首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
结构变异作为人类基因组上的一种大规模的变异类型,对分子与细胞进程、调节功能、基因表达调控、个体表型具有重要的影响,检测群体中基因组结构变异有助于绘制群体基因组变异图谱,刻画群体遗传进化特征,为疾病诊治、精准医疗的发展提供支撑。本研究提出一种面向高通量测序的群体基因组结构变异检测工作流,该工作流通过使用多种高性能基因组结构变异检测算法实现全面、精准的结构变异挖掘,使用多层融合与过滤获得高精度群体结构变异候选集合,利用基因型重新校正、变异修剪、类型校对,最终完整绘制群体基因组结构变异图谱。基于该工作流对由267个样本组成的人群进行群体结构变异检测,检测出了96 202个结构变异,其变异种类和频率分布与其他国际基因组计划相符,这些结果证明了本工作流具有良好的群体结构变异检测能力。同时,工作流通过并行的方式在内存可控的基础上显著降低了分析时间,为大规模人群基因组结构变异的高效检测提供了重要支撑。  相似文献   

2.
Characterisation of phytoplankton communities is important for classification of the ecological status of marine waters. In order to design a monitoring programme, it is important to know what degree of variation in the measurements occur at each level (water body, station and sample), so that resources can be spent in a way that maximise the precision of the measured parameters. Seven European water bodies were sampled to assess the variation in pigment concentrations and population densities attributed to water body, station and sample levels. It was found that the main proportion of the variation between pigment measurements was explained by the variation between stations (12–91% of variation) followed by the variation between water bodies (0–89% of variation). For measurements of population density, the main proportion of the variation between densities of cells recorded was explained by the variation between the taxonomists counting the samples (61%), whilst the main proportion of the variation between numbers of taxa recorded was explained by the variation between water bodies (83%). When the cell density of the nine dominant classes were analysed separately, the main proportion of variation was explained at the water body level for all but two class.  相似文献   

3.
Ronen Kadmon  Avi Shmida 《Oecologia》1990,83(1):139-144
Summary This study examines patterns and causes of variation in the reproductive success of the desert annual Stipa capensis. Three nested scales of variation were analyzed: variation between individuals of the same plot, variation between different plots of the same habitat, and variation between different habitats in the same region. Perturbation experiments (irrigation and neighbors removal) were performed to test the effects of heterogeneity in soil water and neighborhood competition on the magnitude of variation in each scale. The results demonstrate that variation of reproductive success was highest within plots, lowest between plots, and moderate between habitats. Soil water heterogeneity contributed to spatial variation in all scales but was most important for differences between habitats. Neighborhood competition increased the variation within plots, but decreased the variation between habitats. The results further demonstrate that water limitation was negatively correlated with the position of the habitat along the run-off/run-on gradient. An opposite trend was obtained for the effect of competition.  相似文献   

4.
Research on individual trait variation has gained much attention because of its implication for ecosystem functions and community ecology. The effect of individual variation on population and community abundance (number of individuals) variation remains scarcely tested. Using two established ecological scaling laws (Taylor's law and abundance–size relationship), we derived a new scaling relationship between the individual size variation and spatial variation of abundance. Tested against multi‐plot tree data from Diaoluo Mountain tropical forest in Hainan, China, the new scaling relationship showed that individual size variation reduced the spatial variation of community assemblage abundance, but not of taxon‐specific population abundance. The different responses of community and population to individual variation were reflected by the validity of the abundance–size relationship. We tested and confirmed this scaling framework using two measures of individual tree size: aboveground biomass and diameter at breast height. Using delta method and height‐diameter allometry, we derived the analytic relation of scaling exponents estimated under different individual size measures. In addition, we used multiple regression models to analyze the effect of taxon richness on the relationship between individual size variation and spatial variation of population or community abundance, for taxon‐specific and taxon‐mixed data, respectively. This work offers empirical evidence and a scaling framework for the negative effect of individual trait variation on spatial variation of plant community. It has implications for forest ecosystem and management where the role of individual variation in regulating population or community spatial variation is important but understudied.  相似文献   

