首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Submergence of the stem induces rapid internodal elongation in deepwater rice (Oryza sativa L. cv. Habiganj Aman II). A comparative anatomical study of internodes isolated from airgrown and partially submerged rice plants was undertaken to localize and characterize regions of growth and differentiation in rice stems. Longitudinal sections were examined by light and scanning-electron microscopy. Based on cell-size analysis, three zones of internodal development were recognized: a zone of cell division and elongation at the base of the internode, designated the intercalary meristem (IM); a zone of cell elongation without concomitant cell division; and a zone of cell differentiation where neither cell division nor elongation occur. The primary effects of submergence on internodal development were a threefold increase in the number of cells per cell file resulting from a decrease in the cell-cycle time from 24 to 7 h within the IM; an expansion of the cell-elongation zone from 5 to 15 mm leading to a threefold greater final cell length; and a suppression of tissue differentiation as indicated by reduced chlorophyll content and a lack of secondary wall formation in xylem and cortical sclerenchyma. These data indicate that growth of deepwater-rice internoes involves a balance between elongation and differentiation of the stem. Submergence shifts this balance in favor of growth.Abbreviations GA gibberellin - IM intercalary meristem  相似文献   

2.
Expansins and Internodal Growth of Deepwater Rice   总被引:10,自引:0,他引:10       下载免费PDF全文
Cho HT  Kende H 《Plant physiology》1997,113(4):1145-1151
The distribution and activity of the cell wall-loosening protein expansin is correlated with internodal growth in deepwater rice (Oryza sativa L.). Acid-induced extension of native cell walls and reconstituted extension of boiled cell walls were confined to the growing region of the internode, i.e. to the intercalary meristem (IM) and the elongation zone. Immunolocalization by tissue printing and immunoblot analysis, using antibody against cucumber expansin 29 as a probe, confirmed that rice expansin occurred primarily in the IM and elongation zone. Rice expansin was localized mainly around the vascular bundles at the base of the IM and along the inner epidermal cell layer surrounding the internodal cavity. Submergence greatly promoted the growth of rice internodes, and cell walls of submerged internodes extended much more in response to acidification than did the cell walls of air-grown internodes. Susceptibility of cell walls to added expansin was also increased in submerged internodes, and analysis by immunoblotting showed that cell walls of submerged internodes contained more expansin than did cell walls of air-grown internodes. Based on these data, we propose that expansin is involved in mediating rapid internodal elongation in submerged deepwater rice internodes.  相似文献   

3.
In the growing culm of C. alternifolius, surgical removal of parts indicated that the stimulus for the prolonged activity of the internodal intercalary meristem (IM) came from the matured leaves and upper internode and that buds were not involved in maintaining internodal growth. Decapitation of the culm resulted in cessation of internodal extension. Various growth regulators were applied to the decapitated internode, and both the total extension and growth rates were analyzed statistically. Gibberellin A3 (GA) and benzyladenine (BA) substituted for the excised parts in their effect on internodal extension. Indoleacetic acid (IAA) had little effect. (2-chloroethyl) trimethylammonium chloride (CCC) inhibited internodal growth, and its effects were reversed by GA. IAA was antagonistic to BA but not to GA. BA and GA were somewhat antagonistic. The quantitative effects of growth regulators on epidermal and ground parenchyma cell length and number of interstomatal cells were examined. Extension induced by GA was due to both cell division and cell elongation in the IM. Cells were longer, and fewer stomates differentiated than in the control. In internodes induced to extend by GA + BA cell division, cell length, and stomate differentiation were similar to the control. The results indicate that prolonged internodal IM activity is maintained by cytokinins and gibberellins coming from the matured upper portions of the culm. Changes in the levels of these regulators during growth presumably result in the histological gradient in the internode.  相似文献   

4.
Kazuo Takeda  Hiroh Shibaoka 《Planta》1981,151(4):385-392
Throughout the entire period of cell growth, the microfibrils on the inner surface of the outer tangential walls of the epidermal cells of Vigna angularis epicotyls are running parallel to one another and their orientation differs from cell to cell. Although transverse, oblique and longitudinal microfibrils can be observed irrespective of cell age, the frequency distribution of microfibril orientation changes with age. In young cells, transversely oriented microfibrils predominate. In cells of medium age, which are still undergoing elongation, transverse, oblique and longitudinal microfibrils are present in quite similar frequencies. In old, non-growing cells, longitudinally oriented microfibrils are predominent. A decrease in the relative frequency of transversely oriented microfibrils with cell age was also observed in the radial epidermal walls.  相似文献   

