首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ontogenetic changes of MAAs in the soft coral Heteroxenia fuscescens was studied in relation to their symbiotic state (azooxanthellate vs. zooxanthellate) under different temperature conditions in the Gulf of Eilat, northern Red Sea. The HPLC chromatograms for extracts of the planulae, azoo- and zooxanthellate primary polyps of H. fuscescens from all dates of collection yielded a single peak at 320 nm that has been identified as the compound palythine. Concentration of palythine in planulae at 23 °C was 7.57 ± 1 nmol mg− 1 protein and at 28 °C reached 17.29 ± 1 nmol × mg− 1 protein. Concentration of palythine in azooxanthellate primary polyps was 16.4 ± 3 nmol × mg− 1 protein and 28.37 ± 2.8 nmol × mg− 1 protein at 23 °C and 28 °C respectively. The palythine concentration for zooxanthellate primary polyps at 23 °C was 13 ± 3 nmol × mg− 1 protein and at 28 °C 32.7 ± 2 nmol mg− 1 protein. Palythine concentrations were significantly higher at 28 °C in the different animal groups and correlated linearly with the ambient collection temperature. This study shows for the first time that UVR and temperature act synergistically and affect the MAA levels of early life-history stages of soft corals.  相似文献   

2.
The insect tracheal system is a unique respiratory system, designed for maximum oxygen delivery at high metabolic demands, e.g. during activity and at high ambient temperatures. Therefore, large safety margins are required for tracheal and spiracular conductance. Spiracles are the entry to the tracheal system and play an important role in controlling discontinuous gas exchange (DGC) between tracheal system and atmosphere in moth pupae. We investigated the effect of modulated metabolic rate (by changing ambient temperature) and modulated spiracular conductance (by blocking all except one spiracles) on gas exchange patterns in Samia pupae. Both, spiracle blocking and metabolic rates, affected respiratory behavior in Samia cynthia pupae. While animals showed discontinuous gas exchange cycles at lower temperatures with unblocked spiracles, the respiratory patterns were cyclic at higher temperatures, with partly blocked spiracles or a combination of these two factors. The threshold for the transition from a discontinuous (DGC) to a cyclic gas exchange (cycGE) was significantly higher in animals with unblocked spiracles (18.7 nmol g−1 min−1 vs. 7.9 nmol g−1 min−1). These findings indicate an important influence of spiracle conductance on the DGC, which may occur mostly in insects showing high spiracular conductances and low metabolic rates.  相似文献   

3.
We tested the effects of UV radiation (UVR) and nitrate limitation on the production of dimethylsulfide (DMS), particulate dimethylsulfoniopropionate (DMSPp), and particulate dimethylsulfoxide (DMSOp) in natural seawater from the Gulf of Mexico and in phytoplankton cultures. DMS/Chl a ratios in PAR-only and PAR + UV-exposed seawater were 0.44–2.0 and 0.46–1.9 nmol DMS μg−1 Chl a, respectively, whereas the ratios in cultures of Amphidinium carterae were 1.0–2.2 nmol μg−1 in PAR-exposed samples and 0.91–2.1 nmol μg−1 in PAR + UV-exposed samples. These results suggested that UVR did not substantially affect DMS/Chl a ratios in seawater and A. carterae culture samples. Similarly, UVR had no significant effect on DMSOp/Chl a in seawater samples (0.83–1.6 nmol DMSO μg−1 Chl a for PAR + UV vs. 0.70–1.5 nmol μg−1 for PAR-exposed seawater samples, respectively) or in A. carterae cultures (0.20–1.3 and 0.19–0.88 nmol DMSO μg−1 Chl a in PAR + UV- and PAR-exposed cultures, respectively). In an experiment with the diatom, Thalassiosira oceanica, the culture was grown in high nitrate (30 μM) or low nitrate (6 μM) media and exposed to PAR-only or PAR + UV. The low nitrate, PAR-only samples showed an increase of intracellular dimethylsulfoniopropionate (DMSP) concentration from 2.1 to 15 mmol L−1 in 60 h, but the increase occurred only after cultures reached the stationary phase. Cultures of T. oceanica grown under UVR had lower growth rates than those under PAR-only (μ′ = 0.17 and 0.32 d−1, respectively) and perhaps did not experience severe nitrate limitation even in the low nitrate treatment. These results suggest that the elevated UVR in low nitrate environments could result in reduction of DMSP in some species, whereas DMSP concentrations would not be affected in eutrophic areas.  相似文献   

