首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Allele epsilon4 of the nuclear APOE gene is a leading genetic risk factor for sporadic Alzheimer's disease (AD). Moreover, an allele-specific effect of APOE isoforms on neuronal cell oxidative death is known. Because of the role of the mitochondrial genome (mtDNA) in oxidative phosphorylation and oxidative stress, an interaction between APOE polymorphism and mtDNA inherited variability in the genetic susceptibility to sporadic AD can be hypothesized. We have explored this hypothesis by analyzing mtDNA germline variants (mtDNA haplogroups) in a sample of AD patients (213 subjects) genotyped for APOE and classified as APOE epsilon4 carriers and non-carriers. We found that the frequency distribution of mtDNA haplogroups is different between epsilon4 carriers and non-carriers (P=0.018), thus showing non-random association between APOE and mtDNA polymorphisms. The same analysis, carried out in two samples of healthy subjects (179 age-matched and 210 individuals aged more than 100 years), showed independence between epsilon4 allele and mtDNA haplogroups. Therefore, the APOE/mtDNA interaction is restricted to AD and may affect susceptibility to the disease. In particular, some mtDNA haplogroups (K and U) seem to neutralize the harmful effect of the APOE epsilon4 allele, lowering the epsilon4 odds ratio from statistically significant to non-significant values.  相似文献   

2.
Zheng S  Wang C  Qian G  Wu G  Guo R  Li Q  Chen Y  Li J  Li H  He B  Chen H  Ji F 《Free radical biology & medicine》2012,53(3):473-481
The interplay of a complex genetic basis with the environmental factors of chronic obstructive pulmonary disease (COPD) may account for the differences in individual susceptibility to COPD. Mitochondrial DNA (mtDNA) contributes to an individual's ability to resist oxidation, an important determinant that affects COPD susceptibility. To investigate whether mtDNA haplogroups play important roles in COPD susceptibility, the frequencies of mtDNA haplogroups and an 822-bp mtDNA deletion in 671 COPD patients and 724 control individuals from southwestern China were compared. Multivariate logistic regression analysis revealed that, whereas mtDNA haplogroups A and M7 might be associated with an increased risk for COPD (OR=1.996, 95% CI=1.149-2.831, p=0.006, and OR=1.754, 95% CI=1.931-2.552, p=0.021, respectively), haplogroups F, D, and M9 might be associated with a decreased risk for COPD in this population (OR=0.554, 95% CI=0.390-0.787, p=0.001; OR=0.758, 95% CI=0.407-0.965, p=0.002; and OR=0.186, 95% CI=0.039-0.881, p=0.034, respectively). Additionally, the increased frequency of the 822-bp mtDNA deletion in male cigarette-smoking subjects among COPD patients and controls of haplogroup D indicated that haplogroup D might increase an individual's susceptibility to DNA damage from external reactive oxygen species derived from heavy cigarette smoking. We conclude that haplogroups A and M7 might be risk factors for COPD, whereas haplogroups D, F, and M9 might decrease the COPD risk in this Han Chinese population.  相似文献   

3.
Mitochondrial DNA (mtDNA) polymorphism was examined in two Russian populations of Novgorod oblast, from the city of Velikii Novgorod (n = 81), and the settlement of Volot (n = 79). This analysis showed that the mitochondrial gene pool of Russians examined was represented by the mtDNA types belonging to 20 haplogroups and subhaplogroups distributed predominantly among the European populations. Haplogroups typical of the indigenous populations of Asia were found in the population sample from Velikii Novgorod with the average frequency of 3.7% (haplogroups A, Z, and D5), and with the frequency of 6.3% (haplogroups Z, D, and M*) in the Volot population. It was demonstrated that the frequency of the mitochondrial lineages combination, D5, Z, U5b-16144, and U8, typical of the Finnish-speaking populations of Northeastern Europe, was somewhat higher in the urban population (7.4%) compared to rural one (3.8%). The problem of genetic differentiation of Russians from Eastern Europe inferred from mtDNA data, is discussed.  相似文献   

