首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetrahydrobiopterin (BH4), which is an essential cofactor for nitric oxide synthase (NOS), is generally accepted as an important molecular target for oxidative stress. This study examined whether hydrogen peroxide (H(2)O(2)), one of the reactive oxygen species (ROS), affects the BH4 level in vascular endothelial cells (ECs). Interestingly, the addition of H(2)O(2) to ECs markedly increased the BH4 level, but not its oxidized forms. The H(2)O(2)-induced increase in the BH4 level was blocked by the inhibitor of GTP-cyclohydrolase I (GTPCH), which is the rate-limiting enzyme of BH4 synthesis. Moreover, H(2)O(2) induced the expression of GTPCH mRNA, and the inhibitors of protein synthesis blocked the H(2)O(2)-induced increase in the BH4 level. The expression of the inducible isoform of NOS (iNOS) was slightly induced by the treatment with H(2)O(2). Additionally, the L-citrulline formation from L-arginine, which is the marker for NO synthesis, was stimulated by the treatment with H(2)O(2), and the H(2)O(2)-induced L-citrulline formation was strongly attenuated by NOS or GTPCH inhibitor. These results suggest that H(2)O(2) induces BH4 synthesis via the induction of GTPCH, and the increased BH4 is coupled with NO production by coinduced iNOS. H(2)O(2) appears to be one of the important signaling molecules to regulate the BH4-NOS system.  相似文献   

2.
3.
Shear stress, imposed on the vascular endothelium by circulating blood, critically sustains vascular synthesis of nitric oxide (NO). Endothelial NO synthase (eNOS) activity is determined by heat shock protein 90 (HSP90), caveolin-1, and the cofactor tetrahydrobiopterin (BH4). To determine whether increased blood flow concomitantly upregulates eNOS and GTP cyclohydrolase I (GTPCH I, the rate-limiting enzyme in BH4 biosynthesis), an aortocaval fistula model in the rat was employed wherein aortic blood flow is enhanced proximal but decreased distal to the fistula. Eight weeks after the creation of the aortocaval fistula, the proximal and distal aortic segments were harvested; sham-operated rats served as controls. Vasomotor function was assessed by isometric force recording. Expression of eNOS, HSP90, caveolin-1, Akt, phosphorylated eNOS (eNOS-Ser1177), and GTPCH I were determined by Western blot analysis. Biosynthesis of BH4 and GTPCH-I activity was examined by HPLC. In the aortic segments exposed to increased flow, contractions to KCl and phenylephrine were reduced, whereas endothelium-dependent relaxations were not affected compared with sham-operated or aortic segments with reduced blood flow. Expression of eNOS, caveolin-1, phosphorylated Akt, and eNOS-Ser1177 was enhanced in aortas exposed to increased blood flow. High flow augmented levels of cGMP and BH4 and increased expression of GTPCH I. In aggregate, these findings provide the first demonstration in vivo that coordinated vascular upregulation of eNOS, and GTPCH I accompanies increased blood flow. This induction of GTPCH I increases BH4 production, thereby optimizing the generation of NO by eNOS and thus the adaptive, vasorelaxant response required in sustaining increased blood flow.  相似文献   

4.
Synthesis of 6(R)-5,6,7,8-tetrahydrobiopterin (BH(4)), a required cofactor for inducible nitric-oxide synthase (iNOS) activity, is usually coordinately regulated with iNOS expression. In C6 glioma cells, tumor necrosis factor-alpha (TNF-alpha) concomitantly potentiated the stimulation of nitric oxide (NO) and BH(4) production induced by IFN-gamma and interleukin-1beta. Expression of both iNOS and GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in the BH(4) biosynthetic pathway, was also markedly increased, as were their activities and protein levels. Ceramide, a sphingolipid metabolite, may mediate some of the actions of TNF-alpha. Indeed, we found that bacterial sphingomyelinase, which hydrolyzes sphingomyelin and increases endogenous ceramide, or the cell permeable ceramide analogue, C(2)-ceramide, but not C(2)-dihydroceramide (N-acetylsphinganine), significantly mimicked the effects of TNF-alpha on NO production and iNOS expression and activity in C6 cells. Surprisingly, although TNF-alpha increased BH(4) synthesis and GTPCH activity, neither BH(4) nor GTPCH expression was affected by C(2)-ceramide or sphingomyelinase in IFN-gamma- and interleukin-1beta-stimulated cells. It is likely that increased BH(4) levels results from increased GTPCH protein and activity in vivo rather than from reduced turnover of BH(4), because the GTPCH inhibitor, 2,4-diamino-6-hydroxypyrimidine, blocked cytokine-stimulated BH(4) accumulation. Moreover, expression of the GTPCH feedback regulatory protein, which if decreased might increase GTPCH activity, was not affected by TNF-alpha or ceramide. Treatment with the antioxidant pyrrolidine dithiocarbamate, which is known to inhibit NF-kappaB and sphingomyelinase in C6 cells, or with the peptide SN-50, which blocks translocation of NF-kappaB to the nucleus, inhibited TNF-alpha-dependent iNOS mRNA expression without affecting GTPCH mRNA levels. This is the first demonstration that cytokine-stimulated iNOS and GTPCH expression, and therefore NO and BH(4) biosynthesis, may be regulated by discrete pathways. As BH(4) is also a cofactor for the aromatic amino acid hydroxylases, discovery of distinct mechanisms for regulation of BH(4) and NO has important implications for its specific functions.  相似文献   