4.
We examine hemolymph ion regulation and the kinetic properties of a gill microsomal (Na+, K+)-ATPase from the intertidal hermit crab, Clibanarius vittatus, acclimated to 45‰ salinity for 10 days. Hemolymph osmolality is hypo-regulated (1102.5 ± 22.1 mOsm kg−1 H2O) at 45‰ but elevated compared to fresh-caught crabs (801.0 ± 40.1 mOsm kg−1 H2O). Hemolymph [Na+] (323.0 ± 2.5 mmol L−1) and [Mg2+] (34.6 ± 1.0 mmol L−1) are hypo-regulated while [Ca2+] (22.5 ± 0.7 mmol L−1) is hyper-regulated; [K+] is hyper-regulated in fresh-caught crabs (17.4 ± 0.5 mmol L−1) but hypo-regulated (6.2 ± 0.7 mmol L−1) at 45‰. Protein expression patterns are altered in the 45‰-acclimated crabs, although Western blot analyses reveal just a single immunoreactive band, suggesting a single (Na+, K+)-ATPase α-subunit isoform, distributed in different density membrane fractions. A high-affinity (Vm = 46.5 ± 3.5 U mg−1; K0.5 = 7.07 ± 0.01 μmol L−1) and a low-affinity ATP binding site (Vm = 108.1 ± 2.5 U mg−1; K0.5 = 0.11 ± 0.3 mmol L−1), both obeying cooperative kinetics, were disclosed. Modulation of (Na+, K+)-ATPase activity by Mg2+, K+ and NH4+ also exhibits site-site interactions, but modulation by Na+ shows Michaelis-Menten kinetics. (Na+, K+)-ATPase activity is synergistically stimulated up to 45% by NH4+ plus K+. Enzyme catalytic efficiency for variable [K+] and fixed [NH4+] is 10-fold greater than for variable [NH4+] and fixed [K+]. Ouabain inhibited ≈80% of total ATPase activity (KI = 464.7 ± 23.2 μmol L−1), suggesting that ATPases other than (Na+, K+)-ATPase are present. While (Na+, K+)-ATPase activities are similar in fresh-caught (around 142 nmol Pi min−1 mg−1) and 45‰-acclimated crabs (around 154 nmol Pi min−1 mg−1), ATP affinity decreases 110-fold and Na+ and K+ affinities increase 2-3-fold in 45‰-acclimated crabs.  相似文献   

5.
Metagenomic resources representing ruminal bacteria were screened for novel exocellulases using a robotic, high-throughput screening system, the novel CelEx-BR12 gene was identified and the predicted CelEx-BR12 protein was characterized. The CelEx-BR12 gene had an open reading frame (ORF) of 1140 base pairs that encoded a 380-amino-acid-protein with a predicted molecular mass of 41.8 kDa. The amino acid sequence was 83% identical to that of a family 5 glycosyl hydrolase from Prevotella ruminicola 23. Codon-optimized CelEx-BR12 was overexpressed in Escherichia coli and purified using Ni–NTA affinity chromatography. The Michaelis–Menten constant (Km value) and maximal reaction velocity (Vmax values) for exocellulase activity were 12.92 μM and 1.55 × 104 μmol min−1, respectively, and the enzyme was optimally active at pH 5.0 and 37 °C. Multifunctional activities were observed against fluorogenic and natural glycosides, such as 4-methylumbelliferyl-β-d-cellobioside (0.3 U mg−1), CMC (105.9 U mg−1), birch wood xylan (132.3 U mg−1), oat spelt xylan (67.9 U mg−1), and 2-hydroxyethyl-cellulose (26.3 U mg−1). Based on these findings, we believe that CelEx-BR12 is an efficient multifunctional enzyme as endocellulase/exocellulase/xylanase activities that may prove useful for biotechnological applications.  相似文献   

