfusion. Under all conditions, ATP synthesis from palmitate was increased and synthesis from lactate was decreased in the ZDF group, whereas the contribution from glucose was unchanged. During baseline perfusion, the rate of glycolysis was lower in the ZDF group; however, during LFI and reperfusion, there were no differences between groups. Despite these metabolic shifts, there were no differences in oxygen consumption or ATP production rates between the groups under any perfusion conditions. Cardiac function was slightly depressed before LFI in the ZDF group, but during reperfusion, function was improved relative to the control group despite the increased dependence on fatty acids for energy production. These data suggest that in this model of diabetes, the shift from carbohydrates to fatty acids for oxidative energy production did not increase myocardial oxygen consumption and was not associated with impaired response to ischemia and reperfusion.  相似文献   

19.
A low-taurine diet during fetal or early postnatal life causes abnormal pancreatic beta-cell development. Tissue and plasma taurine concentrations can also be low in diabetic patients. We examined the effect of taurine on impaired glucose responses in diabetic rat beta-cells adenovirally overexpressing uncoupling protein (UCP)2, which is upregulated in obesity-related type 2 diabetes. We found that taurine pretreatment restored the ATP-to-ADP (ATP/ADP) ratio and glucose-stimulated insulin secretion in UCP2-infected islets. ATP-sensitive K(+) channel sensitivity to dihydroxyacetone, another insulin secretagogue, was similar in both UCP2-infected and control beta-cells. In freshly isolated mitochondria from UCP2-overexpressing insulin-secreting (INS)-1 beta-cells, methyl pyruvate-mediated mitochondrial Ca(2+) increase was significantly ameliorated by taurine. A mitochondrial Ca(2+) uniporter blocker, ruthenium red, inhibited the action of taurine. This study suggests that taurine enhances the glucose sensitivity of UCP2-overexpressing beta-cells, probably by increasing mitochondrial Ca(2+) influx through the Ca(2+) uniporter, thereby enhancing mitochondrial metabolic function and increasing the ATP/ADP ratio.  相似文献   

20.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O2 consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号