5.
Responses of species to environmental gradients are important and frequent determinants of geographic phenotypic variation that can drive adaptive processes. Nonetheless, random genetic processes such as drift can also result in geographic variation in phenotypes, and should be evaluated before implicating selection as the process driving phenotypic change. We examined geographic variation in wing morphology of Artibeus lituratus among 18 different sites distributed across interior Atlantic Forest of Paraguay and Argentina. Moreover, we contrasted geographic variation with environmental, spatial, and genetic variation to test hypotheses related to selection and drift and their impacts on wing morphology. For A. lituratus distributed across interior Atlantic Forest, significant differences among sites characterized variation in wing morphology. Geographic variation was significantly related to climatic variables but not spatial or genetic distances. Such a pattern suggests that phenotypic variation is related to selection for particular environmental regimes, and not genetic drift. Four significant dimensions of phenotypic variation were determined. Three dimensions were related to variation among individuals in terms of wing tips, whereas one was related to overall body size. Wing tips are important for manoeuverability during flight and differences among sites likely reflect differences in forest and vegetation structure that must be managed during foraging. Although climate provides good surrogates for environmental variation, it is probably only an indirect cue of selection regimes that determine variation in wing morphology. Future studies should evaluate more direct environmental measures such as vegetation structure when attempting to interpret geographical variation in wing morphology.  相似文献   

6.
A key aspect of biodiversity is the great quantitative variation in functional traits observed among species. One perspective asserts that trait values should converge on a single optimum value in a particular selective environment, and consequently trait variation would reflect differences in selective environment, and evolutionary outcomes would be predictable. An alternative perspective asserts that there are likely multiple alternative optima within a particular selective environment, and consequently different lineages would evolve toward different optima due to chance. Because there is evidence for both of these perspectives, there is a long-standing controversy over the relative importance of convergence due to environmental selection versus divergence due to chance in shaping trait variation. Here, I use a model of tree seedling growth and survival to distinguish trait variation associated with multiple alternative optima from variation associated with environmental differences. I show that variation in whole plant traits is best explained by environmental differences, whereas in organ level traits variation is more affected by alternative optima. Consequently, I predict that in nature variation in organ level traits is most closely related to phylogeny, whereas variation in whole plant traits is most closely related to ecology.  相似文献   

7.
云南红豆杉天然群体内同工酶遗传变异的研究   总被引:4,自引:1,他引:3  
吴丽圆  陈少瑜  项伟 《遗传》2001,23(3):237-242
采用水平淀粉凝胶电泳技术,对分布于金沙江流域的云南红豆杉天然群体的10种酶系统同工酶的遗传变异进行了研究。在谱带遗传分析的基础上确定了15个酶基因座及其等位基因。其中有14个酶基因座属多态,只有一个单态基因座(ME-3)。14个多态基因座中,4个基因座遗传变异小,对该天然群体的遗传变异贡献不大,其余10个基因座遗传变异丰富,对该天然群体的遗传变异贡献大。该天然群体具有明显丰富的遗传变异性,多态基因座比率P=0.933,等位基因平均数A=2.90,平均期望杂合度He=0.290。紫杉醇含量与群体遗传变异有着密切的关系。 Abstract:Genetic variation of ten isoenzymes was studied within population of Taxus yun nanensis Cheng et L. K. Fu in the Jinsha River Valley using the method of hor izo ntal starch gel electrophoresis.On the basis of banding analysis,eight enzyme sy stems , presumablly coded by fifteen isoenzyme loci and their alleles were score d , and fourteen were polymorphic with only one monomorphic locus(ME-3). Amon g them , four polymorphic loci with inevident genetic variation made little cont ribution to genetic variation of this population and other ten polymorphic loci with evident genetic variation made great contribution to genetic variation of this population . Isoenzyme data indicated high level of genetic variability in this population with P=0.933,A=2.90,He=0.290 . The taxol content had close r elation to genetic variation of population.  相似文献   