5.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by endothelial nitric oxide synthase (eNOS), and endothelial BH4 bioavailability is a critical factor in regulating the balance between NO and superoxide production (eNOS coupling). Biosynthesis of BH4 is determined by the activity of GTP-cyclohydrolase I (GTPCH). However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but whether DHFR is functionally important in maintaining eNOS coupling remains unclear. To investigate the mechanism by which DHFR might regulate eNOS coupling in vivo, we treated wild-type, BH4-deficient (hph-1), and GTPCH-overexpressing (GCH-Tg) mice with methotrexate (MTX), to inhibit BH4 recycling by DHFR. MTX treatment resulted in a striking elevation in BH2 and a decreased BH4:BH2 ratio in the aortas of wild-type mice. These effects were magnified in hph-1 but diminished in GCH-Tg mice. Attenuated eNOS activity was observed in MTX-treated hph-1 but not wild-type or GCH-Tg mouse lung, suggesting that inhibition of DHFR in BH4-deficient states leads to eNOS uncoupling. Taken together, these data reveal a key role for DHFR in regulating the BH4 vs BH2 ratio and eNOS coupling under conditions of low total biopterin availability in vivo.  相似文献   

6.
7.
Abstract: Cultures of neonatal rat superior cervical ganglia (SCG) were used to test the hypothesis that the cytokines leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) control GTP cyclohydrolase I (GTPCH) gene expression and 5,6,7,8-tetrahydrobiopterin (BH4) content as traits of the noradrenergic phenotype. Treatment for 7 days with 1 ng/ml of LIF was found to produce the characteristic switch in the SCG neurotransmitter phenotype reported by others, as evidenced by a 60% decline in tyrosine hydroxylase (TH) activity and a 75% increase in choline acetyltransferase activity. This LIF treatment paradigm decreased BH4 levels in a concentration-dependent manner, with a maximal decline of 60% observed at 1 ng/ml. Analysis of the time course of this response indicated that LIF decreased BH4 levels by 60% following 3–7 days of treatment. Treatment of cultures with CNTF (2 ng/ml) resulted in a decline in BH4 levels that was of equal magnitude and followed the same time course as that produced by LIF. The LIF-dependent decline in BH4 levels resulted from a reduction in GTPCH enzyme activity, which decreased by 75% following 7 days of treatment. Nuclease protection assays of RNA extracted from cells treated for 7 days with 2 ng/ml of LIF or CNTF detected a 78–96% reduction in GTPCH mRNA content relative to β-actin mRNA content. Concomitant decreases in TH and GTPCH gene expression in response to LIF or CNTF demonstrate a coordinated regulation of gene expression for this BH4-dependent enzyme and the rate-limiting enzyme in the synthesis of its essential cofactor, BH4. Moreover, these results indicate that GTPCH gene expression in SCG neurons should be regarded as a trait of the noradrenergic phenotype.  相似文献   

8.
This study explored whether zinc supplementation alleviates diabetic endothelial dysfunction and the possible mechanisms underlying. We found that high glucose exposure significantly increased reactive oxygen species (ROS) and decreased guanosine 5′-triphosphate cyclohydrolase 1 (GTPCH1) and tetrahydrobiopterin (BH4) levels in bovine aortic endothelial cells (BAECs) in a time-dependent manner. High glucose increased zinc release from GTPCH1 in a similar trend. Zinc supplementation restored GTPCH1 and BH4 levels and blocked ROS accumulation in both BACEs and wild type GTPCH1 transfected HEK293 cells, but not in the zinc-free C141R mutant of GTPCH1 transfected ones. In vivo experiments showed that exogenous supplementation of zinc to streptozotocin (STZ)-induced diabetic mice partially improved the impaired maximal endothelium-dependent vasorelaxation, reversed the aberrant reduction of GTPCH1 and BH4, and suppressed the elevation of ROS in the aortas. In conclusion, our study demonstrated a novel mechanism that via GTPCH1 restoration zinc supplementation exerts a protective benefit on diabetic endothelial dysfunction.  相似文献   