4.
Mitochondrial DNA (mtDNA) haplogroup U, defined by the polymorphism 12308A>G, may constitute a risk factor for an occipital stroke in migraine. We therefore identified 14 patients with an occipital stroke and with 12308A>G. We determined complete mtDNA coding region sequence for the patients and for population controls by conformation sensitive gel electrophoresis (CSGE) and direct sequencing. Sequence information was used to construct a phylogenetic network of mtDNA haplogroups U and K, which was found to be composed of subclusters U2, U4, U5 and a new subcluster U7, as well as cluster K. Five patients with a migrainous stroke belonged to subcluster U5 (P=0.006; Fisher's exact test). Many unique mutations were found among the patients with an occipital stroke including two tRNA mutations that have previously been suggested to be pathogenic. Analysis of mtDNA sequences by CSGE and comparison of the sequences through phylogenetic analysis greatly enhances the identification of mtDNA clusters in population and detection of mtDNA mutations in patients.  相似文献   

5.
Mitochondrial DNA (mtDNA) polymorphism was examined in two Russian populations of Novgorod oblast, from the city of Velikii Novgorod (n = 81), and the settlement of Volot (n = 79). This analysis showed that the mitochondrial gene pool of Russians examined was represented by the mtDNA types belonging to 20 haplogroups and subhaplogroups distributed predominantly among the European populations. Haplogroups typical of the indigenous populations of Asia were found in the population sample from Velikii Novgorod with the average frequency of 3.7% (haplogroups A, Z, and D5), and with the frequency of 6.3% (haplogroups Z, D, and M*) in the Volot population. It was demonstrated that the frequency of the mitochondrial lineages combination, D5, Z, U5b-16144, and U8, typical of the Finnish-speaking populations of Northeastern Europe, was somewhat higher in the urban population (7.4%) compared to rural one (3.8%). The problem of genetic differentiation of Russians from Eastern Europe inferred from mtDNA data, is discussed.  相似文献   

6.
Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in genes coding for proteins involved in sarcomere function. The disease is associated with mitochondrial dysfunction. Evolutionarily developed variation in mitochondrial DNA (mtDNA), defining mtDNA haplogroups and haplogroup clusters, is associated with functional differences in mitochondrial function and susceptibility to various diseases, including ischemic cardiomyopathy. We hypothesized that mtDNA haplogroups, in particular H, J and K, might modify disease susceptibility to HCM. Mitochondrial DNA, isolated from blood, was sequenced and haplogroups identified in 91 probands with HCM. The association with HCM was ascertained using two Danish control populations. Haplogroup H was more prevalent in HCM patients, 60% versus 46% (p = 0.006) and 41% (p = 0.003), in the two control populations. Haplogroup J was less prevalent, 3% vs. 12.4% (p = 0.017) and 9.1%, (p = 0.06). Likewise, the UK haplogroup cluster was less prevalent in HCM, 11% vs. 22.1% (p = 0.02) and 22.8% (p = 0.04). These results indicate that haplogroup H constitutes a susceptibility factor and that haplogroup J and haplogroup cluster UK are protective factors in the development of HCM. Thus, constitutive differences in mitochondrial function may influence the occurrence and clinical presentation of HCM. This could explain some of the phenotypic variability in HCM. The fact that haplogroup H and J are also modifying factors in ischemic cardiomyopathy suggests that mtDNA haplotypes may be of significance in determining whether a physiological hypertrophy develops into myopathy. mtDNA haplotypes may have the potential of becoming significant biomarkers in cardiomyopathy.  相似文献   