6.
A thermostable alkaline protease produced from Bacillus sp. JB 99 exhibited significant keratinolytic and dehairing activity. The enzyme was purified by ammonium sulphate precipitation followed by CM-cellulose and Sephadex G-100 chromatography and resulted in 13.6 fold purification with 23.8% of recovery. The specific activity of purified enzyme was 2989.6 U mg−l. Purified protease had a molecular weight of 29 kDa and appeared as a single band. Gelatin zymogram analysis also revealed a clear hydrolytic zone, which corresponded to the band obtained with SDS-PAGE. The optimum pH and temperature for the keratinolytic activity was pH 11.0 and 70 °C respectively and half life of protease was 70 °C for 4 h. N-terminal amino acid sequence of purified enzyme exhibited extensive homology with other thermostable alkaline proteases and inhibition by PMSF indicated serine type of protease. The Km and Vmax of protease for keratin substrate were 3.8 ± 0.5 mg ml−1 and 15.1 ± 1.6 ??m min−1 mg−1 and casein were 3.3 ± 0.4 mg ml−l and 15.6 ± 0.9 ??m min−1 mg−1 respectively. The enzyme efficiently dehaired buffalo and goat hide without damaging the collagen layer, which makes it a potential candidate for application in leather industry to avoid pollution problem associated with the use of chemicals in the industry. The enzyme also degraded chicken feathers in presence of reducing agent which can help poultry industry in management of keratin-rich waste and obtaining value added products.  相似文献   

7.
A Sporothrix variecibatus-inoculated biotrickling filter (BTF) was examined for styrene removal, without and with the addition of silicone oil, at different empty bed residence times. The highest elimination capacities (ECs) were 172.8 (without silicone oil) and 670 g m−3 h−1 (with silicone oil), respectively, corresponding to a 4-fold improvement in presence of oil. The addition of silicone oil formed a well-coalesced emulsion of fungi and silicone oil, resulting in filter-bed clogging. Clogging prevention strategies adopted were; (i) lowering the volume ratio of silicone oil from 10% to 2% (v/v), and (ii) periodic increase in trickling rate of the medium from 50 to 190 mL min−1. During shock-load experiments, the BTF with silicone oil (2% v/v) could withstand high styrene loads, of up to 1900 g m−3 h−1, when compared to the BTF without silicone oil (400 g m−3 h−1).  相似文献   

8.
Olive-mill wastewater (OMW) was investigated for its suitability to serve as a medium for lipase production by Candida cylindracea NRRL Y-17506. The OMW that best supported enzyme production was characterized by low COD and low total sugars content. In shake flask batch cultures, OMW supplementation with 2.4 g l−1 NH4Cl and 3 g l−1 olive oil led to an enzyme activity of about 10 U ml−1. The addition of glucose or malt extract and supplements containing organic N (e.g., peptone, yeast extract) either depressed or did not affect the enzyme production. Further experiments were then performed in a 3-l stirred tank reactor to assess the impact of medium pH and stirring speed on the yeast enzyme activity. The lipase activity was low (1.8 U ml−1) when the pH was held constant at 6.5, significantly increased (18.7 U ml−1) with uncontrolled pH and was maximum (20.4 U ml−1) when the pH was let free to vary below 6.5. A stirring regime, that varied depending on the dissolved oxygen concentration in the medium, both prevented the occurrence of anoxic conditions during the exponential growth phase and enabled good lipase production (i.e., 21.6 U ml−1) and mean volumetric productivity (i.e., 123.5 U l−1 h−1).  相似文献   

9.
To understand how a major cosmopolitan pest responds to two very different insecticidal proteins and to determine whether herbivorous insects and their frass could be environmental sources of recombinant proteins from transgenic plants, Spodoptera litura (Fab.) (Lepidoptera, Noctuidae) larvae were fed on tobacco leaves expressing either the biotin-binding protein, avidin, or the protease inhibitor, aprotinin. Control larvae received non-transgenic tobacco. Samples of larvae were taken after 5, 6 or 7 days’ feeding and frass was collected after two 24-h periods at 6 and 7 days. Insects in all treatments grew significantly during the experiment, but the avidin-fed larvae were significantly smaller than the others on Day 7. Avidin was found in all samples of avidin-fed larvae (7.0±0.86 ng mg−1, n=45), at a lower level than in their frass (31.9±5.08 ng mg−1, n=30), and these frass levels were lower than those of the the leaves fed to the larvae (69.0±6.71 ng mg−1, n=45). All of the avidin detected in these samples was capable of binding biotin. On average, between 10 and 28% of avidin was recovered with the methods used, whereas almost full recovery of aprotinin was effected. Aprotinin levels in larvae (8.2±0.53 ng mg−1, n=45) were also lower than aprotinin levels in frass (77.4±6.9 ng mg−1, n=30), which were somewhat lower than those in the leaves fed to the larvae (88.6±2.51 ng mg−1, n=45). Approximately half the trypsin-binding ability of aprotinin was lost in larvae, and in frass, aprotinin had lost about 90% of its ability to bind trypsin.  相似文献   