8.
ABSTRACT: BACKGROUND: Bacterial genomes exhibit a remarkable degree of variation in the presence and absence of genes, which probably extends to the level of individual pathways. This variation may be a consequence of the significant evolutionary role played by horizontal gene transfer, but might also be explained by the loss of genes through mutation. A challenge is to understand why there would be variation in gene presence within pathways if they confer a benefit only when complete. RESULTS: Here, we develop a mathematical model to study how variation in pathway content is produced by horizontal transfer, gene loss and partial exposure of a population to a novel environment. CONCLUSIONS: We discuss the possibility that variation in gene presence acts as cryptic genetic variation on which selection acts when the appropriate environment occurs. We find that a high level of variation in gene presence can be readily explained by decay of the pathway through mutation when there is no longer exposure to the selective environment, or when selection becomes too weak to maintain the genes. In the context of pathway variation the role of horizontal gene transfer is probably the initial introduction of a complete novel pathway rather than in building up the variation in a genome without the pathway.  相似文献   

9.
Long‐term, large‐scale monitoring programs are becoming increasingly common to document status and trends of wild populations. A successful program for monitoring population trend hinges on the ability to detect the trend of interest. Power analyses are useful for quantifying the sample size needed for trend detection, given expected variation in the population. Four components of variation (within‐year variation at a given site, interannual variation within a site, variation among sites in the interannual variation, and variation among sites in mean abundance or density) are commonly considered in power analyses for population trend, but a fifth is rarely considered: variation among sites in the local trend. Spatial variation in trend is expected to reduce statistical power, but the magnitude of this reduction has not been fully explored. We used computer simulations to evaluate the consequences of ignoring spatial variation in trend under a variety of sampling designs and wide ranges of other components of variation. The effect of spatial variation in trend on power was minor when other input parameters took extreme values that made the trend either very difficult or very easy to detect. However, at moderate values of the other parameters, spatial variation in trend had a strong effect, reducing statistical power by up to 60%. In some cases, ignoring spatial variation in trend resulted in an 80% probability of a type I error (falsely detecting a trend in a stable population). Spatial variation in trend is therefore an important consideration when designing a long‐term monitoring program for many species, especially those affected by local conditions at sites that are repeatedly surveyed. If variation in trend is ignored, as in many previous power analyses, the recommended sampling design will likely be insufficient to detect the trend of interest and lead to potentially false conclusions of a stable population.  相似文献   

10.
Variation in ecological selection pressures has been implicated to explain variation in brain size and architecture in fishes, birds and mammals, but little is known in this respect about amphibians. Likewise, the relative importance of constraint vs. mosaic hypotheses of brain evolution in explaining variation in brain size and architecture remains contentious. Using phylogenetic comparative methods, we studied interspecific variation in brain size and size of different brain parts among 43 Chinese anuran frogs and explored how much of this variation was explainable by variation in ecological factors (viz. habitat type, diet and predation risk). We also evaluated which of the two above‐mentioned hypotheses best explains the observed patterns. Although variation in brain size explained on average 80.5% of the variation in size of different brain parts (supporting the constraint hypothesis), none of the three ecological factors were found to explain variation in overall brain size. However, habitat and diet type explained a significant amount of variation in telencephalon size, as well in three composite measures of brain architecture. Likewise, predation risk explained a significant amount of variation in bulbus olfactorius and optic tecta size. Our results show that evolution of anuran brain accommodates features compatible with both constraint (viz. strong allometry among brain parts) and mosaic (viz. independent size changes in response to ecological factors in certain brain parts) models of brain size evolution.  相似文献   

11.
为揭示滇龙胆天然居群表型变异程度和变异规律,以云南省5个区域天然分布的20个野生居群400个单株20个表型性状指标为调查研究对象,并用变异系数、Shannon-Weiner多样性指数和巢式方差分析对滇龙胆居群间和居群内的表型变异进行分析,用相关性分析对滇龙胆表型性状与地理气象因子间的变异格局进行分析,用类平均聚类法对20个滇龙胆居群进行分类.结果表明:5个区域的滇龙胆以楚雄地区变异最大,变异系数为39.8%,变异最小的是昆明地区,为31.4%;不同居群的20个表型性状变异程度差异明显,变异系数在14.4%~91.8%之间,平均为40.4%,20个居群的平均变异为26.8%~37.0%;滇龙胆地理居群的表型分化较高,20个性状居群间的分化系数平均为73.14%,变化范围为36.03%~91.94%,居群间变异高于居群内;滇龙胆20个表型性状的总的多样性指数平均为2.547,5个不同分布区域多样性指数存在差异,最大为楚雄(1.271 4),最小为玉溪(1.266 7);表型性状变异受经度和降雨量影响较大,与纬度、海拔和温度相关性不显著;通过UPGMA聚类,滇龙胆被分成3个组,性状的表型特征并没有依地理距离而聚类....  相似文献   

