首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Clostridium cellulolyticum produces cellulolytic complexes (cellulosomes) made of 10-13 cell wall degrading enzymes tightly bound to a scaffolding protein (CipC) by means of their dockerin domain. It has previously been shown that the receptor domains in CipC are the cohesin domains and that the cohesin/dockerin interaction is calcium-dependent. In the present study, surface plasmon resonance was used to demonstrate that the free cohesin1 from CipC and dockerin from CelA have the same K(D) (2.5 x 10(-)(10) M) as that of the entire CelA and a larger fragment of CipC, the latter of which contains, in addition to cohesin1, a cellulose binding domain and a hydrophilic domain of unknown function. This demonstrates that neither the catalytic domain of CelA nor the noncohesin domains of CipC have any influence on the interaction. Dockerin domains are composed of two conserved segments of 22 residues: removal of the second segment abolishes the affinity for cohesin1, whereas modified dockerins having twice the first segment, twice the second, or both segments but in a reverse order have K(D) values for cohesin1 in the same range as that observed for wild-type dockerin. These data indicate that if two segments are required for the complexation with the cohesin, segments 1 and 2 are similar enough to replace each other. Calcium overlay experiments revealed that the dockerin domain has one calcium binding site per conserved segment. Circular dichroism performed on wild-type and mutant dockerins indicates that this domain is well structured and that removal of calcium only weakly affects the secondary structure, which remains 40-45% helical.  相似文献   

2.
The role of a miniscaffolding protein, miniCipC1, forming part of Clostridium cellulolyticum scaffolding protein CipC in insoluble cellulose degradation was investigated. The parameters of the binding of miniCipC1, which contains a family III cellulose-binding domain (CBD), a hydrophilic domain, and a cohesin domain, to four insoluble celluloses were determined. At saturating concentrations, about 8.2 micromol of protein was bound per g of bacterial microcrystalline cellulose, while Avicel, colloidal Avicel, and phosphoric acid-swollen cellulose bound 0.28, 0.38, and 0.55 micromol of miniCipC1 per g, respectively. The dissociation constants measured varied between 1.3 x 10(-7) and 1.5 x 10(-8) M. These results are discussed with regard to the properties of the various substrates. The synergistic action of miniCipC1 and two forms of endoglucanase CelA (with and without the dockerin domain [CelA2 and CelA3, respectively]) in cellulose degradation was also studied. Although only CelA2 interacted with miniCipC1 (K(d), 7 x 10(-9) M), nonhydrolytic miniCipC1 enhanced the activities of endoglucanases CelA2 and CelA3 with all of the insoluble substrates tested. This finding shows that miniCipC1 plays two roles: it increases the enzyme concentration on the cellulose surface and enhances the accessibility of the enzyme to the substrate by modifying the structure of the cellulose, leading to an increased available cellulose surface area. In addition, the data obtained with a hybrid protein, CelA3-CBD(CipC), which was more active towards all of the insoluble substrates tested confirm that the CBD of the scaffolding protein plays an essential role in cellulose degradation.  相似文献   

3.
The gene encoding the scaffolding protein of the cellulosome from Clostridium cellulolyticum, whose partial sequence was published earlier (S. Pagès, A. Béla?ch, C. Tardif, C. Reverbel-Leroy, C. Gaudin, and J.-P. Béla?ch, J. Bacteriol. 178:2279-2286, 1996; C. Reverbel-Leroy, A. Béla?ch, A. Bernadac, C. Gaudin, J. P. Béla?ch, and C. Tardif, Microbiology 142:1013-1023, 1996), was completely sequenced. The corresponding protein, CipC, is composed of a cellulose binding domain at the N terminus followed by one hydrophilic domain (HD1), seven highly homologous cohesin domains (cohesin domains 1 to 7), a second hydrophilic domain, and a final cohesin domain (cohesin domain 8) which is only 57 to 60% identical to the seven other cohesin domains. In addition, a second gene located 8.89 kb downstream of cipC was found to encode a three-domain protein, called ORFXp, which includes a cohesin domain. By using antiserum raised against the latter, it was observed that ORFXp is associated with the membrane of C. cellulolyticum and is not detected in the cellulosome fraction. Western blot and BIAcore experiments indicate that cohesin domains 1 and 8 from CipC recognize the same dockerins and have similar affinity for CelA (Ka = 4.8 x 10(9) M-1) whereas the cohesin from ORFXp, although it is also able to bind all cellulosome components containing a dockerin, has a 19-fold lower Ka for CelA (2.6 x 10(8) M-1). Taken together, these data suggest that ORFXp may play a role in cellulosome assembly.  相似文献   