10.
We studied the decolorization of malachite green (MG) by the fungus Cunninghamella elegans. The mitochondrial activity for MG reduction was increased with a simultaneous increase of a 9-kDa protein, called CeCyt. The presence of cytochrome c in CeCyt protein was determined by optical absorbance spectroscopy with an extinction coefficient (E550-535) of 19.7 ± 6.3 mM−1 cm−1 and reduction potential of + 261 mV. When purified CeCyt was added into the mitochondria, the specific activity of CeCyt reached 440 ± 122 μmol min−1 mg−1 protein. The inhibition of MG reduction by stigmatellin, but not by antimycin A, indicated a possible linkage of CeCyt activity to the Qo site of the bc1 complex. The RT-PCR results showed tight regulation of the cecyt gene expression by reactive oxygen species. We suggest that CeCyt acts as a protein reductant for MG under oxidative stress in a stationary or secondary growth stage of this fungus.  相似文献   

11.
The mature ARM lipase gene was cloned into the pTrcHis expression vector and over-expressed in Escherichia coli TOP10 host. The optimum lipase expression was obtained after 18 h post induction incubation with 1.0 mM IPTG, where the lipase activity was approximately 1623-fold higher than wild type. A rapid, high efficient, one-step purification of the His-tagged recombinant lipase was achieved using immobilized metal affinity chromatography with 63.2% recovery and purification factor of 14.6. The purified lipase was characterized as a high active (7092 U mg−1), serine-hydrolase, thermostable, organic solvent tolerant, 1,3-specific lipase with a molecular weight of about 44 kDa. The enzyme was a monomer with disulfide bond(s) in its structure, but was not a metalloenzyme. ARM lipase was active in a broad range of temperature and pH with optimum lipolytic activity at pH 8.0 and 65 °C. The enzyme retained 50% residual activity at pH 6.0-7.0, 50 °C for more than 150 min.  相似文献   

12.
Biochemical studies to elucidate the structural basis for xyloglucan specificity among GH12 xyloglucanases are lacking. Accordingly, the substrate specificity of a GH12 xyloglucanase from Aspergillus niger (AnXEG12A) was investigated using pea xyloglucan and 12 xylogluco-oligosaccharides, and data were compared to a structural model of the enzyme. The specific activity of AnXEG12A with pea xyloglucan was 113 μmol min−1 mg−1, and apparent kcat and Km values were 49 s−1 and 0.54 mg mL−1, respectively. These values are similar to previously published results using xyloglucan from tamarind seed, and suggest that substrate fucosylation does not affect the specific activity of this enzyme. AnXEG12A preferred xylogluco-oligosaccharides containing more than six glucose units, and with xylose substitution at the −3 and +1 subsites. The specific activities of AnXEG12A on 100 μM XXXGXXXG and 100 μM XLLGXLLG were 60 ± 4 and 72 ± 9 μmol min−1 mg−1, respectively. AnXEG12A did not hydrolyze XXXXXXXG, consistent with other data that demonstrate the requirement for an unbranched glucose residue for hydrolysis by this enzyme.  相似文献   

13.

Background

Nanosized particles of gold are widely used as advanced materials for enzyme catalysis investigations. In some bioanalytical methods these nanoparticles can be exploited to increase the sensitivity by enhancing electron transfer to the biological component i.e. redox enzymes such as drug metabolizing enzymes.

Methods

In this work, we describe the characterization of human flavin-containing monooxygenase 3 (hFMO3) in a nanoelectrode system based on AuNPs stabilized with didodecyldimethylammonium bromide (DDAB) on glassy carbon electrodes. Once confirmed by FTIR spectroscopy that in the presence of DDAB-AuNPs the structural integrity of hFMO3 is preserved, the influence of AuNPs on the electrochemistry of the enzyme was studied by cyclic voltammetry and square wave voltammetry.

