首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
We have attempted to separate the effects of CO2 and temperaturechange on stomatal density by examining ancient leaf materialof Olea europaea L. The distribution of this species is confinedto a Mediterranean type climate, so that O. europaea leavesof different ages will have formed under similar temperaturesbut different CO2 levels over the last 3000 years. Stomataldensity measurements have been made upon leaves of O. europaeaoriginating from King Tutankhamun's tomb dating from 1327 BC,and have been compared with values obtained from Egyptian O.europaea material dating from pre-332 BC, 1818 and 1978 AD.Together, the four dates provide a record of how the plant hasresponded to increases in atmospheric CO2 concentration duringthat time. The results demonstrate that in accordance with similarstudies examining the stomatal density response of plants overthree time scales (hundreds, thousands and tens of thousandsof years) stomatal density falls as CO2 levels increase. Sincewe have examined a natural system with leaves developing undersimilar environmental temperatures the results confirm observationsfrom experimental studies in which plants were grown under thesame temperature but different CO2 regimes.Copyright 1993, 1999Academic Press Olea europaea, stomatal density, atmospheric CO2, temperature, climate change  相似文献   

2.
Mature second leaves of Lolium perenne L. cv. Vigor, were sampledin a spring and summer regrowth period. Effects of CO2enrichmentand increased air temperature on stomatal density, stomatalindex, guard cell length, epidermal cell density, epidermalcell length and mesophyll cell area were examined for differentpositions on the leaf and seasons of growth. Leaf stomatal density was smaller in spring but greater in summerin elevated CO2and higher in both seasons in elevated temperatureand in elevated CO2xtemperature relative to the respective controls.In spring, leaf stomatal index was reduced in elevated CO2butin summer it varied with position on the leaf. In elevated temperature,stomatal index in both seasons was lower at the tip/middle ofthe leaf but slightly higher at the base. In elevated CO2xtemperature,stomatal index varied with position on the leaf and betweenseasons. Leaf epidermal cell density was higher in all treatmentsrelative to controls except in elevated CO2(spring) and elevatedCO2xtemperature (summer), it was reduced at the leaf base. Inall treatments, stomatal density and epidermal cell densitydeclined from leaf tip to base, whilst guard cell length showedan inverse relationship, increasing towards the base. Leaf epidermalcell length and mesophyll cell area increased in elevated CO2inspring and decreased in summer. In elevated CO2xtemperatureleaf epidermal cell length remained unaltered in spring comparedto the control but decreased in summer. Stomatal conductancewas lower in all treatments except in summer in elevated CO2itwas higher than in the ambient CO2. These contrasting responses in anatomy to elevated CO2and temperatureprovide information that might account for differences in seasonalleaf area development observed in L. perenne under the sameconditions. Lolium perenne ; perennial ryegrass; elevated CO2and temperature; stomatal density; stomatal index; cell size  相似文献   

3.
To test whether stomatal density measurements on oak leaf remainsare reliable tools for assessing palaeoatmospheric carbon dioxideconcentration [CO2], under changing Late Miocene palaeoenvironmentalconditions, young seedings of oak (Quercus petraea,Liebl.) weregrown at elevatedvs.ambient atmospheric [CO2] and at high humiditycombined with an increased air temperature. The leaf anatomyof the young oaks was compared with that of fossil leaves ofthe same species. In the experiments, stomatal density and stomatalindex were significantly decreased at elevated [CO2] in comparisonto ambient [CO2]. Elevated [CO2] induced leaf cell expansionand reduced the intercellular air space by 35%. Leaf cell sizeor length were also stimulated at high air humidity and temperature.Regardless of a temperate or subtropical palaeoclimate, leafcell size in fossil oak was not enhanced, since neither epidermalcell density nor length of the stomatal apparatus changed. Theabsence of these effects may be attributed to the phenologicalresponse of trees to climatic changes that balanced temporalchanges in environmental variables to maintain leaf growth underoptimal and stable conditions.Quercus petraea,which evolvedunder recurring depletions in the palaeoatmospheric [CO2], maypossess sufficient phenotypic plasticity to alter stomatal frequencyin hypostomatous leaves allowing high maximum stomatal conductanceand high assimilation rates during these phases of low [CO2].Copyright1998 Annals of Botany Company Atmospheric CO2, high humidity, elevated temperature,Quercus petraea,durmast oak, Late Miocene, palaeoclimates, leaf anatomy, stomatal density, stomatal index  相似文献   