9.
Tetrahydrobiopterin (BH4) and heat shock protein 90 (hsp90) have been anticipated to regulate endothelial nitric oxide synthase (eNOS)-dependent superoxide anion radical (O2*-) generation in endothelial cells. It is not known, however, whether hsp90 and BH4 increase O2*- in a synergistic manner, or whether this increase is a consequence of downstream changes in eNOS phosphorylation on serine 1179 (eNOS-S1179) and changes in dimer/monomer distribution. Here O2*- production from purified BH4 -free eNOS and eNOS:hsp90 complexes determined by spin-trapping methodology showed that hsp90 neither inhibits O2*- nor alters the requirement of BH4 to inhibit radical release from eNOS. In endothelial cells, O2*- detection with the novel high-performance liquid chromatography assay of 2-hydroxyethidium showed that inhibition of hsp90 did not increase O2*-, while a significant increase in O2*- was detected in BH4 -depleted cells. Radicicol, a hsp90 inhibitor, disrupted eNOS:hsp90 association, decreased eNOS-S1179, but increased biopterin production in a dose-dependent fashion. These changes were followed by an increase in eNOS activity, demonstrating that high biopterin levels offset inhibition of eNOS phosphorylation and diminished interaction with hsp90. In contrast, depletion of biopterin did not affect hsp90 levels or interaction with eNOS or eNOS dimer/monomer ratio in bovine aorta endothelial cells (BAECs). We conclude that low BH4 but not inhibition of hsp90 increases O2*- in BAECs by mechanism(s) that unlikely involve phosphorylation to eNOS-S1179 or eNOS monomerization.  相似文献   