4.
A new cellulosomal protein from Clostridium cellulolyticum Cel9M was characterized. The protein contains a catalytic domain belonging to family 9 and a dockerin domain. Cel9M is active on carboxymethyl cellulose, and the hydrolysis of this substrate is accompanied by a decrease in viscosity. Cel9M has a slight, albeit significant, activity on both Avicel and bacterial microcrystalline cellulose, and the main soluble sugar released is cellotetraose. Saccharification of bacterial microcrystalline cellulose by Cel9M in association with two other family 9 enzymes from C. cellulolyticum, namely, Cel9E and Cel9G, was measured, and it was found that Cel9M acts synergistically with Cel9E. Complexation of Cel9M with the mini-CipC1 containing the cellulose binding domain, the X2 domain, and the first cohesin domain of the scaffoldin CipC of the bacterium did not significantly increase the hydrolysis of Avicel and bacterial microcrystalline cellulose.  相似文献   

5.
The cipA gene encoding the Clostridium acetobutylicum scaffolding protein CipA was cloned and expressed in Escherichia coli. CipA contains an N-terminal signal peptide, a family 3a cellulose-binding domain (CBD), five type I cohesin domains, and six hydrophilic domains. The uniqueness of CipA lies in the enchainment of cohesin domains that are all separated by a hydrophilic domain. Affinity-purified CipA was used in equilibrium-binding experiments to characterize the interaction of CipA with crystalline cellulose. A K(d) of 0.038 micro M and a [C](max) of 0.43 micro mol of CipA bound per g of Avicel were determined. A mini-CipA polypeptide consisting of a CBD3a and two cohesin domains was overexpressed in C. acetobutylicum, yielding the in vivo formation of a minicellulosome. This is to our knowledge the first demonstration of the in vivo assembly of a recombinant minicellulosome.  相似文献   

6.
The cohesin-dockerin interaction, which is responsible for the formation of the cellulosome complex of cellulolytic bacteria, is a calcium-dependent, high affinity interaction. In this study, the cohesin (Cip7) and dockerin (Doc) domains of Clostridium thermocellum were fused to the cellulose-binding domain (CBD) of C. cellulovorans and the antibody-binding domain, protein LG, respectively, to form CBD-Cip7 and LG-Doc. Immobilised CBD-Cip7 was able to bind LG-Doc and subsequently antibody as determined using surface plasmon resonance. Binding was reversed by the removal of Ca2+ with EDTA. The dockerin containing fusion protein was affinity purified using an immobilised cohesin domain. Elution of the LG-Doc from the cohesin column was with EDTA. This affinity chromatography was repeated using an LG-dockerin column for the purification of cohesin fusion protein. The fusion proteins created in this report have shown that the properties of the cohesin and dockerin domains can be transferred to other protein domains and that the interaction between the cohesin and dockerin is specific, Ca2+ -dependent and reversible. We have shown that the cohesin-dockerin interaction has several properties making it suitable for use in recombinant fusion protein production and purification.  相似文献   

7.
Clostridium thermocellum produces an extracellular cellulase complex termed the cellulosome. It consists of a scaffolding protein, CipA, containing nine cohesin domains and a cellulose-binding domain, and at least 14 different enzymatic subunits, each containing a conserved duplicated sequence, or dockerin domain. The cohesin-dockerin interaction is responsible for the assembly of the catalytic subunits into the cellulosome structure. Each duplicated sequence of the dockerin domain contains a region bearing homology to the EF-hand calcium-binding motif. Two subdomains, each containing a putative calcium-binding motif, were constructed from the dockerin domain of CelS, a major cellulosomal catalytic subunit. These subdomains, called DS1 and DS2, were cloned by PCR and expressed in Escherichia coli. The binding of DS1 and DS2 to R3, the third cohesin domain of CipA, was analyzed by nondenaturing gel electrophoresis. A stable complex was formed only when R3 was combined with both DS1 and DS2, indicating that the two halves of the dockerin domain interact with each other and such interaction is required for effective binding of the dockerin domain to the cohesin domain.  相似文献   

