首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium.

Methods

Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay.

Results

Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic.

Conclusions

VEGFB and PlGF can either inhibit or potentiate the actions of VEGFA, depending on their relative concentrations, which change in the hypoxic lung. Thus their actions in vivo depend on their specific concentrations within the microenvironment of the alveolar wall during the course of adaptation to pulmonary hypoxia.  相似文献   

2.
Chen M  Li Y  Yang T  Wang Y  Bai Y  Xie X 《Cytokine》2008,43(2):149-159
Asymmetric dimethylarginine (ADMA), an endogenous NOS inhibitor, is also an important inflammatory factor contributing to the development of atherosclerosis (AS). The present study was to test the effect of ADMA on angiotensin (Ang) II-induced monocytic adhesion. Human monocytoid cells (THP-1) or isolated peripheral blood monocyte cells (PBMCs) were incubated with Ang II (10−6 M) or exogenous ADMA (30 μM) for 4 or 24 h in the absence or presence of losartan or antioxidant PDTC. In cultured THP-1 cells, Ang II (10−6 M) for 24 h elevated the level of ADMA in the medium, upregulated the protein expression of protein arginine methyltransferase (PRMT) and decreased the activity of dimethylarginine dimethylaminohydrolase (DDAH). Both of Ang II and ADMA increased monocytic adhesion to human umbilical vein endothelial cells (HUVECs), elevated the levels of monocyte chemoattractant protein (MCP)-1, interleukin (IL)-8 and tumor necrosis factor (TNF)-α and upregulated CCR2 and CXCR2 mRNA expression, concomitantly with increase in reactive oxygen species (ROS) generation and activation of nuclear factor (NF)-κB. Pretreatment with losartan (10 μM) or PDTC (10 μM) abolished the effects mediated by Ang II or ADMA. In isolated PBMCs from healthy individuals, ADMA upregulated the expression of CXCR2 mRNA, which was attenuated by losartan (10 μM), however, ADMA had no effect on surface protein expression of CCR2. The present results suggest that ADMA may be involved in monocytic adhesion induced by Ang II via activation of chemokine receptors by ROS/NF-κB pathway.  相似文献   

3.

Aims

Epidermal growth factor receptor (EGFR) transactivation induced by angiotensin II (Ang II) participates in the progression of various diseases. A disintegrin and metalloproteinase 17 (ADAM17) is thought to promote renal fibrosis, cardiac hypertrophy with fibrosis and atherosclerosis by activation of the EGFR through secretion of EGFR ligands. The purpose of this study was to investigate whether Ang II-induced EGFR transactivation occurs on hepatic stellate cells (HSCs) and whether the reaction is mediated via ADAM17.

Main methods

Ang II-induced EGFR transactivation and cellular proliferation of the human HSC line LI90 were investigated using Western blotting and ATP assay, respectively. Ang II-induced secretion of mature amphiregulin into the cell culture medium was evaluated by enzyme-linked immunosorbent assay (ELISA).

Key findings

An inhibitor of ADAM17, TAPI-1, as well as antagonists of EGFR and angiotensin II type-1 receptor (AT1), attenuated Ang II-induced EGFR transactivation and proliferation of LI90 cells. Furthermore, silencing of ADAM17 inhibited Ang II-induced secretion of mature amphiregulin in addition to EGFR transactivation.

Significance

These results indicate that ADAM17 mediates Ang II-induced EGFR transactivation on HSCs, and that this process may participate in the progression of liver fibrosis.  相似文献   

4.
The multiple actions of angiotensin II in atherosclerosis   总被引:3,自引:0,他引:3  
Angiotensin II (Ang II), the effector peptide of the renin-angiotensin system, has been implied in the pathogenesis of atherosclerosis on various levels. There is abundant experimental evidence that pharmacological antagonism of Ang II formation by angiotensin converting enzyme inhibition or blockade of the cellular effects of Ang II by angiotensin type 1 receptor blockade inhibits formation and progression of atherosclerotic lesions. Angiotensin promotes generation of oxidative stress in the vasculature, which appears to be a key mediator of Ang II-induced endothelial dysfunction, endothelial cell apoptosis, and lipoprotein peroxidation. Ang II also induces cellular adhesion molecules, chemotactic and proinflammatory cytokines, all of which participate in the induction of an inflammatory response in the vessel wall. In addition, Ang II triggers responses in vascular smooth muscle cells that lead to proliferation, migration, and a phenotypic modulation resulting in production of growth factors and extracellular matrix. While all of these effects contribute to neointima formation and development of atherosclerotic lesions, Ang II may also be involved in acute complications of atherosclerosis by promoting plaque rupture and a hyperthrombotic state. Accordingly, Ang II appears to have a central role in the pathophysiology of atherosclerosis.  相似文献   

5.