5.
Cohen E  Kende H 《Plant physiology》1987,84(2):282-286
Inasmuch as the activity of 1-aminocyclopropane-1-carboxylate (ACC) synthase cannot be measured in homogenates of deepwater rice internodes (Oryza sativa L.), we have employed an in vivo assay to determine the activity of this enzyme. This assay is based on the accumulation of ACC in tissue kept under N2. Submergence of whole plants or stem sections containing the uppermost, developing internode enhances the in vivo activity of ACC synthase in the stem. This stimulation of in vivo ACC-synthase activity is especially pronounced in the region of the internode containing the intercalary meristem and the elongation zone above it. Enhancement of in vivo ACC-synthase activity is evident after 2 hours of submergence and shows a peak after 4 hours. Reduced levels of atmospheric O2, which promote ethylene synthesis and growth in internodes of deepwater rice, also enhance the in vivo activity of ACC synthase. Our results are consistent with the hypothesis that induction of ACC-synthase activity at low partial O2 pressures is among the first biochemical events leading to internodal growth in deepwater rice.  相似文献   

6.
Melchior , Robert C., and John W. Hall . (U. Minnesota, Minneapolis.) A calamitean shoot apex from the Pennsylvanian of Iowa. Amer. Jour. Bot. 48(9): 811–815. Illus. 1961.—A shoot apex of a calamitean stem is described from the Des Moines Series, Middle Pennsylvanian. Internodal elongation of the 7 preserved internodes follows a sigmoid curve. A large apical cell has produced derivatives in a fashion apparently comparable to those in Equisetum arvense, except for the number of cells in the first leaf primordium ring and, possibly, the intercalary meristem. Pith meristem developed close to the apical cell. Data from internodal cell elongation of hypodermal cells of the cortex are presented which demonstrate intercalary internodal growth; no intercalary meristems are preserved and the existence of intercalary meristems which might have produced a jointed stem like that of Equisetum is only inferred.  相似文献   

7.
Summary Electron-probe X-ray microanalysis showed that significant amounts of silicon are accumulated in the entire epidermal system of the rice internode except in the stomatal apparatuses. Thus, there is a lack of specific sites for Si deposition from levels just above the base to the tip of the rice internode. In the intercalary meristem region, 1 cm above the base of the internode, point-count data indicate more Si accumulation in the dumb-bell shaped silica cells than in the long epidermal cells. Above this region, Si is accumulated essentially in a uniform pattern in all epidermal cells. Such a pattern for Si accumulation in rice internodes markedly contrasts with that for Avena internodes and may explain, in part, why rice plants have a higher percentage Si (dry weight basis) in their shoots. The adaptive significance of this silicification pattern in rice is discussed.  相似文献   

8.
D. G. Green 《Plant and Soil》1985,86(2):291-294
Summary The effect of applying (2-chloroethyl)trimethylammonium chloride (CCC) or gibberellic acid (GA) as foliar sprays on internodal development of barley was studied. CCC applied to the whole plant at main tiller leaf stages 1, 2 or 3 decreased shoot elongation, and prevented elongation of internode 6 (internode 5 subtended the head). CCC at all stages delayed senescence of the lower leaves. CCC sprayed at all 6 leaf stages and GA sprayed at main tiller leaf stages 1, 2, 3 or 4 reduced plant height at maturity. GA treatment at leaf stages 2, 3 or 4 initially stimulated internodal elongation; elongation of later developed internodes was inhibited resulting in shorter plants at maturity. Only the treatment with GA at leaf stages 5 and 6 resulted in increased plant height.  相似文献   

9.
An electron microprobe (EMP) analysis of silica (SiO2) deposition in the epidermis of developing internodes of the perennial scouring rush (Equisetum hyemale var. affine) indicates that SiO2 is first detected in the stomatal apparatus beginning with internode 3, then the epidermal papillae (internode 8), and finally in radial cell walls of the long epidermal cells (internode 10). This process is initiated in the intercalary growth regions at the bases of the elongating internodes. The deposition of SiO2 in long epidermal cell walls occurs after internodal extension has ceased and should therefore be considered as one of the final stages in internodal differentiation that involves strengthening the cellulosic framework of the cell wall. EMP measurements indicate that SiO2 in stomata is equivalent to 30% of a pure SiO2 standard and that SiO2 in the radial walls of long epidermal cells averages twice that measured on the tangential walls of these same cells. This study supports the view that silicification plays a major role in strengthening the developing perennial scouring rush internodal system and that regulation of this process in this and other species of Equisetum, whose SiO2 deposition patterns are markedly different, deserves further study.  相似文献   