10.
Tetrahyrobiopterin (BH4) is a required cofactor for the synthesis of nitric oxide by endothelial nitric-oxide synthase (eNOS), and BH4 bioavailability within the endothelium is a critical factor in regulating the balance between NO and superoxide production by eNOS (eNOS coupling). BH4 levels are determined by the activity of GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in de novo BH4 biosynthesis. However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but the functional importance of DHFR in maintaining eNOS coupling remains unclear. We investigated the role of DHFR in regulating BH4 versus BH2 levels in endothelial cells and in cell lines expressing eNOS combined with tet-regulated GTPCH expression in order to compare the effects of low or high levels of de novo BH4 biosynthesis. Pharmacological inhibition of DHFR activity by methotrexate or genetic knockdown of DHFR protein by RNA interference reduced intracellular BH4 and increased BH2 levels resulting in enzymatic uncoupling of eNOS, as indicated by increased eNOS-dependent superoxide but reduced NO production. In contrast to the decreased BH4:BH2 ratio induced by DHFR knockdown, GTPCH knockdown greatly reduced total biopterin levels but with no change in BH4:BH2 ratio. In cells expressing eNOS with low biopterin levels, DHFR inhibition or knockdown further diminished the BH4:BH2 ratio and exacerbated eNOS uncoupling. Taken together, these data reveal a key role for DHFR in eNOS coupling by maintaining the BH4:BH2 ratio, particularly in conditions of low total biopterin availability.In vascular disease states such as atherosclerosis and diabetes, endothelial nitric oxide (NO) bioactivity is reduced, and oxidative stress is increased, resulting in endothelial dysfunction. It has become apparent that enzymatic “coupling” of endothelial NO synthase by its cofactor tetrahydrobiopterin (BH4)2 plays a key role in maintaining endothelial function. Indeed, the balance between NO and superoxide production by eNOS appears to be determined by the availability of BH4 versus the abundance of 7,8-dihydrobiopterin (BH2, that is inactive for NOS cofactor function and may compete with BH4 for NOS binding (1). Intracellular biopterin levels are regulated principally by the activity of the de novo biosynthetic pathway (Fig. 1). Guanosine triphosphate cyclohydrolase I (GTPCH; EC 3.5.4.16) catalyzes the formation of dihydroneopterin triphosphate from GTP, and BH4 is generated by two further steps through 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. GTPCH appears to be the rate-limiting enzyme in BH4 biosynthesis, and overexpression of GTPCH is sufficient to augment BH4 levels in cultured endothelial cells (2). Electron paramagnetic resonance spectroscopy studies have shown that BH4 both stabilizes and donates electrons to the ferrous-dioxygen complex in the oxygenase domain, as the initiating step of l-arginine oxidation (35). In this reaction BH4 forms the protonated trihydrobiopterin cation radical, which is subsequently reduced by electron transfer from NOS flavins. When BH4 availability is limiting, electron transfer from NOS flavins becomes uncoupled from l-arginine oxidation, eNOS generates superoxide rather than NO, BH4 becomes oxidized to catalytically incompetent BH2, and a futile feed-forward cascade of BH4 destruction proceeds (1). Recent studies reveal that BH4 and BH2 bind eNOS with equal affinity and that BH2 can efficiently replace eNOS-bound BH4, resulting in eNOS uncoupling (6). Indeed, we have previously shown that the relative abundance of eNOS versus BH4 together with the intracellular BH4:BH2 ratio, rather than absolute concentrations of BH4, are the key determinants of eNOS uncoupling (7), a hypothesis supported by a recent publication where BH2 levels are elevated after exposure of bovine aortic endothelial cells to DHFR-specific siRNA (8). Thus, mechanisms that regulate the BH4:BH2 ratio independently of overall biopterin levels may play an equally important role in regulating eNOS coupling as the well established role of GTCPH, which regulates de novo BH4 biosynthesis. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR; EC 1.5.1.3) can reduce BH2, thus regenerating BH4 (9, 10). It is, therefore, likely that net BH4 bioavailability within the endothelium reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. In human liver extracts DHFR has been shown to reduce BH2 back to BH4 as part of the salvage pathway for biopterin synthesis (11). However, the role of this pathway and the extent to which it regulates intracellular BH4 levels in vivo remains unknown. Recent work by Chalupsky and Cai (2) investigated the functionality of endothelial DHFR in cultured bovine aortic endothelial cells. Exposure to angiotensin II down-regulated DHFR expression, decreased BH4 levels, and increased eNOS uncoupling, which was restored by overexpression of DHFR (2). A recent study also suggests that perturbation of BH4 metabolism differentially affects eNOS phosphorylation sites. Knockdown of DHFR by siRNA inhibits vascular endothelial growth factor-induced dephosphorylation of eNOS at Ser-116, an effect that is completely recovered by the addition of exogenous BH4 (8). However, the requirement for DHFR in regulating intracellular BH4 homeostasis and the quantitative relationships that relate BH4 de novo synthesis versus BH4 recycling to eNOS coupling remain uncertain. Accordingly, we sought to address these questions using both pharmacologic and genetic manipulation of DHFR activity and related these interventions to effects on eNOS coupling. We manipulated DHFR in both endothelial cells and in novel cell lines that stably express an eNOS-GFP fusion protein and where expression of human GTPCH can be regulated by doxycycline in order to test the effects of variations in intracellular BH4 biosynthesis (7). We report that although GTPCH is the key regulator of the total amount of intracellular biopterins, DHFR is critical to eNOS function by determining BH4:BH2 ratio and, thus, in maintaining eNOS coupling. In particular, DHFR is important in preventing “self-propagated” eNOS uncoupling in conditions of low total biopterin levels, when eNOS-dependent oxidation of BH4 that would further exacerbate eNOS uncoupling can be rescued by DHFR.Open in a separate windowFIGURE 1.Schematic representation of the BH4 recycling pathway and eNOS coupling. BH4 is synthesized from GTP via a series of reactions involving GTPCH, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase (SR) and DHFR. DHFR activity can be inhibited by MTX. GFRP, GTP cyclohydrolase feedback regulatory protein. PTPS, 6-pyruvoyl-tetrahydropterin synthase.  相似文献   

11.
Inhibition of GTP cyclohydrolase I (GTPCH) has been used as a selective tool to assess the role of de novo synthesis of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) in a biological system. Toward this end, 2,4-diamino-6-hydroxypyrimidine (DAHP) has been used as the prototypical GTPCH inhibitor. Using a novel real-time kinetic microplate assay for GTPCH activity and purified prokaryote-expressed recombinant proteins, we show that potent inhibition by DAHP is not the result of a direct interaction with GTPCH. Rather, inhibition by DAHP in phosphate buffer occurs via an indirect mechanism that requires the presence of GTPCH feedback regulatory protein (GFRP). Notably, GFRP was previously discovered as the essential factor that reconstitutes inhibition of pure recombinant GTPCH by the pathway end product BH4. Thus, DAHP inhibits GTPCH by engaging the endogenous feedback inhibitory system. We further demonstrate that L-Phe fully reverses the inhibition of GTPCH by DAHP/GFRP, which is also a feature in common with inhibition by BH4/GFRP. These findings suggest that DAHP is not an indiscriminate inhibitor of GTPCH in biological systems; instead, it is predicted to preferentially attenuate GTPCH activity in cells that most abundantly express GFRP and/or contain the lowest levels of L-Phe.  相似文献   