Results

Our results show that AuNPs improve the electrochemical performance of hFMO3 on glassy carbon electrodes by enhancing the electron transfer rate and the current signal-to-noise ratio. Moreover, the electrocatalytic activity of hFMO3-DDAB-AuNP electrodes which was investigated in the presence of two well known substrates, benzydamine and sulindac sulfide, resulted in KM values of 52 μM and 27 μM, with Vmax of 8 nmol min− 1 mg− 1 and 4 nmol min− 1 mg− 1, respectively, which are in agreement with data obtained with the microsomal enzyme.

Conclusions

The immobilization of hFMO3 protein in DDAB stabilized AuNP electrodes improves the bioelectrochemical performance of this important phase I drug metabolizing enzyme.

General significance

This bio-analytical method can be considered as a promising advance in the development of new techniques suitable for the screening of novel hFMO3 metabolized pharmaceuticals.  相似文献   

14.
Five highly homologous epidermal growth factor receptor ligands were studied by mass spectral analysis, hydrogen/deuterium (H/D) exchange via attenuated total reflectance Fourier transform-infrared spectroscopy, and two-dimensional correlation analysis. These studies were performed to determine the order of events during the exchange process, the extent of H/D exchange, and associated kinetics of exchange for a comparative analysis of these ligands. Furthermore, the secondary structure composition of amphiregulin (AR) and heparin-binding-epidermal growth factor (HB-EGF) was determined. All ligands were found to have similar contributions of 310-helix and random coil with varying contributions of β-sheets and β-turns. The extent of exchange was 40%, 65%, 55%, 65%, and 98% for EGF, transforming growth factor-α (TGF-α), AR, HB-EGF, and epiregulin (ER), respectively. The rate constants were determined and classified as fast, intermediate, and slow: for EGF the 0.20 min−1 (Tyr), 0.09 min−1 (Arg, β-turns), and 1.88 × 10−3 min−1 (β-sheets and 310-helix); and for TGF-α 0.91 min−1 (Tyr), 0.27 min−1 (Arg, β-turns), and 1.41 × 10−4 min−1 (β-sheets). The time constants for AR 0.47 min−1 (Tyr), 0.04 min−1 (Arg), and 1.00 × 10−4 min−1 (buried 310-helix, β-turns, and β-sheets); for HB-EGF 0.89 min−1 (Tyr), 0.14 min−1 (Arg and 310-helix), and 1.00 × 10−3 min−1 (buried 310-helix, β-sheets, and β-turns); and for epiregulin 0.16 min−1 (Tyr), 0.03 min−1 (Arg), and 1.00 × 10−4 min−1 (310-helix and β-sheets). These results provide essential information toward understanding secondary structure, H/D exchange kinetics, and solvation of these epidermal growth factor receptor ligands in their unbound state.  相似文献   

15.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

16.
Human xylosyltransferases I and II (XylT-I, XylT-II) are key enzymes in glycosaminoglycan biosynthesis. Knowledge about the in vivo molecular weight, oligomeric state or turnover number are essential characteristics which have been addressed in this study. XylT-II was purified from Pichia pastoris by fractionated ammonium sulfate precipitation, heparin affinity and ion exchange chromatography. XylT-II was purified over 7000-fold with a final yield of 2.6%. By utilizing mass spectra analysis we can prove its first in-gel detection showing a migration pattern behavior that confirms its in silico molecular weight of 95.8 kDa. We could determine a turnover number of 2.18 min−1 or one transferred xylose molecule per one XylT-II molecule each 27.5 s. The kcat/KM ratio was 0.357 min−1 μM−1 for XylT-II using the bikunin-homologous acceptor Bio-QEEEGSGGGQKK-F. The comparison to XylT-I derived from the same organism revealed a 2.4-fold higher catalytic efficiency (0.870 min−1 μM−1) for XylT-I.  相似文献   