7.
Sequence variation in mitochondrial DNA (mtDNA) may cause slight differences both in the functioning of the respiratory chain and in free radical production, and an association between certain mtDNA haplogroups and longevity has been suggested. In order to determine further the role of mtDNA in longevity, we studied the frequencies of mtDNA haplogroups and haplogroup clusters among elderly subjects and controls in a Finnish population. Samples were obtained from 225 persons aged 90-91 years (Vitality 90+) and from 400 middle-aged controls and 257 infants. MtDNA haplogroups were determined by restriction fragment length polymorphism. The haplogroup frequencies of the Vitality 90+ group differed from both those of the middle-aged controls ( P=0.01) and the infants ( P=0.00005), haplogroup H being less frequent than among the middle-aged subjects ( P=0.001) and infants ( P=0.00001), whereas haplogroups U and J were more frequent. Haplogroup clusters also differed between Vitality 90+ and both the middle-aged subjects ( P=0.002) and infants ( P=0.00001), the frequency of haplogroup cluster HV being lower in the former and that of UK and WIX being higher. These data suggest an association between certain mtDNA haplogroups or haplogroup clusters and longevity. Furthermore, our data appear to favour the presence of advantageous polymorphisms and support a role for mitochondria and mtDNA in the degenerative processes involved in ageing.  相似文献   

8.
Nonsyndromic cleft lip with or without cleft palate (CL/P) is a complex disorder of multigenic origin involving between two and ten loci. Linkage and association studies of CL/P have implicated a number of candidate genes and regions but have often proved difficult to replicate. Here, we report the findings from a two-stage genome-wide scan of 92 affected sib-pairs to identify susceptibility loci to CL/P. An initial set of 400 microsatellite markers was used, with an average spacing of 10 cM throughout the genome. Eleven regions on eight chromosomes were found to have a P-value smaller than 0.05. These eight chromosomes were then further mapped with a second set of markers to increase the average map density to 5 cM. In seven out of eleven areas densely mapped, significance was markedly increased by decreasing the marker interval. Excessive allele sharing was found at 1p (NPL=2.35, P=0.009, MLS=1.51), 2p (NPL=1.77, P= 0.04, MLS=0.66), 6p (NPL=2.35, P=0.009, MLS=1.34), 8q (NPL=2.15, P=0.015, MLS= 1.51) 11 cen (NPL=2.70, P=0.003, MLS=2.10), 12q (NPL=2.08, P=0.02, MLS= 1.5), 16p (NPL=2.1, P=0.018, MLS=0.97) and Xcen-q (NPL=2.40, P=0.008, MLS=2.68). Although none reached the level required for significant susceptibility loci, two of these areas have previously been implicated in CL/P, viz. 2p13, an area harbouring the TGFA gene, and 6p23-24. We also demonstrate highly suggestive linkage to a susceptibility locus for nonsyndromic clefting on the X chromosome. Further studies are currently underway to replicate these findings in a larger cohort of affected sib-pairs.  相似文献   

9.
The analysis of mtDNA polymorphism was carried out in the population of Siberian Tatars from the Barabinsk forest steppe living on the territory of Novosibirsk oblast (N = 199). As a result of the analysis of HVS I and HVS II nucleotide sequence, 101 haplotypes that refer to 22 mtDNA haplogroups were detected. The population of Baraba Tatars is represented by both East Eurasian (38.7%) and West Eurasian mtDNA lines (61.3%). H, T, U5, and J haplogroups prevail among West Eurasian haplogroups; C, D, G, M, and A haplogroups prevail among East Eurasian ones. According to the index of genetic diversity, Tatars from the Barabinsk forest steppe (0.9141) are the closest to Kazakhs (0.9108), Bashkirs (0.9165), and Tobol-Irtysh Tatars (0.9104). The greatest statistically significant interpopulation differences (FST) were detected between all studied samples; the smallest interpopulation differences were detected between all Tatar samples, as well as between Tatars and Komi, Mansi, Udmurts, Kazakhs, Chuvashes, and Bashkirs. The haplogroup H is the most common in populations that we studied. In the present study, was registered the haplotype 16126–16294 with the frequency of 4% (T cluster) previously found only in Caucasians. High frequency of haplogroups U4, U5, and H in the gene pool of Baraba Tatars brings them together not only with Samoyeds but also with Finno-Ugric populations. The highest intrapopulation genetic diversity was detected in Tatars from the Barabinsk forest steppe, Tobol-Irtysh Tatars, Kazakhs, and Bashkirs. The presence of the haplogroup B in the mitochondrial DNA genetic pool of Siberian Tatars brings them together with Turks that came from regions of Altai and Central Kazakhstan and inhabited the Western Siberian forest steppe in the 6th–9th centuries. The haplogroup U7, which is typical of populations of Jordan, Kuwait, Iran, and Saudi Arabia, could also have entered the territory of residence of Siberian Tatars in the middle of second millennium BC, when Iranian-speaking tribes entered Siberia.  相似文献   