8.
A gene encoding a beta-1,4-glucanase (CelA) belonging to subfamily E1 of family 9 of glycoside hydrolases was cloned and sequenced from the gram-positive thermoacidophile Alicyclobacillus acidocaldarius strain ATCC27009. The translated protein contains an immunoglobulin-like domain but lacks a cellulose-binding domain. The enzyme, when overproduced in Escherichia coli and purified, displayed a temperature optimum of 70 degrees C and a pH optimum of 5.5. CelA contained one zinc and two calcium atoms. Calcium and zinc are likely to be important for temperature stability. The enzyme was most active against substrates containing beta-1,4-linked glucans (lichenan and carboxy methyl cellulose), but also exhibited activity against oat spelt xylan. A striking pattern of hydrolysis on p-nitrophenyl-glycosides was observed, with highest activity on the cellobioside derivative, some on the cellotetraoside derivative, and none on the glucoside and cellotrioside derivatives. Unmodified cellooligosaccharides were also hydrolyzed by CelA. No signal peptide for transport across the cytoplasmic membrane was detected. This, together with the substrate specificity displayed, near neutral pH optimum and irreversible inactivation at low pH, suggests a role for CelA as a cytoplasmic enzyme for the degradation of imported oligosaccharides.  相似文献   

9.
In this study, a molecular self-assembly strategy to develop a novel protein scaffold for amplifying the extent and variety of proteins displayed on the surface of Saccharomyces cerevisiae is presented. The cellulosomal scaffolding protein cohesin and its upstream hydrophilic domain (HD) were genetically fused with the yeast Ure2p N-terminal fibrillogenic domain consisting of residues 1 to 80 (Ure2p(1-80)). The resulting Ure2p(1-80)-HD-cohesin fusion protein was successfully expressed in Escherichia coli to produce self-assembled supramolecular nanofibrils that serve as a novel protein scaffold displaying multiple copies of functional cohesin domains. The amyloid-like property of the nanofibrils was confirmed via thioflavin T staining and atomic force microscopy. These cohesin nanofibrils attached themselves, via a green fluorescent protein (GFP)-dockerin fusion protein, to the cell surface of S. cerevisiae engineered to display a GFP-nanobody. The excess cohesin units on the nanofibrils provide ample sites for binding to dockerin fusion proteins, as exemplified using an mCherry-dockerin fusion protein as well as the Clostridium cellulolyticum CelA endoglucanase. More than a 24-fold increase in mCherry fluorescence and an 8-fold increase in CelA activity were noted when the cohesin nanofibril scaffold-mediated yeast display was used, compared to using yeast display with GFP-cohesin that contains only a single copy of cohesin. Self-assembled supramolecular cohesin nanofibrils created by fusion with the yeast Ure2p fibrillogenic domain provide a versatile protein scaffold that expands the utility of yeast cell surface display.  相似文献   

10.
Different chimeric proteins combining the non-catalytic C-terminal putative cellulose binding domain of Clostridium cellulovorans endoglucanase-xylanase D (EngD) with its proline-threonine rich region PT-linker, PTCBD(EngD), cellulose binding domain of C. cellulovorans cellulose binding protein A, CBD(CbpA), cohesin domains Cip7, Coh6 and CipC1 from different clostridial species and recombinant antibody binding protein LG were constructed, expressed, purified and analyzed. The solubilities of chimeric proteins containing highly soluble domains Cip7, CipC1 and LG were not affected by fusion with PTCBD(EngD). Insoluble domain Coh6 was solubilized when fused with PTCBD(EngD). In contrast, fusion with CBD(CbpA) resulted in only a slight increase in solubility of Coh6 and even decreased solubility of CipC1 greatly. PTCBD(EngD) and Cip7-PTCBD(EngD) were shown to bind regenerated commercial amorphous cellulose Cuprophan. The purity of Cip7-PTCBD(EngD) eluted from Cuprophan was comparable to that purified by conventional ion exchange chromatography. The results demonstrated that PTCBD(EngD) can serve as a bi-functional fusion tag for solubilization of fusion partners and as a domain for the immobilization, enrichment and purification of molecules or cells on regenerated amorphous cellulose.  相似文献   

11.
During Dictyostelium discoideum spore germination, degradation of the cellulose-containing spore wall is required to allow the amoeba to emerge. The CelA gene, which is transcribed and expressed exclusively during spore germination, codes for a 705-amino-acid protein that has cellulase activity [endo-(1,4)-beta-D-glucanase]. Amoebae transformed by a vector containing the CelA coding sequence or portions of it transcribed from a heterologous promoter expressed and secreted full-length or suitably truncated proteins during vegetative growth when, under normal conditions, these proteins are not made. The gene constructs divided the CelA protein into three domains: a 461-amino-acid N-terminal region that has significant similarity to those of other cellulases and that has been shown to be the catalytic domain; a contiguous 91-residue repeat containing the motif threonine-glutamic acid-threonine-proline, which is glycosylated; and, joined to the repeat, a C-terminal 153-amino-acid sequence that most probably defines a cellulose-binding domain.  相似文献   