Background

Placenta growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family. Over-expression of PlGF is known to be associated with pathological angiogenesis. This study examined PlGF expression at protein and message levels in non-small cell lung cancer (NSCLC), in which no reports on the significance of PlGF expression is available to date.

Patients and methods

We used immunohistochemistry to assess the PlGF protein and correlated PlGF with microvessel density (MVD), as well as clinical outcome in patients with NSCLC tumours (n = 91). In addition, we applied a real time quantitative PCR assay using SYBR Green chemistry to measure PlGF mRNA in normal lung tissues and NSCLC tumours.

Results

PlGF was positively stained mainly in cytoplasm of lung cancer cells. High level staining of PlGF was found in 38.5% NSCLC patients. A high level of MVD in NSCLC was found in 42.9% of cases. Tumours with high level and low level PlGF staining had a significantly different MVD (26.69 vs. 20.79, respectively, p = 0.003). Using both univariate and multivariate analyses, PlGF was found to be an independent prognostic factor. Real time PCR analysis revealed that PlGF mRNA was higher in the cancer tissue than normal tissue (0.95 ± 0.19 vs. 0.57 ± 0.24; p < 0.005) and that PlGF mRNA was significant higher in III-IV stage patients than in I-II stage patients (1.03 ± 0.20 vs. 0.80 ± 0.17; p = 0.011).

Conclusion

PlGF expression is significantly more in NSCLC tumour tissues than in matched normal tissues. It has a significant positive association with MVD and is an independent factor for NSCLC patients. PlGF may have a pivotal role in NSCLC development and disease progression.  相似文献   

6.
The therapeutic potential of placental growth factor (PlGF) and its receptor Flt1 in angiogenesis is poorly understood. Here, we report that PlGF stimulated angiogenesis and collateral growth in ischemic heart and limb with at least a comparable efficiency to vascular endothelial growth factor (VEGF). An antibody against Flt1 suppressed neovascularization in tumors and ischemic retina, and angiogenesis and inflammatory joint destruction in autoimmune arthritis. Anti-Flt1 also reduced atherosclerotic plaque growth and vulnerability, but the atheroprotective effect was not attributable to reduced plaque neovascularization. Inhibition of VEGF receptor Flk1 did not affect arthritis or atherosclerosis, indicating that inhibition of Flk1-driven angiogenesis alone was not sufficient to halt disease progression. The anti-inflammatory effects of anti-Flt1 were attributable to reduced mobilization of bone marrow-derived myeloid progenitors into the peripheral blood; impaired infiltration of Flt1-expressing leukocytes in inflamed tissues; and defective activation of myeloid cells. Thus, PlGF and Flt1 constitute potential candidates for therapeutic modulation of angiogenesis and inflammation.  相似文献   

7.
8.
9.
Lymphangiogenesis is possibly capable of attenuating hypertension-induced cardiac injury. Sirtuin 3 (SIRT3) is an effective mitochondrial deacetylase that has the potential to modulate this process; however, its role in hypertension-induced cardiac lymphangiogenesis to date has not been investigated. Our experiments were performed on 8-week-old wild-type (WT), SIRT3 knockout (SIRT3-KO) and SIRT3 overexpression (SIRT3-LV) mice infused with angiotensin II (Ang II) (1000 ng/kg per minute) or saline for 28 days. After Ang II infusion, SIRT3-KO mice developed a more severe cardiac remodelling, less lymphatic capillaries and lower expression of lymphatic marker when compared to wild-type mice. In comparison, SIRT3-LV restored lymphangiogenesis and attenuated cardiac injury. Furthermore, lymphatic endothelial cells (LECs) exposed to Ang II in vitro exhibited decreased migration and proliferation. Silencing SIRT3 induced functional decrease in LECs, while SIRT3 overexpression LECs facilitated. Moreover, SIRT3 may up-regulate lymphangiogenesis by affecting vascular endothelial growth factor receptor 3 (VEGFR3) and ERK pathway. These findings suggest that SIRT3 could promote lymphangiogenesis and attenuate hypertensive cardiac injury.  相似文献   