12.
Tetrahydrobiopterin (BH4) is an essential co-factor for endothelial nitric oxide synthase enzymatic activity. GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme in BH4 synthesis. This study set out to test the hypothesis that in vivo gene transfer of GTPCH I to endothelial cells could increase bioavailability of BH4, enhance biosynthesis of nitric oxide and thereby enhance endothelium-dependent relaxations mediated by nitric oxide. In vivo gene transfer was carried out by adenovirus (Ad)-mediated delivery into rabbit carotid arteries. Each artery was transduced by 20-min intraluminal incubation of 10(9) plaque-forming units of Ad-encoding GTPCH I (AdGTPCH) or beta-galactosidase as a control. The rabbits were euthanized 72 h later, and vasomotor function of isolated arteries was assessed by isometric force recording. GTPCH I enzymatic activity, BH4, and oxidized biopterin levels were detected with the use of HPLC, and cGMP was measured with the use of radioimmunoassay. Expression of recombinant proteins was detected predominantly in endothelial cells. Both GTPCH I activity and BH4 levels were increased in arteries transduced with AdGTPCH. However, contraction to phenylephrine (10(-5) to 10(-9) M), endothelium-dependent relaxation to acetylcholine (10(-5) to 10(-9) M) and cGMP levels were not significantly affected by increased expression of GTPCH I. Our results suggest that expression of GTPCH I in vascular endothelium in vivo increases intracellular concentration of BH4. However, under physiological conditions, it appears that this increase does not affect nitric oxide production in endothelial cells of the carotid artery.  相似文献   

13.
2,4-Diamino-6-hydroxypyrimidine (DAHP) is considered a specific inhibitor of BH(4) biosynthesis and is widely used in order to elucidate the possible biological function of BH(4) in various cells. In the present study, we found that both the synthesis of tetrahydrobiopterin (BH(4)) and expression of vascular cell adhesion molecule 1 (VCAM-1) were increased in human umbilical vein endothelial cells (HUVEC) treated with proinflammatory cytokines. Thus we examined the effects of DAHP to clarify whether BH(4) might be involved in the expression of VCAM-1 in HUVEC. DAHP reduced the levels of both BH(4) and VCAM-1 induced by TNF-alpha and IFN-gamma. However, the dose-response curves of DAHP for the suppression of the VCAM-1 level and that of BH(4) level were markedly different. Supplementation with sepiapterin failed to restore the depressed VCAM-1 level, although it completely restored the BH(4) level. Furthermore, DAHP significantly reduced the VCAM-1 level under the experimental conditions using TNF-alpha alone, which failed to induce BH(4) production. Taken together, these results indicate that DAHP inhibited the expression of VCAM-1 in a BH(4)-independent manner in HUVEC. In the present study, we also found that DAHP significantly suppressed the accumulation of cytokine-induced NF-kappaB (p65) in the nucleus as well as the mRNA levels of VCAM-1 and GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme of BH(4) synthesis. The data obtained in this study suggest that DAHP reduced VCAM-1 and GTPCH protein synthesis at least partially via suppressing the NF-kappaB level in the nucleus of HUVEC.  相似文献   

14.
An oral glucose challenge causes transient impairment of endothelial function, probably because of increased oxidative stress. During oxidative stress, endothelial nitric oxide (NO) synthase (eNOS) becomes uncoupled because of decreased bioavailability of tetrahydrobiopterin (BH4), an essential cofactor of eNOS. Therefore, we examined whether an acute supplement of BH4 could restore endothelial dysfunction induced by an oral glucose challenge. Healthy subjects were examined in 53 experiments. Forearm blood flow was measured by venous occlusion plethysmography. Dose-response studies were obtained during intra-arterial infusion of serotonin to elicit endothelium-dependent, NO-specific vasodilation and during sodium nitroprusside (SNP) infusion to elicit endothelium-independent vasodilation. Subjects were examined before (fasting) and 1 and 2 h after an oral glucose challenge (75 g) with serotonin (n = 10) and SNP (n = 8). On different days (6R)-5,6,7,8-tetrahydro-l-biopterin dihydrochloride (6R-BH4; n = 10), the active cofactor of eNOS or its stereoisomer (6S)-5,6,7,8-tetrahydro-l-biopterin sulfate (6S-BH4; n = 10), which is inactive as a cofactor, was added 10 min (500 microg/min) before and during the 1-h postchallenge serotonin dose-response study. In vitro studies showed that 6R-BH4 and 6S-BH4 were equipotent antioxidants. Serotonin response was reduced by 24 +/- 7% (at the highest dose) at 1 h postchallenge compared with fasting (P = 0.001) and was restored 2 h postchallenge. The reduction was reversed by the administration of 6R-BH4 but not by 6S-BH4. SNP responses were slightly increased 1 and 2 h postchallenge (increased by 15 +/- 13% at third dose 2 h postchallenge, P = 0.0001). An oral glucose challenge causes transient, NO-specific, endothelial dysfunction, which may be reversed by BH4. Transient postprandial endothelial dysfunction may be partly explained by reduced bioavailability of BH4 and NO.  相似文献   