10.
11.
The distribution of percent of dividing nuclei, parenchyma cell length, total cell number per internode, and total internode length were determined for successive internodes in the apex and growing vegetative internodes of 23 tropical species in 17 families of monocotyledons. Basal intercalary meristems (IM) were found in representatives of Commelinaceae, Cyperaceae, Flagellariaceae, Poaceae, Restionaceae, and Marantaceae. Uninterrupted meristems (UM) which are confined progressively to the upper region of the internode and are not isolated meristematic regions were found in the Costaceae, Dioscoreaceae, Philesiaceae, Smilacaceae, Agavaceae, Araceae, Arecaceae, Liliaceae, Pandanaceae, and Zingiberaceae. Both IM and UM were found in different species of Orchidaceae. The only morphological trait correlated with meristem type was presence of sheathing leaf bases in all species with IM. Both IM and UM are interpreted as extensions of the primary elongating meristem; the IM is disjunct, and the UM is continuous with it. The phytomer growth unit and the presence of internodal IM's cannot be applied generally to the monocotyledons.  相似文献   

12.
Submergence induces rapid elongation of rice coleoptiles (Oryza sativa L.) and of deepwater rice internodes. This adaptive feature helps rice to grow out of the water and to survive flooding. Earlier, we found that the growth response of submerged deepwater rice plants is mediated by ethylene and gibberellin (GA). Ethylene promotes growth, at least in part, by increasing the responsiveness of the internodal tissue to GA. In the present work, we examined the possibility that increased responsiveness to GA was based on a reduction in endogenous abscisic acid (ABA) levels. Submergence and treatment with ethylene led, within 3 hours, to a 75% reduction in the level of ABA in the intercalary meristem and the growing zone of deepwater rice internodes. The level of GA1 increased fourfold during the same time period. An interaction between GA and ABA could also be shown by application of the hormones. ABA inhibited growth of submerged internodes, and GA counteracted this inhibition. Our results indicate that the growth rate of deepwater rice internodes is determined by the ratio of an endogenous growth promoter (GA) and a growth inhibitor (ABA). We also investigated whether ABA is involved in regulating the growth of rice coleoptiles. Rice seedlings were grown on solutions containing fluridone, an inhibitor of carotenoid and, indirectly, of ABA biosynthesis. Treatment with fluridone reduced the level of ABA in coleoptiles and first leaves by more than 75% and promoted coleoptile growth by more than 60%. Little or no enhancement of growth by fluridone was observed in barley, oat, or wheat. The involvement of ABA in determining the growth rate of rice coleoptiles and deepwater rice internodes may be related to the semiaquatic growth habit of this plant.  相似文献   

13.
深水稻节间伸长生长的机制   总被引:9,自引:1,他引:8  
宋平  周燮 《植物学通报》2000,17(1):46-51
淹水可促进深水稻节间快速伸长生长,其主要受内源赤霉素、乙烯、脱落酸等激素信号分子的调控。淹水能促进深水稻植物株体内乙烯、赤霉素的生物合成、抑制脱落酸的生物合成,外源乙烯、赤霉素会加速深水稻节间伸长,而外源脱落酸抑制淹水节间的伸长,其中赤霉素是直接作用因子,乙烯能降低内源脱落酸水平、增加节地赤霉素的敏感性;还与渗透调节、细胞壁组份如膨胀素等有关,淹水及赤霉素都大大增加了膨胀素基因的表达。并就深水稻的  相似文献   

14.
宋平  周燮 《植物学报》2000,17(1):46-51
淹水可促进深水稻节间快速伸长生长,其主要受内源赤霉素、乙烯、脱落酸等激素信号分子的调控。淹水能促进深水稻植株体内乙烯、赤霉素的生物合成、抑制脱落酸的生物合成,外源乙烯、赤霉素会加速深水稻节间伸长,而外源脱落酸抑制淹水节间的伸长,其中赤霉素是直接作用因子,乙烯能降低内源脱落酸水平、增加节间对赤霉素的敏感性;还与渗透调节、细胞壁组份如膨胀素等有关,淹水及赤霉素都大大增加了膨胀素基因的表达。并就深水稻的进一步研究进行了展望。  相似文献   

15.
The Hong Mang Mai wheat cultivar is tolerant to deep-sowing conditions because it has an elongated first internode that is sensitive to gibberellin (GA3). The cells in the GA-treated first internodes were approximately 4.2 mm long, twice as long as the untreated Hong Mang Mai first internode cells. The elongation of the first internode of Hong Mang Mai, particularly when treated with GA3, was accompanied by remarkable spiral growth. In contrast, the first internodes of the GA-insensitive cultivar Norin 10 did not exhibit GA3-induced elongation or spiral growth. The walls of the first internode cells of GA3-treated Hong Mang Mai seedlings showed increased extensibility and higher (1→3), (1→4)- β - d -glucanase activity, autolysis and glucan contents than the cell walls of untreated Hong Mang Mai first internodes. The changes in the cell wall extensibility due to GA3 treatment correlated strongly with the GA3-induced changes in cell wall glucan content, autolysis, and glucanase activity. GA3-treated Hong Mang Mai seedlings showed elevated expression of Glucanase EI gene in the first internode compared to GA3-treated Norin 10. Thus, GA aids first internode elongation in Hong Mang Mai by enhancing glucan turnover and thus increasing cell wall loosening. The spiral growth of the first internode also helps the plant elongate against soil resistance, thereby promoting the deep-sowing tolerance of this cultivar.  相似文献   