10.
11.
Vascular endothelial cells have a finite cell lifespan and eventually enter an irreversible growth arrest, cellular senescence. The functional changes associated with cellular senescence are thought to contribute to human aging and age-related cardiovascular disorders, e.g. atherosclerosis. In this study, induction of Angiotensin II (Ang II) promoted a growth arrest with phenotypic characteristics of cell senescence, such as enlarged cell shapes, increased senescence-associated beta-galactosidase (SA-beta-gal) positive staining cell, and depressed cell proliferation. Apoptotic changes were increased in senescent cells, with a small subset of the senescent cells showing aberrant morphology such as pronounced nuclear fragmentation or multiple micronuclei. The results suggest cell apoptosis is possibly an important factor in the process of pathologic and physiologic senescence of endothelial cells as well as vascular aging.  相似文献   

12.

Rationale

Despite preclinical success in regenerating and revascularizing the infarcted heart using angiogenic growth factors or bone marrow (BM) cells, recent clinical trials have revealed less benefit from these therapies than expected.

Objective

We explored the therapeutic potential of myocardial gene therapy of placental growth factor (PlGF), a VEGF-related angiogenic growth factor, with progenitor-mobilizing activity.

Methods and Results

Myocardial PlGF gene therapy improves cardiac performance after myocardial infarction, by inducing cardiac repair and reparative myoangiogenesis, via upregulation of paracrine anti-apoptotic and angiogenic factors. In addition, PlGF therapy stimulated Sca-1+/Lin (SL) BM progenitor proliferation, enhanced their mobilization into peripheral blood, and promoted their recruitment into the peri-infarct borders. Moreover, PlGF enhanced endothelial progenitor colony formation of BM-derived SL cells, and induced a phenotypic switch of BM-SL cells, recruited in the infarct, to the endothelial, smooth muscle and cardiomyocyte lineage.

Conclusions

Such pleiotropic effects of PlGF on cardiac repair and regeneration offer novel opportunities in the treatment of ischemic heart disease.  相似文献   

13.

Aims

Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells.

Method

Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 μg/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT1) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively.

Results

Ang II (1 μmol/L) induced HUVECs arrested at G0/G1, enhanced the expression level of AT1 mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT1 mRNA. L-NAME significantly counteracted these effects of IGF-1.

Conclusions

Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G0/G1 and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.  相似文献   

14.
15.
Angiogenesis and microvascular leakage are features of chronic inflammatory diseases of which molecular mechanisms are poorly understood. We investigated the effects of interleukin-1β (IL-1β) on the expression and secretion of vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) in porcine airway smooth muscle cells (PASMC) in relation to a nitric oxide (NO) pathway. Serum-deprived (48 h) PASMC were stimulated with IL-1β alone or with NO donor, l-arginine and/or NO synthase inhibitor l-NAME for 4 and 24 h. IL-1β did not affect PlGF release, but augmented VEGF release (2.4-fold) after 24 h. VEGF release was inhibited by l-NAME (531.8 ± 52 pg/ml), but restored and further elevated by l-arginine (1,529 ± 287 pg/ml). IL-1β up-regulated VEGF mRNA (1.8-fold) and this response was attenuated by l-NAME (1.1-fold) and augmented by l-arginine (3.8-fold) at 4 h. Restoration of a NO pathway by l-arginine in l-NAME-treated cells resulted in elevated VEGF mRNA levels (2.2-fold). [3H]Thymidine incorporation assay revealed enhanced porcine pulmonary artery endothelial cell proliferation in response to IL-1β, VEGF and PlGF, and this mitogenic effect was not influenced via the NO pathway. Our results suggest that a NO pathway modulates VEGF synthesis during inflammation contributing to bronchial angiogenesis and vascular leakage.  相似文献   

16.