15.
Early determinants of H2O2-induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Reactive oxygen species (ROS) can stimulate nitric oxide (NO(*)) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO(*) production is reduced, however. We investigated the early determinants of this decrease in NO(*) production. Following an initial H(2)O(2) exposure, endothelial cells responded by increasing NO(*) production measured electrochemically. NO(*) concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO(*) at 30 min was associated with a 2.7-fold increase in O(2)(*-) production (p < 0.05) and a 14-fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH(4), p < 0.05). Used as a probe for endothelial dysfunction, the integrated NO(*) production over 30 min upon repeated H(2)O(2) exposure was attenuated by 2.1-fold (p = 0.03). Endothelial dysfunction could be prevented by BH(4) cofactor supplementation, by scavenging O(2)(*-) or peroxynitrite (ONOO(-)), or by inhibiting the NADPH oxidase. Hydroxyl radical (()OH) scavenging did not have an effect. In summary, early H(2)O(2)-induced endothelial dysfunction was associated with a decreased BH(4) level and increased O(2)(*-) production. Dysfunction required O(2)(*-), ONOO(-), or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction.  相似文献   

16.
Tetrahydrobiopterin (BH4) is one of the cofactors of nitric oxide synthase (NOS), and the synthesis of BH4 is induced as well as inducible NOS (iNOS) by lipopolysaccharide (LPS) and/or cytokines. BH4 has a protective effect against the cytotoxicity induced by nitric oxide (NO) and/or reactive oxygen species in various types of cells. The purpose of this study was to examine whether or not an excess of BH4 is present during the production of NO by iNOS in LPS-treated de-endothelialized rat aorta. Addition of LPS (10 microg/ml) to the aorta bath solution caused L-arginine (L-Arg)-induced relaxation from 1.5 hr after the addition of LPS in de-endothelialized rat aorta pre-contracted with 30 mM KCl. The L-Arg-induced relaxation was prevented by NOS inhibitors. BH4 content also increased from 3 hr after the addition of LPS. mRNAs of iNOS and GTP cyclohydrolase I (GTPCH), a rate-limiting enzyme of BH4 synthesis, were increased from 1.5 hr after addition of LPS. Although the expression of iNOS and GTPCH mRNAs was observed in the media, the expression levels in the media were much lower than those in the adventitia. Ten millimolar 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of GTPCH, strongly reduced L-Arg-induced relaxation, and decreased BH4 content to below the basal level in LPS-treated aorta, whereas 0.5 mM DAHP reduced the LPS-induced increase in BH4 content to the basal level but did not affect L-Arg-induced relaxation. The inhibition of L-Arg-induced relaxation by 10 mM DAHP was overcome by the addition of BH4 (10 microM). These results suggest that although BH4 is essential for NO production from iNOS, the increase in BH4 content above the basal level is not needed for eliciting L-Arg-induced relaxation by the treatment with LPS. Thus, an excess amount of BH4 may be synthesized during NO production by iNOS in LPS-treated rat aorta.  相似文献   

17.
Cardioprotection by ischemic preconditioning (IPC) is impaired during hyperglycemia, but the mechanisms underlying this phenomenon are poorly understood. This study investigated the role of hyperglycemia to adversely modulate tetrahydrobiopterin (BH(4)) and heat shock protein 90 (Hsp90) during cardioprotection by IPC. Rabbits or mice underwent 30 min of coronary occlusion followed by reperfusion with or without IPC in the presence or absence of hyperglycemia. IPC significantly (P < 0.05) decreased myocardial infarct size (46 ± 1 to 19 ± 2% of the area at risk in control and IPC rabbits, respectively) and increased BH(4) concentrations (HPLC; 7.6 ± 0.2 to 10.2 ± 0.3 pmol/mg protein, respectively), Hsp90-endothelial nitric oxide synthase (eNOS) association (coimmunoprecipitation and Western blotting in mice; 4.0 ± 0.3 to 5.4 ± 0.1, respectively), and the ratio of phosphorylated eNOS/total eNOS. These beneficial actions of IPC on infarct size, BH(4), Hsp90/eNOS, and phosphorylated eNOS were eliminated by hyperglycemia. Pretreatment of animals with the Hsp90 inhibitor geldanamycin (0.6 mg/kg) or the BH(4) synthesis inhibitor diamino-6-hydroxypyrimidine (1.0 g/kg) also eliminated cardioprotection produced by IPC. In contrast, the BH(4) precursor sepiapterin (2 mg/kg iv) restored the beneficial effects of IPC on myocardial BH(4) concentrations, eNOS dimerization, and infarct size during hyperglycemia. A-23871 increased Hsp90-eNOS association (0.33 ± 0.06 to 0.59 ± 0.3) and nitric oxide production (184 ± 17%) in human coronary artery endothelial cells cultured in normal (5.5 mM) but not high (20 mM) glucose media. These data indicate that hyperglycemia eliminates protection by IPC via decreases in myocardial BH(4) concentration and disruption of the association of Hsp90 with eNOS. The results suggest that eNOS dysregulation may be a central mechanism of impaired cardioprotection during hyperglycemia.  相似文献   