4.
Stomatal Responses of Variegated Leaves to CO2 Enrichment   总被引:1,自引:0,他引:1  
The responses of stomatal density and stomatal index of fivespecies of ornamental plants with variegated leaves grown attwo mole fractions of atmospheric CO2 (350 and 700 µmolmol-1) were measured. The use of variegated leaves allowed anypotential effects of mesophyll photosynthetic capacity to beuncoupled from the responses of stomatal density to changesin atmospheric CO2 concentration. There was a decrease in stomataldensity and stomatal index with CO2 enrichment on both white(unpigmented) and green (pigmented) leaf areas. A similar responseof stomatal density and index was also observed on areas ofleaves with pigmentation other than green indicating that anydifferences in metabolic processes associated with colouredleaves are not influencing the responses of stomatal densityto CO2 concentrations. Therefore the carboxylation capacityof mesophyll tissue has no direct influence on stomatal densityand index responses as suggested previously (Friend and Woodward1990 Advances in Ecological Research 20: 59-124), instead theresponses were related to leaf structure. The stomatal characteristics(density and index) of homobaric variegated leaves showed agreater sensitivity to CO2 on green portions, whereas heterobaricleaves showed a greater sensitivity on white areas. These resultsprovide evidence that leaf structure may play an important rolein determining the magnitude of stomatal density and index responsesto CO2 concentrations.Copyright 1995, 1999 Academic Press Leaf structure, photosynthesis, stomatal conductance, CO2, stomatal density, stomatal index  相似文献   

5.
It has been demonstrated that the leaves of a range of foresttree species have responded to the rising concentration of atmosphericCO2 over the last 200 years by a decrease in both stomatal densityand stomatal index. This response has also been demonstratedexperimentally by growing plants under elevated CO2 concentrations.Investigation of Quaternary fossil leaves has shown a correspondingstomatal response to changing CO2 concentrations through a glacial-interglacialcycle, as revealed by ice core data. Tertiary leaves show asimilar pattern of stomatal density change, using palynologicalevidence of palaeo-temperature as a proxy measure of CO2 concentration.The present work extends this approach into the Palaeozoic fossilplant record. The stomatal density and index of Early Devonian,Carboniferous and Early Permian plants has been investigated,to test for any relationship that they may show with the changesin atmospheric CO2 concentration, derived from physical evidence,over that period. Observed changes in the stomatal data givesupport to the suggestion from physical evidence, that atmosphericCO2 concentrations fell from an Early Devonian high of 10-12times its present value, to one comparable to that of the presentday by the end of the Carboniferous. These results suggest thatstomatal density of fossil leaves has potential value for assessingchanges in atmospheric CO2 concentration through geologicaltime.Copyright 1995, 1999 Academic Press Aglaophyton major, Sawdonia ornata, Swillingtonia denticulata, Lebachia frondosa, Juncus effusus, Psilotum nudum, Araucaria heterophylla, stomatal density, stomatal index, Palaeozoic CO2  相似文献   

6.
The Responses of Stomatal Density to CO2 Partial Pressure   总被引:3,自引:0,他引:3  
Experiments on a range of species of tree, shrub and herb haveshown that stomatal density and stomatal index increase as thepartial pressure of CO2 decreases over the range from the currentlevel of 34 Pa to 22.5 Pa. Stomatal density responds to thereduced partial pressure of CO2 in a simulation of high altitude(3000 m), when the CO2 mole fraction is unchanged. When the partial pressure of CO2 is increased from 35 to 70Pa stomatal density decreases slightly, with a response to unitchange in CO2 which is about 10% of that below 34 Pa. Measurements of gas exchange on leaves which had developed indifferent CO2 partial pressures, but at low saturation vapourpressure deficits in the range of 0.7 to 0.9 kPa, indicatedlower photosynthetic rates but higher stomatal conductancesat reduced CO2 partial pressures. Experiments on populations of Nardus stricta originating fromaltitudes of 366 m and 810 m in Scotland, indicated geneticdifferences in the responses of stomatal density to CO2 in pressuressimulating altitudes of sea level and 2 000 m. Plants from thehigher altitude showed greater declines in stomatal densitywhen the CO2 partial pressure was increased. Key words: Stomata, CO2, gas exchange, altitude, atmospheric pressure  相似文献   