12.
Clostridium acetobutylicum ATCC 824 converts sugars and various polysaccharides into acids and solvents. This bacterium, however, is unable to utilize cellulosic substrates, since it is able to secrete very small amounts of cellulosomes. To promote the utilization of crystalline cellulose, the strategy we chose aims at producing heterologous minicellulosomes, containing two different cellulases bound to a miniscaffoldin, in C. acetobutylicum. A first step toward this goal describes the production of miniCipC1, a truncated form of CipC from Clostridium cellulolyticum, and the hybrid scaffoldin Scaf 3, which bears an additional cohesin domain derived from CipA from Clostridium thermocellum. Both proteins were correctly matured and secreted in the medium, and their various domains were found to be functional.  相似文献   

13.
The Clostridium josui cipA and celD genes, encoding a scaffolding-like protein (CipA) and a putative cellulase (CelD), respectively, have been cloned and sequenced. CipA, with an estimated molecular weight of 120,227, consists of an N-terminal signal peptide, a cellulose-binding domain of family III, and six successive cohesin domains. The molecular architecture of C. josui CipA is similar to those of the scaffolding proteins reported so far, such as Clostridium thermocellum CipA, Clostridium cellulovorans CbpA, and Clostridium cellulolyticum CipC, but C. josui CipA is considerably smaller than the other scaffolding proteins. CelD consists of an N-terminal signal peptide, a family 48 catalytic domain of glycosyl hydrolase, and a dockerin domain. N-terminal amino acid sequence analysis of the C. josui cellulosomal proteins indicates that both CipA and CelD are major components of the cellulosome.  相似文献   

14.
A cellulosomal scaffoldin gene, termed cipBc, was identified and sequenced from the mesophilic cellulolytic anaerobe Bacteroides cellulosolvens. The gene encodes a 2,292-residue polypeptide (excluding the signal sequence) with a calculated molecular weight of 242,437. CipBc contains an N-terminal signal peptide, 11 type II cohesin domains, an internal family III cellulose-binding domain (CBD), and a C-terminal dockerin domain. Its CBD belongs to family IIIb, like that of CipV from Acetivibrio cellulolyticus but unlike the family IIIa CBDs of other clostridial scaffoldins. In contrast to all other scaffoldins thus far described, CipBc lacks a hydrophilic domain or domain X of unknown function. The singularity of CipBc, however, lies in its numerous type II cohesin domains, all of which are very similar in sequence. One of the latter cohesin domains was expressed, and the expressed protein interacted selectively with cellulosomal enzymes, one of which was identified as a family 48 glycosyl hydrolase on the basis of partial sequence alignment. By definition, the dockerins, carried by the cellulosomal enzymes of this species, would be considered to be type II. This is the first example of authentic type II cohesins that are confirmed components of a cellulosomal scaffoldin subunit rather than a cell surface anchoring component. The results attest to the emerging diversity of cellulosomes and their component sequences in nature.  相似文献   

15.
The recombinant form of the cellulase CelF of Clostridium cellulolyticum, tagged by a C-terminal histine tail, was overproduced in Escherichia coli. The fusion protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The intact form of CelF (Mr, 79,000) was rapidly degraded at the C terminus, giving a shorter stable form, called truncated CelF (Mr, 71,000). Both the entire and the truncated purified forms degraded amorphous cellulose (kcat = 42 and 30 min(-1), respectively) and microcrystalline cellulose (kcat = 13 and 10 min(-1), respectively). The high ratio of soluble reducing ends to insoluble reducing ends released by truncated CelF from amorphous cellulose showed that CelF is a processive enzyme. Nevertheless, the diversity of the cellodextrins released by truncated CelF from phosphoric acid-swollen cellulose at the beginning of the reaction indicated that the enzyme might randomly hydrolyze beta-1,4 bonds. This hypothesis was supported by viscosimetric measurements and by the finding that CelF and the endoglucanase CelA are able to degrade some of the same cellulose sites. CelF was therefore called a processive endocellulase. The results of immunoblotting analysis showed that CelF was associated with the cellulosome of C. cellulolyticum. It was identified as one of the three major components of cellulosomes. The ability of the entire form of CelF to interact with CipC, the cellulosome integrating protein, or mini-CipC1, a recombinant truncated form of CipC, was monitored by interaction Western blotting (immunoblotting) and by binding assays using a BIAcore biosensor-based analytical system.  相似文献   