12.
13.
The evolution of mammalian brain function depends in part on levels of natural, heritable variation in numbers, location, and function of neurons. However, the nature and amount of natural genetic variation in neural traits and their physiological link to variation in function or evolutionary change are unknown. We estimated the level of within-population heritable variation in the number of gonadotropin-releasing hormone (GnRH) neurons, which play a major role in reproductive regulation, in an unselected outbred population recently derived (<10 generations) from a single natural population of white-footed mice (Peromyscus leucopus, Rafinesque). Young adult male mice exhibited an approximately threefold variation in the number of neurons immunoreactive for GnRH in the brain areas surveyed, as detected using SMI-41 antibody with a single-label avidin-biotin complex method. Consistent with earlier findings of selectable variation in GnRH neurons in this population, the level of genetic variation in this neuronal trait within this single population was high, with broadsense heritability using full-sib analysis estimated at 0.72 (P<0.05). Either weak selection on this trait or environmental variation that results in inconsistent selection on this trait might allow a high level of variation in this population.  相似文献   

14.
探究功能性状沿着环境梯度如何变化一直以来是基于性状的群落生态学的核心问题之一。尽管功能性状存在种内和种间变异, 但种内变异沿环境梯度如何变化仍有待探究。本文以鼎湖山南亚热带常绿阔叶林1.44 ha塔吊样地内16个树种的2,820个个体为研究对象, 探究4种叶功能性状(比叶面积、叶干物质含量、叶厚度和叶面积)沿群落垂直层次的种内变异。首先, 利用随机效应线性模型量化塔吊样地内的种内变异和种间变异; 其次, 利用Kmeans函数将森林的垂直层次划分为灌木层、亚冠层和林冠层, 并通过构建回归模型探究叶功能性状在群落垂直层次中的种内变异格局。最后, 应用混合线性模型和单因素方差分析的方法探究叶功能性状沿垂直层次的种内变异是否具有物种依赖性。结果表明: 在局域群落中, 并非所有叶功能性状的种内变异都低于种间变异; 叶功能性状在不同垂直层次的种内变异格局存在显著差异, 且种内变异与垂直范围呈正相关; 叶功能性状的种内变异具有较强的物种依赖性, 因此树种差异相对于小环境解释了更多的性状变异; 此外, 不同叶功能性状的种内变异沿垂直层次的变化趋势并不一致。本研究发现种内变异对于物种共存具有重要作用。  相似文献   

15.
Approaching the Lower Limits of Transgene Variability   总被引:8,自引:2,他引:6       下载免费PDF全文
The inclusion of chicken lysozyme matrix-associated regions (MARs) in T-DNA has been demonstrated to reduce the variation in [beta]-glucuronidase (GUS) gene expression among first-generation transformed plants. The residual variation observed between transgenic plant lines with MARs at the T-DNA borders was investigated. By definition, any phenotypic variance between or within genetically identical plants is caused by random or environmental variation. This variation therefore sets a lower limit to the variation in GUS activities. The variance of GUS activity in offspring plant populations of genetically identical individuals was used as an estimate of environmental variation. For transgenic plants with MARs at the T-DNA borders, the variation between independent transformants could not be distinguished from the environmental variation. The variation could be attributed mainly to the variation in the GUS activity measurement. Therefore, the MAR element approached the maximal possible reduction of transgene variability given current technology and sample sizes. The role of MARs in offspring plants was evaluated by comparing such populations of transgenic plants for the magnitude of and variation in GUS activity. Pairwise comparisons showed that the presence of MARs reduced variation in offspring generations in the same manner as demonstrated for primary transformants. The populations carrying a doubled cauliflower mosaic virus 35S promoter-GUS gene tended to be more variable than the Lhca3.St.1 promoter-GUS gene-carrying populations. This tendency indicated an intrinsic susceptibility of the doubled cauliflower mosaic virus 35S promoter to variation. Homozygous plants were approximately twice as active as the corresponding hemizygous plants and tended to be more variable than the hemizygous plants. We hypothesized that the magnitude of environmental variations is related to a higher susceptibility to transgene silencing.  相似文献   