7.
The influence of elevated CO2 concentration (670 ppm) on thestructure, distribution, and patterning of stomata in Tradescantialeaves was studied by making comparisons with plants grown atambient CO2. Extra subsidiary cells, beyond the normal complementof four per stoma, were associated with nearly half the stomatalcomplexes on leaves grown in elevated CO2. The extra cells sharedcharacteristics, such as pigmentation and expansion, with thetypical subsidiary cells. The position and shape of the extrasubsidiary cells in face view differed in the green and purplevarieties of Tradescantia. Substomatal cavities of complexeswith extra subsidiary cells appeared larger than those foundin control leaves. Stomatal frequency expressed on the basisof leaf area did not differ from the control. Stomatal frequencybased on cell counts (stomatal index) was greater in leavesgrown in CO2-enriched air when all subsidiary cells were countedas part of the stomatal complex. This difference was eliminatedwhen subsidiary cells were included in the count of epidermalcells, thereby evaluating the frequency of guard cell pairs.The extra subsidiary cells were, therefore, recruited from theepidermal cell population during development. Stomatal frequencyin plants grown at elevated temperature (29 C) was not significantlydifferent from that of the control (24 C). The linear aggregationsof stomata were similar in plants grown in ambient and elevatedCO2. Since enriched CO2 had no effect on the structure or patterningof guard cells, but resulted in the formation of additionalsubsidiary cells, it is likely that separate and independentevents pattern the two cell types. Plants grown at enrichedCO2 levels had significantly greater internode lengths, butleaf area and the time interval between the appearance of successiveleaves were similar to that of control plants. Porometric measurementsrevealed that stomatal conductance of plants grown under elevatedCO2 was lower than that of control leaves and those grown atelevated temperature. Tradescantia was capable of regulatingstomatal conductance in response to elevated CO2 without changingthe relative number of stomata present on the leaf. Key words: Elevated CO2, stomata, subsidiary cells, patterning  相似文献   

8.
An Analysis of Ball's Empirical Model of Stomatal Conductance   总被引:12,自引:0,他引:12  
  相似文献   

9.
In the chilling sensitive (C.S.) species Phaseolus vulgarisit was found that at 22 ?C ABA induced stomatal closure butthis effect was dependent on the presence of CO2. In the absenceof CO2 the effect of ABA was completely lost. In contrast toABA, the effect of IAA at 22 ?C was to increase stomatal openingas the IAA concentration increased from 10–2 to 10 molm–3, and this effect was dependent upon the presence ofCO2. However, at 5 ?C the action of ABA was reversed and itwas found to induce stomatal opening when fed via the transpirationstream in excised leaves. Similarly, the CO2 response characteristicswere reversed at low temperatures as removal of CO2 from theatmosphere caused stomatal closure. However, the effect of IAAat 5 ?C in the presence of CO2 and with or without ABA was toincrease stomatal aperture with increasing IAA concentration.Significantly, ABA was found to have no effect upon aperturein the presence of CO2 when IAA was added. The interactive effectsof ABA, IAA, CO2 and low temperature are discussed in relationto a model proposed by the authors. Key words: IAA, ABA, CO2, Stomata  相似文献   

10.
Parallel to the increase in atmospheric CO2 from 278 µmolmol–1 in AD 1750 to the current ambient level of 348 µmolmol–1, there have been overall decreases in leaf nitrogencontent and stomatal density from 144% and 121%, respectively,in AD 1750 to 100% today of herbarium specimens of 14 trees,shrubs, and herbs collected over the last 240 years in Catalonia,a Mediterranean climate area. These decreases were steeper duringthe initial slower increases in CO2 atmospheric levels as comparedwith the relatively faster CO2 increases in recent years. Thedeclines in leaf N content and stomatal density have also beenreported in experimental studies on leaves of plants grown underenriched CO2 environments. Meanwhile, the stomatal index andoverall carbon and sulphur leaf contents have not changed significantly.Leaf S content was higher in the 1940s samples coinciding withthe burning of increased quantities of sulphur-rich coal. Consequently,the epidermal cell density has decreased parallel to the stomataldensity and the C/N ratio of leaves has increased, implyingpossible important consequences on herbivores, decomposers,and ecosystems. An overall decrease in the specific leaf area(SLA) from 184% in the 18th century to 100% today has also beenfound, as would be expected under CO2 enrichment, but whichmight also be an artifact of prolonged storage. Key words: Carbon dioxide increase, leaf nitrogen content, leaf sulphur content, stomatal density, last centuries  相似文献   