10.
Cleft lip with or without cleft palate (CL/P) is a common birth defect (birth prevalence ranging from 1/500 to 1/2,000) with a complex etiology. Traits potentially related to CL/P, such as dermatoglyphics, may reflect the genetic and epidemiologic heterogeneity observed in CL/P. Such phenotypic heterogeneity in dermatoglyphic patterns may account for some of the variability in previously reported associations of dermatoglyphics and CL/P. To test this hypothesis, we took dermatoglyphic prints from individuals with nonsyndromic CL/P (n = 460) and their unaffected relatives (n = 254) from the Philippines and China. For both samples three raters designated the patterns as arch, ulnar loop, radial loop, whorl, or "other." Chi-square analysis and standard ANOVA were used to investigate heterogeneity between Filipino and Chinese study subjects. The significant associations between particular pattern types and CL/P were not the same in both populations, demonstrating population-specific association of CL/P and dermatoglyphic pattern types. The ANOVA of pattern type included both CL/P cases and their relatives, with affection status, sex, and population group as variables. For each pattern type except arches, population was significant (p < 0.0001); for radial loops, affection status was additionally significant (p < 0.0001). When only CL/P cases were considered, population was again significant for the ulnar loop (p < 0.0001), whorl (p < 0.0001), and "other" (p = 0.0002) patterns. The ANOVAs demonstrate between-population heterogeneity in dermatoglyphic pattern types. These results support our hypothesis that population-specific associations and population heterogeneity in dermatoglyphic patterns exist for CL/P cases and their relatives.  相似文献   

11.
Analysis of mtDNA markers in a population of the Nogays (n = 206), the people inhabiting the North Caucasus and speaking a Turkic language of the Altaic linguistic family, has revealed a high level of genetic diversity (H = 0.99). The identified haplotypes include all major West Eurasian haplogroups, with the prevalence of H and U clusters (22 and 21%, respectively), but the percentage of lineages specific for East Eurasian populations is the highest (40%). Some other mtDNA variants in the Nogay population belong to the M1 haplogroups typical of northeastern Africa and U2 characteristic of Indian populations. Thus, components of different origin have contributed to the gene pool of Nogays. An erratum to this article is available at .  相似文献   

12.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024-16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to a common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uigur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplogroups with the Central Asian ethnic groups and Mongols. Comparisons with modern paleo-Asian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable paleo-Asian contribution to the modern Yakut gene pool.  相似文献   

13.
Derenko  M. V.  Lunkina  A. V.  Malyarchuk  B. A.  Zakharov  I. A.  Tsedev  Ts.  Park  K. S.  Cho  Y. M.  Lee  H. K.  Chu  Ch. H. 《Russian Journal of Genetics》2004,40(11):1292-1299
Using the data on mitochondrial DNA (mtDNA) restriction polymorphism, the gene pools of Koreans (N = 164) and Mongolians (N = 48) were characterized. It was demonstrated that the gene pools were represented by the common set of mtDNA haplogroups of East Asian origin (M*, M7, M8a, M10, C, D4, G*, G2, A, B*, B5, F1, and N*). In addition to this set, mtDNA haplogroups D5 and Y were identified in Koreans while Mongolians possessed haplogroup Z. Only in Mongolians, a European component with the frequency of 10.4% and represented by the mtDNA types belonging to haplogroups K, U4, and N1, was identified. Phylogenetic and statistical analyses of the data on mtDNA variation in the populations of South Siberia, Central, and East Asia suggested the existence of interpopulation differentiation within these regions, the main role in which was played by the geographical and linguistic factors. Analysis of the pairwise F ST distances demonstrated close genetic similarity of Koreans to Northern Chinese, which in turn, were clearly different from Southern Chinese populations. Mongolians occupied an intermediate position between the ethnic groups of South Siberia and Central/East Asia.  相似文献   