18.
Tetrahydrobiopterin (BH4) is a key redox-active cofactor in endothelial isoform of NO synthase (eNOS) catalysis and is an important determinant of NO-dependent signaling pathways. BH4 oxidation is observed in vascular cells in the setting of the oxidative stress associated with diabetes. However, the relative roles of de novo BH4 synthesis and BH4 redox recycling in the regulation of eNOS bioactivity remain incompletely defined. We used small interference RNA (siRNA)-mediated “knockdown” GTP cyclohydrolase-1 (GTPCH1), the rate-limiting enzyme in BH4 biosynthesis, and dihydrofolate reductase (DHFR), an enzyme-recycling oxidized BH4 (7,8-dihydrobiopterin (BH2)), and studied the effects on eNOS regulation and biopterin metabolism in cultured aortic endothelial cells. Knockdown of either DHFR or GTPCH1 attenuated vascular endothelial growth factor (VEGF)-induced eNOS activity and NO production; these effects were recovered by supplementation with BH4. In contrast, supplementation with BH2 abolished VEGF-induced NO production. DHFR but not GTPCH1 knockdown increased reactive oxygen species (ROS) production. The increase in ROS production seen with siRNA-mediated DHFR knockdown was abolished either by simultaneous siRNA-mediated knockdown of eNOS or by supplementing with BH4. In contrast, addition of BH2 increased ROS production; this effect of BH2 was blocked by BH4 supplementation. DHFR but not GTPCH1 knockdown inhibited VEGF-induced dephosphorylation of eNOS at the inhibitory site serine 116; these effects were recovered by supplementation with BH4. These studies demonstrate a striking contrast in the pattern of eNOS regulation seen by the selective modulation of BH4 salvage/reduction versus de novo BH4 synthetic pathways. Our findings suggest that the depletion of BH4 is not sufficient to perturb NO signaling, but rather that concentration of intracellular BH2, as well as the relative concentrations of BH4 and BH2, together play a determining role in the redox regulation of eNOS-modulated endothelial responses.Regulation of endothelial nitric oxide (NO)2 production represents a critical mechanism for the modulation of vascular homeostasis. NO is released by endothelial cells in response to diverse humoral, neural, and mechanical stimuli (14). Endothelial cell-derived NO activates guanylate cyclase in vascular smooth muscle cells, leading to increased levels of cGMP and to smooth muscle relaxation. Blood platelets represent another key target for the actions of endothelium-derived NO (5): platelet aggregation is inhibited by NO-induced guanylate cyclase activation. Many other effects of NO have been identified in cultured vascular cells and in vascular tissues, including the regulation of apoptosis, cell adhesion, angiogenesis, thrombosis, vascular smooth muscle proliferation, and atherogenesis, among other cellular responses and (patho)physiological processes.The endothelial isoform of NO synthase (eNOS) is a membrane-associated homodimeric 135-kDa protein that is robustly expressed in endothelial cells (2, 4, 6, 7). Similar to all the mammalian NOS isoforms, eNOS functions as an obligate homodimer that includes a cysteine-complex Zn2+ (zinc-tetrathiolate) at the dimer interface (810). eNOS is a Ca2+/calmodulin-dependent enzyme that is activated in response to the stimulation of a variety of Ca2+-mobilizing cell surface receptors in vascular endothelium and in cardiac myocytes. The activity of eNOS is also regulated by phosphorylation at multiple sites (11) that are differentially modulated following the activation of cell surface receptors by agonists such as insulin and vascular endothelial growth factor (VEGF) (12). The phosphorylation of eNOS at Ser-1179 activates eNOS, but phosphorylation at Thr-497 or Ser-116 is associated with inhibition of eNOS activity (1317). eNOS is reversibly targeted to plasmalemmal caveolae as a consequence of the protein''s N-myristoylation and thiopalmitoylation. The generation of NO by eNOS requires several redox-active cofactors, including nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), calmodulin, and tetrahydrobiopterin (BH4), which have key roles in the electron flow required for eNOS catalysis. If the flow of electrons within eNOS is disrupted, the enzyme is uncoupled from NO production and other redox-active products are generated, including hydrogen peroxide and superoxide anion radical (18, 19).In vascular disease states such as diabetes, endothelial dysfunction is characterized by a decrease in NO bioactivity and by a concomitant increase in superoxide formation, while eNOS mRNA and protein levels are maintained or even increased. “Uncoupled” eNOS generates reactive oxygen species (ROS), shifting the nitroso-redox balance and having adverse consequences in the vascular wall (20). Several enzymes expressed in vascular tissues contribute to the production and efficient degradation of ROS, and an enhanced activity of oxidant enzymes and/or reduced activity of antioxidant enzymes may cause oxidative stress. Various agonists, pathological conditions, and therapeutic interventions lead to modulated expression and function of oxidant and antioxidant enzymes. However, the intimate relationship between intracellular redox state, eNOS regulation, and NO bioavailability remains incompletely characterized.BH4 is a key redox-active cofactor for activity of all NOS enzymes (21). The exact role of BH4 in NOS catalysis is not yet completely defined, but this cofactor appears to facilitate electron transfer from the eNOS reductase domain and maintains the heme prosthetic group of the enzyme in its redox-active form (18, 22, 23). Moreover, BH4 promotes formation of active NOS homodimers (24) and inhibits the formation of hydrogen peroxide or superoxide by uncoupled eNOS (18, 19). It has been reported that the endothelial dysfunction associated with diabetes is accompanied a decrease in the abundance of bioactive BH4. Supplementation with BH4 has been shown to improve endothelial function in the models of diabetes and hypertension (25, 26, 27). Moreover, BH4 oxidation is seen in vascular cells in the setting of oxidative stress associated with diabetes (28) and hypertension (29).BH4 can be formed either by a de novo biosynthetic pathway or by a salvage pathway. Guanosine triphosphate cyclohydrolase-1 (GTPCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate. BH4 is generated by further steps catalyzed by 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase (30). GTPCH1 appears to be the rate-limiting enzyme in BH4 biosynthesis; overexpression of GTPCH1 is sufficient to augment BH4 levels in cultured endothelial cells (31). On the other hand, dihydrofolate reductase (DHFR) catalyzes the regeneration of BH4 from its oxidized form, 7,8-dihydrobiopterin (BH2), in several cell types (30, 32). DHFR is mainly involved in folate metabolism and converts inactive BH2 back to BH4 and plays an important role in the metabolism of exogenously administered BH4. However, the relative contributions of endothelial GTPCH1 and DHFR to the modulation of eNOS-dependent pathways are incompletely understood.In these studies, we have used siRNA-mediated “knockdown” of GTPCH1 and DHFR to explore the relative roles of BH4 synthesis and recycling in the modulation of eNOS bioactivity, as well as in the regulation of NO-dependent signaling pathways in endothelial cells.  相似文献   