11.
Plants of Phaseolus vulgaris were grown from seed in open-topgrowth chambers at the present (P, 350 µmol mol–1)atmospheric CO2 concentration and at an elevated (E, 700 µmolmol–1) CO2 concentration, and at low (L, without additionalnutrient solution) and high (H, with additional nutrient solution)nutrient supply for 28 d The effects of CO2 and nutrient availabilitywere examined on growth, morphological and biochemical characteristics Leaf area and dry mass were significantly increased by CO2 enrichmentand by high nutrient supply Stomatal density, stomatal indexand epidermal cell density were not affected by elevated CO2concentration or by nutrient supply Leaf thickness respondedpositively to CO2 increasing particularly in mesophyll areaas a result of cell enlargement Intercellular air spaces inthe mesophyll decreased slightly in plants grown in elevatedCO2 Leaf chlorophyll content per unit area or dry mass was significantlylower in elevated CO2 grown plants and increased significantlywith increasing nutrient availability The content of reducingcarbohydrates of leaves, stem, and roots was not affected byCO2 but was significantly increased by nutrient addition inall plant parts Starch content in leaves and stem was significantlyincreased by elevated CO2 concentration and by high nutrientsupply Phaseolus vulgaris, elevated atmospheric CO2, CO2-nutrient interaction, stomatal density, leaf anatomy, chlorophyll, carbohydrates, starch  相似文献   

12.
The development of two types of stomatal transpiration, oneinduced by light (light-induced stomatal transpiration) andthe other induced by CO2-free air in the dark (CO2-sensitivestomatal transpiration), in greening leaves of wheat (Triticumaestivum L.) was studied in respect to the development of CO2uptake and chlorophyll formation. Light-induced stomatal transpirationwas not observed at all in etiolated leaves and was generatedafter 3 hr of illumination for greening, when the activity ofCO2 uptake was generated. CO2-sensitive stomatal transpirationwas low in etiolated leaves and started to increase at the sametime during greening as the start of CO2 uptake. The activitiesof both light-induced and CO2-sensitive stomatal transpirationincreased as the activity of CO2 uptake and the chlorophyllcontent increased. Pre-illumination of etiolated leaves for1 min followed by 4 hr of dark incubation eliminated the lagfor the development of the two types of stomatal transpirationand CO2 uptake. (Received September 4, 1978; )  相似文献   

13.
The influence of a water stress or foliar ABA spraying pretreatmenton stomatal responses to water loss, exogenous ABA, IAA, Ca2+,and CO2 were studied using excised leaves of Solanum melongena.Both pretreatments increased stomatal sensitivity of water loss,in the presence and absence of CO2, but decreased stomatal sensitivityto exogenous ABA. CO2 greatly reduced the effect of exogenouslyapplied ABA. IAA decreased leaf diffusion resistance for controland ABA sprayed leaves, but did not influence the LDR of previouslywater-stressed leaves. CA2+ did not influence LDR of any leavesof any treatments. Key words: Water stress, stomatal response, pretreatments  相似文献   

14.
Contrasting effects on the stomatal index (SI), stomatal density,epidermal cell size and number were observed in four chalk grasslandherbs (Sanguisorba minor Scop., Lotus corniculatus L., Anthyllisvulneraria L. and Plantago media L.) following exposure to elevatedcarbon dioxide concentrations (CO2) in controlled environmentgrowth cabinets. SI of S. minor increased for both leaf surfaces,whilst in A. vulneraria and P. media SI decreased on one surfaceonly. In L. corniculatus , no differences in SI were observedas epidermal cell density changed in parallel with stomataldensity. In L. corniculatus and S. minor stomatal density increasedon both surfaces, whereas in P. media it decreased; in A. vulnerariastomatal density decreased on the abaxial leaf surface alonefollowing exposure to elevated CO2. In the latter three species,SI changed because stomatal density did not change in parallelwith epidermal cell density. The results suggest elevated CO2is either directly or indirectly affecting cell differentiationand thus stomatal initiation in the meristem. In S. minor and P. media leaf growth increased in elevated CO2,because of increased cell expansion of epidermal cells, whereasin L. corniculatus, epidermal cell size decreased and greaterleaf growth was because of an increase in epidermal cell divisions.In A. vulneraria, leaf size did not change, but increased cellexpansion on the adaxial surface suggests CO2 affects leaf surfacesdifferently, either directly or indirectly at the cell differentiationstage or as the leaf grows. These results suggest component species of a plant communitymay differ in their response to elevated CO2. Predicting theeffect of environmental change is therefore difficult.Copyright1994, 1999 Academic Press Elevated CO2, Sanguisorba minor (salad burnet), Lotus corniculatus (birdsfoot trefoil), Anthyllis vulneraria (kidney vetch), Plantago media (hoary plantain), stomatal index, stomatal density, epidermal cell size  相似文献   