14.
Nonsyndromic orofacial clefting (NS-OFC) is a common complex multifactorial trait with a considerable genetic component and a number of candidate genes suggested by various approaches. Twenty biallelic and microsatellite DNA markers in the strong candidate loci TGFA, TGFB3, GABRB3, RARA, and BCL3 were analysed for allelic association with the NS-OFC phenotype in 112 nuclear families (proband + both parents) from Lithuania by using the transmission disequilibrium test (TDT). Associations were found between the TGFA gene marker rs2166975 and nonsyndromic cleft palate only (CPO) phenotype (p = 0.045, df 1) as well as between the D2S292 marker and the cleft lip with or without cleft palate (CL/CP) phenotype in allele-wise TDT (P = 0.005, df 9) and genotype-wise TDT (P = 0.021, df 24). A weak association (P = 0.085, df 3) of the BCL3 marker (BCL3 gene) with the risk of CPO was also found. Thus our initial results support the contribution of allelic variation in the TGFA locus to the aetiology of CL/CP in the population of Lithuania but they do not point to TGFA as a major causal gene. Different roles of the TGFA and BCL3 genes in the susceptibility to NS-OFC phenotypes are suggested.  相似文献   

15.
Luo Y  Gao W  Liu F  Gao Y 《Mitochondrial DNA》2011,22(5-6):181-190
Tibetans are well adapted to living and thriving in high-altitude environments. Mitochondria are central links to oxygen consumption, and variations in mitochondrial DNA (mtDNA) could play a role in high-altitude adaptation. Alleles at several polymorphic sites in mtDNA define common haplotypes, or haplogroups, including some that have been implicated in the risk of developing certain diseases. However, few reports have determined whether relationships exist between haplogroups and high-altitude adaptation in the Tibetan population. The D4 haplogroup is a major haplogroup of the Han Chinese. In the present study, genotypes of 12 polymorphisms were determined in members of a Tibetan population (n = 72), low altitude-Han (la-Han, n = 144), and high altitude-Han (ha-Han, n = 227) populations using polymerase chain reaction-restriction fragment length polymorphism and polymerase chain reaction-ligase detection reaction assays. The mitochondrial haplogroup D4 was negatively associated with high-altitude adaptation in Tibetans (P = 0.001 vs. la-Han, OR = 0.166, 95% CI = 0.048-0.567; P = 0.009 vs. ha-Han OR = 0.232, 95% CI = 0.069-0.778). The frequency of the nt3010G-nt3970C haplotype was significantly higher in Tibetans than in la-Han (P = 0.000) and ha-Han (P = 0.001) subjects. Findings in the present study suggest that unique mitochondrial variations determine a genetic background that is associated with high-altitude adaptation in the Tibetan population.  相似文献   

16.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024–16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uighur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplotypes with the Central Asian ethnic groups and Mongols. Comparisons with modern Paleoasian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable Paleoasian contribution to the modern Yakut gene pool.  相似文献   