16.
The 3' region of a gene designated cipB, which shows strong homology with cipA that encodes the cellulosome SL subunit of Clostridium thermocellum ATCC 27405, was isolated from a gene library of C. thermocellum strain YS. The truncated S1 protein encoded by the cipB derivative bound tightly to cellulose. The cellulose-binding domain in this polypeptide consisted of a C-terminal proximal 167 residue sequence which showed complete identity with residues 337-503 of mature SL from C. thermocellum strain ATCC 27405. The cellulose-binding domain interacted with both crystalline and amorphous cellulose, but not with xylan.  相似文献   

17.
The widespread presence of cellulose-binding domains in cellulases from aerobic bacteria and fungi suggests the existence of a strong selective pressure for the retention of these non-catalytic modules. The complete nucleotide sequence of the cellulase gene, celA, from the aerobic soil bacterium Cellvibrio mixtus, was determined. It revealed an open reading frame of 1089 bp that encoded a polypeptide, defined as cellulase A (CelA), of M r 41 548. CelA displayed features characteristic of an endo-β-1,4-glucanase, rapidly decreasing the viscosity of the substrate while releasing only moderate amounts of reducing sugar. Deletion studies in celA revealed that removal of 78 nucleotides from the 5′ end or 75 from the 3′ end of the gene led to the complete loss of cellulase activity of the encoded polypeptides. The deduced primary structure of CelA revealed an N-terminal signal peptide followed by a region that exhibited significant identity with the catalytic domains of cellulases belonging to glycosyl hydrolase family 5. These data suggest that CelA is a single-domain endoglucanase with no distinct non-catalytic cellulose-binding domain. Analysis of the biochemical properties of CelA revealed that the enzyme hydrolyses a range of soluble cellulosic substrates, but was inactive against Avicel, xylan or any other hemicellulose. CelA was resistant to proteolytic inactivation by pancreatic proteinases and surprisingly, in view of its mesophylic origin, was shown to be thermostable. The significance of these findings in relation to the role of single-domain cellulases in plant cell wall hydrolysis by aerobic microorganisms is discussed. Received: 26 May 1997 / Received revision: 4 July 1997 / Accepted: 4 July 1997  相似文献   

18.
The celA, manA, and celB genes from Caldocellulosiruptor saccharolyticus compose a cellulase-hemicellulase gene cluster and are arranged on a 12-kb C. saccharolyticus genomic fragment of the recombinant lambda bacteriophage NZP lambda 2. The beginning of a fourth open reading frame (celC) which was homologous to the C. saccharolyticus manA and celA genes was located at the 3' end of the 12-kb NZP lambda 2 genomic fragment. Genome-walking PCR was used to isolate DNA fragments downstream of the C. saccharolyticus celB gene, and the entire nucleotide sequence of celC was obtained. From the preliminary nucleotide sequence, celC appeared to encode yet another multidomain bifunctional enzyme (CelC) consisting of an N-terminal endo-1,4-beta-D-glucanase domain (75% similar to CelA domain 1), two central cellulose-binding domains, and a C-terminal endo-1,4-beta-D-mannanase domain (98% similar to ManA domain 1). However, upon completion of the celC sequencing, two -1 frameshifts were identified in the region encoding the putative CelC mannanase domain. The isolated CelC mannanase domain exhibited no beta-mannanase activity, which supported this observation. Recombinant PCR was used to correct the celC frameshifts by inserting the appropriate nucleotides into the gene. The repaired celC fragment containing the base insertions (manB) expressed strong beta-mannanase activity on soluble mannan substrates and showed significant activity on kraft pulp as judged by the release of reducing sugars.  相似文献   

19.
Abstract

Clostridium thermocellum produces a highly active cellulase system that consists of a high-Mr multienzyme complex termed cellulosome. Hydrolytic components of the cellulosome are organized around a large, noncatalytic glycoprotein termed CipA that acts both as a scaffolding component and a cellulose-binding factor. Catalytic subunits of the cellulosome bear conserved, noncatalytic subdomains, termed dockerin domains, which bind to receptor domains of CipA, termed cohesin domains. CipA includes nine cohesin domains, a cellulose-binding domain, and a specialized dockerin domain. Proteins of the cell envelope carrying cohesin domains that specifically bind the dockerin domain of CipA have been identified. These proteins may mediate anchoring of the cellulosomes to the cell surface. Cellulase complexes similar to the cellulosome of C. thermocellum are produced by several cellulolytic clostridia. High-Mr multienzyme complexes have also been identified in anaerobic rumen fungi. The architecture of the fungal complexes also seems to rely on the interaction of conserved, noncatalytic docking domains with a scaffolding component. However, the sequence of the fungal docking domains bears no resemblance to the clostridial dockerin domains, suggesting that the fungal and clostridial complexes arose independently.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号