15.
Previous work has shown that stomata respond directly to light,but it was not clear whether the only additional response isthrough CO2, or whether some other metabolite is involved inthis response. Gas exchange experiments were done with normallypositioned and inverted leaves of Hedera helix to investigatethis problem. The macroscopic optical properties of the leavesand their anatomical structure were also studied. These experimentssnowed that there is no need to postulate the existence of amessenger other than CO2 to explain the indirect response ofstomata to light. The experiments also showed that leaf inversionaffects both stomatal conductance and photosynthesis, and highlightthe difficulties involved in the interpretation of the effectof leaf inversion on stomata when stomatal conductance measurementsare not done concurrently with measurements of CO2 flux densityand intercellular CO2 molar fraction Key words: Hedera helix, ivy, gas exchange, leaf inversion, stomatal conductance, light, CO2 flux density, photosynthesis  相似文献   

16.
Two common tallgrass prairie species, Andropogon gerardii, thedominant C4 grass in this North American grassland, and Salviapitcheri, a C3 forb, were exposed to ambient and elevated (twiceambient) CO2 within open-top chambers throughout the 1993 growingseason. After full canopy development, stomatal density on abaxialand adaxial surfaces, guard cell length and specific leaf mass(SLM; mg cm-2) were determined for plants in the chambers aswell as in adjacent unchambered plots. Record high rainfallamounts during the 1993 growing season minimized water stressin these plants (leaf xylem pressure potential was usually >-1·5 MPa in A. gerardii) and also minimized differencesin water status among treatments. In A. gerardii, stomatal densitywas significantly higher (190 ± 7 mm-2; mean ±s.e.) in plants grown outside of the chambers compared to plantsthat developed inside the ambient CO2 chambers (161 ±5 mm-2). Thus, there was a significant 'chamber effect' on stomataldensity. At elevated levels of CO2, stomatal density was evenlower (P < 0·05; 121 ± 5 mm-2). Most stomatawere on abaxial leaf surfaces in this grass, but the ratio ofadaxial to abaxial stomatal density was greater at elevatedlevels of CO2. In S. pitcheri, stomatal density was also significantlylower when plants were grown in the open-top chambers (235 ±10 mm-2 outside vs. 140 ± 6 mm-2 in the ambient CO2 chamber).However, stomatal density was greater at elevated CO2 (218 ±12 mm-2) compared to plants from the ambient CO2 chamber. Theratio of stomata on adaxial vs. abaxial surfaces did not varysignificantly in this herb. Guard cell lengths were not significantlyaffected by growth in the chambers or by elevated CO2 for eitherspecies. Growth within the chambers resulted in lower SLM inS. pitcheri, but CO2 concentration had no effect. In A. gerardii,SLM was lower at elevated CO2. These results indicate that stomataland leaf responses to elevated CO2 are species specific, andreinforce the need to assess chamber effects along with treatmenteffects (CO2) when using open-top chambers.Copyright 1994, 1999Academic Press Andropogon gerardii, elevated CO2, Salvia pitcheri, stomatal density, tallgrass prairie  相似文献   