17.
Cleft lip with or without cleft palate (CL/P) is the most commonly occurring craniofacial birth defect. We provide insight into the genetic etiology of this birth defect by performing genome-wide association studies in two species: dogs and humans. In the dog, a genome-wide association study of 7 CL/P cases and 112 controls from the Nova Scotia Duck Tolling Retriever (NSDTR) breed identified a significantly associated region on canine chromosome 27 (unadjusted p=1.1 x 10-13; adjusted p= 2.2 x 10-3). Further analysis in NSDTR families and additional full sibling cases identified a 1.44 Mb homozygous haplotype (chromosome 27: 9.29 – 10.73 Mb) segregating with a more complex phenotype of cleft lip, cleft palate, and syndactyly (CLPS) in 13 cases. Whole-genome sequencing of 3 CLPS cases and 4 controls at 15X coverage led to the discovery of a frameshift mutation within ADAMTS20 (c.1360_1361delAA (p.Lys453Ilefs*3)), which segregated concordant with the phenotype. In a parallel study in humans, a family-based association analysis (DFAM) of 125 CL/P cases, 420 unaffected relatives, and 392 controls from a Guatemalan cohort, identified a suggestive association (rs10785430; p =2.67 x 10-6) with the same gene, ADAMTS20. Sequencing of cases from the Guatemalan cohort was unable to identify a causative mutation within the coding region of ADAMTS20, but four coding variants were found in additional cases of CL/P. In summary, this study provides genetic evidence for a role of ADAMTS20 in CL/P development in dogs and as a candidate gene for CL/P development in humans.  相似文献   

18.
Complex segregation analysis of nonsyndromic cleft lip and palate.   总被引:16,自引:15,他引:1       下载免费PDF全文
This study was undertaken to examine the inheritance pattern of nonsyndromic cleft lip with or without cleft palate (CL/P). Complex segregation analysis using the unified model as in POINTER and the regressive model as in REGD programs were applied to analyze a midwestern U.S. Caucasian population of 79 families ascertained through a proband with CL/F. In REGD, the dominant or codominant Mendelian major locus models of inheritance were the most parsimonious fit. In POINTER, besides the Mendelian major locus model, the multifactorial threshold (MF/T) model and the mixed model were also consistent with the observed data. However, the high heritability parameter of .93 (SD .063) in the MF/T model suggests that any random exogenous factors are unlikely to be the underlying mechanisms, and the mixed model indicates that this high heritability is accounted for by a major dominant locus component. These findings indicate that the best explanation for the etiology of CL/P in this study population is a putative major locus associated with markedly decreased penetrance. Molecular studies may provide further insight into the genetic mechanism underlying CL/P.  相似文献   

19.
Analysis of markers mtDNA in a population of Nogays (n = 206), living on Nothern Caucasus and speaking on language of Turkic branch of the Altaic linguistic family, has shown, that the level of their genetic differentiation is high (H = 0.99). Among the found haplotypes there is all the basic Western Eurasian haplogroups, most often of which are clusters H (22%) and U (21%), however, the percentage of the lineages specific only for populations of East Eurasia (40%) is highest. In a population of Nogays there are also variants mtDNA, belonging to haplogroup M1, characteristic for North East Africa, and gaplogroup U2, typical for populations of India. This testifies about presence in a gene pool of Nogays people of components of a various parentage.  相似文献   

20.
Since modern Europeans appear to be descendants of the Late Pleistocene European peoples who survived the last glacial period, it is quite reasonable to expect the presence of adaptive genetic variants that originated in the Ice Age in the modern gene pool of Europeans. To find such adaptive variants, mitochondrial genomes have been analyzed of the modern population from Eastern and Central Europe belonging to haplogroups U4, U5, and V, that diversified during the Late Pleistocene and Holocene periods. Analysis of distribution of nonsynonymous and synonymous substitutions, as well as results of search for radical amino acid changes that arose under the influence of adaptation (positive destabilizing selection) allowed us to detect signals of molecular adaptation in different mitochondrial genes and haplogroups of mtDNA. However, there were very few strong adaptive signals (z > 3.09, P < 0.001) that could be due to the loss of adaptive mtDNA haplotypes during the Holocene warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号