Background  

The interactions between luteal, vascular endothelial, immune cells and its products: steroids, peptide hormones, prostaglandins (PGs), growth factors and cytokines play a pivotal role in the regulation of corpus luteum (CL) function. Luteal endothelial cells undergo many dynamic morphological changes and their action is regulated by cytokines. The aims are: (1) to establish in vitro model for bovine luteal endothelial cells examination; (2) to study the effect of cytokines: tumor necrosis factor alpha (TNFalpha) and interferon gamma (IFNgamma) on cell viability, leukotrienes (LTs) and PG synthases, and endothelin-1 (EDN-1) mRNA, protein expression and their secretion in bovine immortalized luteal endothelial (EnCL-1) cells.  相似文献   

17.
Vascular endothelial growth factor (VEGF) is the only angiogenic growth factor capable of inducing an inflammatory response and we have recently demonstrated that its inflammatory effect is mediated by the endothelial synthesis of platelet-activating factor (PAF). Recently discovered, Ang1 and Ang2, upon binding to Tie2 receptor, modulate vascular permeability and integrity, contributing to angiogenesis. Ang1 was initially identified as a Tie2 agonist whereas Ang2 can behave as a context-dependent Tie2 agonist or antagonist. We sought to determine if Ang1 and/or Ang2 could modulate PAF synthesis in bovine aortic endothelial cells (BAEC) and if so, through which intracellular signalling pathways. Herein, we report that Ang1 and Ang2 (1 nM) are both capable of mediating a rapid Tie2 phosphorylation and a rapid, progressive and sustained endothelial PAF synthesis maximal within 4 h (1695% and 851% increase, respectively). Angiopoietin-mediated endothelial PAF synthesis requires the activation of the p38 and p42/44 MAPKs, PI3K intracellular signalling pathways, and a secreted phospholipase A(2) (sPLA(2)-V). Furthermore, angiopoietin-mediated PAF synthesis is partly driven by a relocalization of endogenous VEGF to the cell surface membrane. Our results demonstrate that the angiopoietins constitute another class of angiogenic factors capable of mediating PAF synthesis which may contribute to proinflammatory activities.  相似文献   

18.
19.
Vascular endothelial cells have a finite cell lifespan and eventually enter an irreversible growth arrest, cellular senescence. The functional changes associated with cellular senescence are thought to contribute to human aging and age-related cardiovascular disorders, for example, atherosclerosis. Angiotensin II (Ang II), a principal effector of the renin-angiotensin system (RAS), an important signaling molecule involved in atherogenic stimuli, is known to promote aging and cellular senescence. In the present study, induction of Ang II promoted a growth arrest with phenotypic characteristics of cell senescence, such as enlarged cell shapes, increased senescence-associated beta-galactosidase (SA-beta-gal) positive staining cells, and depressed cell proliferation. Ang II drastically decreased the expression level of Bcl-2, in part via the activation of extracellular signal-regulated kinase (ERK). Our results suggest that Ang II can induce HUVEC senescence; one of its molecular mechanisms is a probability that the mitogen-activated protein kinase (MAPK) signal pathway is involved in the process of pathological and physiological senescence of endothelial cells as well as vascular aging.  相似文献   

20.

Aims/hypothesis

Islet vascularization, by controlling beta-cell mass expansion in response to increased insulin demand, is implicated in the progression to glucose intolerance and type 2 diabetes. We investigated how hyperglycaemia impairs expansion and differentiation of the growing pancreas. We have grafted xenogenic (avian) embryonic pancreas in severe combined immuno-deficient (SCID) mouse and analyzed endocrine and endothelial development in hyperglycaemic compared to normoglycaemic conditions.

Methods

14 dpi chicken pancreases were grafted under the kidney capsule of normoglycaemic or hyperglycaemic, streptozotocin-induced, SCID mice and analyzed two weeks later. Vascularization was analyzed both quantitatively and qualitatively using either in situ hybridization with both mouse- and chick-specific RNA probes for VEGFR2 or immunohistochemistry with an antibody to nestin, a marker of endothelial cells that is specific for murine cells. To inhibit angiopoietin 2 (Ang2), SCID mice were treated with 4 mg/kg IP L1–10 twice/week.

Results

In normoglycaemic condition, chicken-derived endocrine and exocrine cells developed well and intragraft vessels were lined with mouse endothelial cells. When pancreases were grafted in hyperglycaemic mice, growth and differentiation of the graft were altered and we observed endothelial discontinuities, large blood-filled spaces. Vessel density was decreased. These major vascular anomalies were associated with strong over-expression of chick-Ang2. To explore the possibility that Ang2 over-expression could be a key step in vascular disorganization induced by hyperglycaemia, we treated mice with L1–10, an Ang-2 specific inhibitor. Inhibition of Ang2 improved vascularization and beta-cell density.

Conclusions

This work highlighted an important role of Ang2 in pancreatic vascular defects induced by hyperglycaemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号