16.
DNA sequence variation is abundant in wild populations. While molecular biologists use genetically homogeneous strains of model organisms to avoid this variation, evolutionary biologists embrace genetic variation as the material of evolution since heritable differences in fitness drive evolutionary change. Yet, the relationship between the phenotypic variation affecting fitness and the genotypic variation producing it is complex. Genetic buffering mechanisms modify this relationship by concealing the effects of genetic and environmental variation on phenotype. Genetic buffering allows the build-up and storage of genetic variation in phenotypically normal populations. When buffering breaks down, thresholds governing the expression of previously silent variation are crossed. At these thresholds, phenotypic differences suddenly appear and are available for selection. Thus, buffering mechanisms modulate evolution and regulate a balance between evolutionary stasis and change. Recent work provides a glimpse of the molecular details governing some types of genetic buffering.  相似文献   

17.
We compared historic and contemporary genetic variation in two threatened New Zealand birds (saddlebacks and robins) with disparate bottleneck histories. Saddlebacks showed massive loss of genetic variation when extirpated from the mainland, but no significant loss of variation following a severe bottleneck in the 1960s when the last population was reduced from approximately 1000 to 36 birds. Low genetic variation was probably characteristic of this isolated island population: considerably more genetic variation would exist in saddlebacks today if a mainland population had survived. In contrast to saddlebacks, contemporary robin populations showed only a small decrease in genetic variation compared with historical populations. Genetic variation in robins was probably maintained because of their superior ability to disperse and coexist with introduced predators. These results demonstrate that contemporary genetic variation may depend more greatly on the nature of the source population and its genetic past than it does on recent bottlenecks.  相似文献   

18.
One general approach for assessing whether phenotypic variation is due to selection is to test its correlation with presumably neutral molecular variation. Neutral variation is determined by population history, the most likely alternative explanation of spatial genetic structure, whereas phenotypic variation may be influenced by the spatial pattern of selection pressure. Several methods for comparing the spatial apportionment of molecular and morphological variation have been used. Here, we present an analysis of variance framework that compares the magnitudes of latitudinal effects for molecular and morphological variation along a body size cline in Australian Drosophila populations. Explicit incorporation of the relevant environmental gradient can result in a simple and powerful test of selection. For the Australian cline, our analysis provides strong internal evidence that the cline is due to selection.  相似文献   

19.
Arabidopsis thaliana inhabits diverse climates and exhibits varied phenology across its range. Although A. thaliana is an extremely well‐studied model species, the relationship between geography, growing season climate and its genetic variation is poorly characterized. We used redundancy analysis (RDA) to quantify the association of genomic variation [214 051 single nucleotide polymorphisms (SNPs)] with geography and climate among 1003 accessions collected from 447 locations in Eurasia. We identified climate variables most correlated with genomic variation, which may be important selective gradients related to local adaptation across the species range. Climate variation among sites of origin explained slightly more genomic variation than geographical distance. Large‐scale spatial gradients and early spring temperatures explained the most genomic variation, while growing season and summer conditions explained the most after controlling for spatial structure. SNP variation in Scandinavia showed the greatest climate structure among regions, possibly because of relatively consistent phenology and life history of populations in this region. Climate variation explained more variation among nonsynonymous SNPs than expected by chance, suggesting that much of the climatic structure of SNP correlations is due to changes in coding sequence that may underlie local adaptation.  相似文献   

20.
Polymorphisms identified in genome-wide association studies of human traits rarely explain more than a small proportion of the heritable variation, and improving this situation within the current paradigm appears daunting. Given a well-validated dynamic model of a complex physiological trait, a substantial part of the underlying genetic variation must manifest as variation in model parameters. These parameters are themselves phenotypic traits. By linking whole-cell phenotypic variation to genetic variation in a computational model of a single heart cell, incorporating genotype-to-parameter maps, we show that genome-wide association studies on parameters reveal much more genetic variation than when using higher-level cellular phenotypes. The results suggest that letting such studies be guided by computational physiology may facilitate a causal understanding of the genotype-to-phenotype map of complex traits, with strong implications for the development of phenomics technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号