16.
Partial submergence induces rapid internodal elongation in deepwater rice (Oryza sativa L., cv Habiganj Aman II). We measured in vivo extensibility, tissue tension, hydraulic conductance and osmotic potential in the region of cell elongation in the uppermost internode. The in vivo extensibility of the internode, measured by stretching of living tissue with a custom-made constant stress extensiometer, rose rapidly following submergence of the plant. Both the elastic (Eel) and plastic (Epl) extensibility increased when growth of the internode was induced. The submerged internode displayed tissue tension (elastic outward bending of longitudinally split internode sections); in air-grown control internodes, no such bending occurred. The hydraulic conductance, estimated from the kinetics of tissue shrinkage in 0.5 molar mannitol and subsequent swelling in distilled water, was not changed by submergence. The osmotic potential, measured with a dew-point hygrometer using frozen-thawed tissue, was only 18% less negative in the submerged internode than in the air-grown control. This indicates that osmoregulation takes place in rapidly elongating rice internodes. We suggest that the rapid expansion of the newly formed internodal cells of submerged plants is controlled by the yielding properties (Epl) of the cell walls. Experiments with excised stem sections indicate that gibberellin is involved in increasing the Epl of the elongating cell walls.  相似文献   

17.
Rice internodes are vital for supporting high‐yield panicles, which are controlled by various factors such as cell division, cell elongation and cell wall biosynthesis. Therefore, formation and regulation of the internode cell‐producing intercalary meristem (IM) are important for determining the shape of internodes. To understand the regulation of internode development, we analysed a rice dwarf mutant, dwarf 50 (d50). Previously, we reported that parenchyma cells in the elongated internodes of d50 ectopically deposit cell wall phenolics. In this study, we revealed that D50 encodes putative inositol polyphosphate 5‐phosphatase (5PTase), which may be involved in phosphoinositide signalling required for many essential cellular functions, such as cytoskeleton organization, endocytosis and vesicular trafficking in eukaryotes. Analysis of the rice genome revealed 20 putative 5PTases including D50. The d50 mutation induced abnormally oriented cell division, irregular deposition of cell wall pectins and thick actin bundles in the parenchyma cells of the IM, resulting in abnormally organized cell files of the internode parenchyma and dwarf phenotype. Our results suggest that the putative 5PTase, encoded by D50, is essential for IM formation, including the direction of cell division, deposition of cell wall pectins and control of actin organization.  相似文献   

18.
Summary Based on precise information about the orientations of cellulose microfibrils (CMFs) in the secondary cell wall of theEquisetum hyemale root hair, a geometrical model was recently put forward to account for the deposition orientation of CMFs. The model supposes that synthases spin out the CMFs and that geometrical laws dictate their movement. Taking space-limiting conditions into account, CMF orientation is dependent on cell morphology, the amount of other wall molecules adhering to the CMFs, and the number and distribution pattern of synthases. In the present paper this geometrical model for CMF deposition is further applied to nontip-growing angular cells with varying diameters, cells with tapering morphology, various distribution patterns of synthases, various matrix/fibril ratios, and intercalarily elongating cells. The model can accurately predict the actual wall textures in a great variety of cell walls. In the proposed model for CMF orientation, microtubules are not required as cellular guiding structures for the CMFs, not even in elongating walls. They are supposed to be involved in cell elongation, possibly by delivering wall material including CMF synthases.Abbreviation CMF cellulose microfibril  相似文献   

19.
2,4—D对水稻根尖微管排列的影响   总被引:1,自引:0,他引:1  
通过共焦激光扫描显微镜对经过2,4-D处理水稻(Oryza sativa L.)根尖的微管骨轲的排列进行了研究。结果表明,对照(未经2,4-D处理)根尖的不同生长区微管呈现不同的排列方式,生长区皮导呈管呈随机排列,伸长区微管呈横向排列,根毛区的呈斜向排列。经过2,4-D处理的根,不但皮层细胞微管表现重新定向,同时也伴随着生长受到强烈抑制。1mg/L2,4-D处理1h,分生区细胞微管由随机排列变成横  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号