17.
In order for cryopreservation to become a practical tool for aquaculture, optimized protocols must be developed for each species and cell type. Knowledge of a cell’s osmotic tolerance and membrane permeability characteristics can assist in optimized protocol development. In this study, these characteristics were determined for Pacific oyster oocytes and modified methods for loading and unloading ethylene glycol (EG) were tested. Oocytes were found to behave as ideal osmometers and their osmotically inactive fraction (Vb) was calculated to be 0.48. Oocytes exposed to NaCl solutions of 0.6 to 2.3 Osm fertilized at rates equivalent to oocytes left in seawater. This corresponds to volume changes of +27.3 and −38.1 ± 1.2%. The permeability of the oocytes to water (Lp) was determined to be 3.8 ± 0.4 × 10−2, 5.7 ± 0.8 × 10−2, and 13.2 ± 1.3 × 10−2 μm min−1 atm−1, when measured at temperatures of 5, 10 and 20 °C. The respective EG permeability values (Ps) were 9.5 ± 0.1 × 10−5, 14.6 ± 1.2 × 10−5, and 41.7 ± 2.4 × 10−5 cm min−1. The activation energies for Lp and Ps were determined to be 14.5 and 17.5 kcal mol−1, respectively. Different models for EG loading and unloading from oocytes were developed and tested. Post-thaw fertilization did not differ significantly between a published step addition method and single step addition at 20 °C. This represents a considerable reduction in handling. The results of this study demonstrate that the cryobiological characteristics of a given cell type should be taken into account when developing cryopreservation methods.  相似文献   

18.
The thermotolerant yeast strain isolated from sugarcane juice through enrichment technique was identified as a strain of Pichiakudriavzevii (Issatchenkiaorientalis) through molecular characterization. The P. kudriavzevii cells adapted to galactose medium produced about 30% more ethanol from sugarcane juice than the non-adapted cells. The recycled cells could be used for four successive cycles without a significant drop in ethanol production. Fermentation in a laboratory fermenter with galactose adapted P. kudriavzevii cells at 40 °C resulted in an ethanol concentration and productivity of 71.9 g L−1 and 4.0 g L−1 h−1, respectively from sugarcane juice composed of about 14% (w/v) sucrose, 2% (w/v) glucose and 1% (w/v) fructose. In addition to ethanol, 3.30 g L−1 arabitol and 4.19 g L−1 glycerol were also produced, whereas sorbitol and xylitol were not formed during fermentation. Use of galactose adapted P. kudriavzevii cells for ethanol production from sugarcane juice holds potential for scale-up studies.  相似文献   

19.
The highest purity ratio of phycocyanin extract was obtained when fresh biomass was used as raw material. The crude extract was purified by membrane process using microfiltration and ultrafiltration. Membrane of pore sizes 5 μm, at feed flow rate of 150 mL min−1, permeate flux of 58.5 L h−1 m−2 was selected for coarse filtration and membrane with pore size 0.8/0.2 μm at the flow rate of 100 mL min−1, permeate flux of 336 L h−1 m−2 was selected for fine filtration, giving phycocyanin recovery of 88.6% and 82.9%, respectively. For ultrafiltration, membrane with MWCO at 50 kDa, 69 kPa and 75 mL min−1 of flow rate with a mean permeate flux 26.8 L h−1 m−2 and a retention rate of 99% was found to be optimal. Under these filtration conditions, food grade phycocyanin with the purity around 1.0 containing c-phycocyanin as the major component was obtained.  相似文献   

20.
Lead accumulation by free and immobilized cyanobacteria, Lyngbya majuscula and Spirulina subsalsa was studied. Exponentially growing biomass was exposed to 1-20 mg L−1 of Pb(II) solution at pH 6, 7 and 8 for time periods ranging from 10 min to 48 h. L. majuscula accumulated 10 times more Pb (13.5 mg g−1) than S. subsalsa (1.32 mg g−1) at pH 6 within 3 h of exposure to 20 mg L−1 Pb(II) solution and 76% of the Pb could be recovered using 0.1 M EDTA. This chelator (2 μM) did not influence Pb accumulation whereas 100 μM citrate increased that of S. subsalsa 6- to 8-fold. L. majuscula filaments enmeshed in a glass wool packed in a column removed 95.8% of the Pb from a 5 mg L−1 Pb solution compared to free and dead biomass which removed 64 and 33.6% Pb respectively. A 92.5% recovery of accumulated Pb from the immobilized biomass suggests that repeated absorption-desorption is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号