19.
In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.  相似文献   

20.
IGF-I rescues diabetic heart defects and oxidative stress, although the underlying mechanism of action remains poorly understood. This study was designed to delineate the beneficial effects of IGF-I with a focus on RhoA, Akt, and eNOS coupling. Echocardiography was performed in normal or diabetic Friend Virus-B type (FVB) and IGF-I transgenic mice. Cardiomyocyte contractile properties were evaluated using peak shortening (PS), time-to-90% relengthening (TR90), and intracellular Ca2+ rise and decay. Diabetes reduced fraction shortening, PS, and intracellular Ca2+; it increased chamber size, prolonged TR90, and intracellular Ca2+ decay. Levels of RhoA mRNA, active RhoA, and O2(-) were elevated, whereas nitric oxide (NO) levels were reduced in diabetes. Diabetes-induced O2(-) accumulation was ablated by the NO synthase (NOS) inhibitor nitro-L-arginine methyl ester (L-NAME), indicating endothelial NOS (eNOS) uncoupling, all of which except heart size were negated by IGF-I. The IGF-I-elicited beneficial effects were mimicked by the Rho kinase inhibitor Y27632 and BH4. Diabetes depressed expression of Kv1.2 and dihydrofolate reductase (DHFR), increased beta-myosin heavy-chain expression, stimulated p38 MAPK, and reduced levels of total Akt and phosphorylated Akt/eNOS, all of which with the exception of myosin heavy chain were attenuated by IGF-I. In addition, Y27632 and the eNOS coupler folate abrogated glucose toxicity-induced PS decline, TR90 prolongation, while it increased O2(-) and decreased NO and Kv1.2 levels. The DHFR inhibitor methotrexate impaired myocyte function, NO/O2(-) balance, and rescued Y27632-induced cardiac protection. These results revealed that IGF-I benefits diabetic hearts via Rho inhibition and antagonism of diabetes-induced decrease in pAkt, eNOS uncoupling, and K+ channel expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号