17.
Stomata and Structure of Tetraploid Apple Leaves cultured in Vitro   总被引:2,自引:0,他引:2  
Leaves of anther-derived tetraploid apple (Malus pumila Mill.)shoots were examined by low-temperature scanning electron microscopy(LT-SEM). Leaves were serrate and wide with an undulating adaxialsurface due to convex epidermal cells, apparently without crystallineepicuticular wax. Stomata were absent from the adaxial surface,except for the marginal teeth which exhibited 40-60 stomataper leaf; they probably originated from residual mitotic activity.One third of abaxial stomata was occluded by the residual cuticleof the mother guard cell across the stomatal pore which rupturedwhen the stomata became functional. The stomatal index was 7·2(± 1·6) with 60-75 stomata mm-2, i.e. abaxialstomata of tetraploid leaves expanded in vitro were less frequentthan those in triploid leaves either cultured in vitro (475-575stomata mm-2) or grown on the tree (320-390 stomata mm-2) wherethe stomatal index was 21 (± 4). Freeze-fracture transsectionsshowed that the tetraploid in vitro leaves were composed ofa layer of adaxial epidermal cells, followed by a single layerof palisade cells and four to five layers of spongy mesophyllcells and the abaxial layer of epidermal cells, in contrastto juvenile seedling-grown apple leaves in which the two layersof palisade cells comprised the majority (52-60%) of the leafvolume. The same morphological features, such as wide and lesspointed leaves, reduced stomatal density and stomatal index,and increased stomatal size that were previously reported fortree-grown tetraploid leaves were also expressed in vitro. Thus,causes of the stomatal deformation in tissue-cultured Rosaceaeare interpreted to be in part genetic and not purely environmental.Copyright1994, 1999 Academic Press Malus pumila Mill., apple, biotechnology, breeding, cryo-preservation, CO2, juvenile, low temperature-scanning electron microscopy (LT-SEM), micropropagation, ploidy, stomata, tissue-culture, transpiration  相似文献   

18.
The effects of peeling the epidermis off Bryophyllum daigremontianumleaves on CO2 uptake in light and darkness were investigated.Light-induced CO2 uptake in the daytime was markedly enhancedin the peeled leaves, but dark fixation of CO2 carried out atmidnight was not. The difference in promotion of CO2 uptakein light and darkness was due to stomatal closing in the dayand opening at night. Also, deacidification was strikingly inhibitedby CO2 in peeled leaves. (Received February 3, 1977; )  相似文献   

19.
The effects of elevated atmospheric CO2, alone or in combinationwith water stress, on stomatal frequency in groundnut (Arachishypogaea (L.) cv. Kadiri-3) were investigated. CO2 exerted significanteffects on stomatal frequency only in irrigated plants. Theeffects of drought on leaf development out weighed the smallereffects of CO2 concentration, although reductions in stomatalfrequency induced by elevated atmo-spheric CO2 were still observed.When stands of groundnut were grown under irrigated conditionswith unrestricted root systems, an increase in atmospheric CO2from 375 to 700 ppmv decreased stomatal frequency on both leafsurfaces by up to 16% in droughted plants, stomatal frequencywas reduced by 8% on the adaxial leaf surface only. Elevatedatmospheric CO2 promoted larger reductions in leaf conductancethan the changes in stomatal frequency, indicating partial stomatalclosure. As a result, the groundnut stands grown at elevatedCO2 utilized the available soil moisture more slowly than thosegrown under ambient CO2, there by extending the growing period.Despite the large variations in cell frequencies induced bydrought, there was no treatment effect on either stomatal indexor the adaxial/abaxial stomatalfrequency ratio. The data suggestthat the effects of future increases in atmospheric CO2 concentrationon stomatal frequency in groundnut are likely to be small, especiallyunder conditions of water stress, but that the combination ofassociated reductions in leaf con-ductance and enhanced assimilationat elevated CO2 will be important in semi-arid regions Key words: Arachis hypogaea L, Leguminosae, groundnu, stomatal frequency, CO2, drought  相似文献   

20.
Plants of ryegrass (Lolium perenne L. cv. Melle) were grownfrom the early seedling stage in growth cabinets at a day/nighttemperature of 20/15 °C, with a 12-h photoperiod, and aCO2 concentration of either 340 or 680 ± 15 µl1–1 CO2. Young, fully-expanded, acclimated leaves fromprimary branches were sampled for length of stomata, and ofepidermal cells between stomata, numbers of stomata and epidermalcells per unit length of stomatal row, numbers of stomatal rowsacross the leaf and numbers of stomatal rows between adjacentvein ridges. Elevated CO2 had no significant effect on any ofthe measured parameters. Elevated CO2, Lolium perenne, ryegrass, stomatal distribution, stomatal size  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号