首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A 17-kilodalton (kDa) human placental acid phosphatase was purified 21,400-fold to homogeneity. The enzyme has an isoelectric point of pH 7.2 and a specific activity of 106 mumol min-1 mg-1 using p-nitrophenyl phosphate as a substrate at pH 5 and 37 degrees C. This placental acid phosphatase showed activity toward phosphotyrosine and toward phosphotyrosyl proteins. The pH optima of the enzyme with phosphotyrosine and with phosphotyrosyl band 3 (from human red cells) were between pH 5 and 6 and pH 5 and 7, respectively. The Km for phosphotyrosine was 1.6 mM at pH 5 and 37 degrees C. Phosphotyrosine phosphatase activity was not inhibited by tartrate or fluoride, but vanadate, molybdate, and zinc ions acted as strong inhibitors. Enzyme activity was also inhibited by DNA, but RNA was not inhibitory. It is a hydrophobic nonglycoprotein containing approximately 20% hydrophobic amino acids. The average hydrophobicity was calculated to be 903 cal/mol. The absorption coefficient at 280 nm, E1% 1cm, was determined to be 5.7. The optical ellipticity of the enzyme at 222 nm was -5200 deg cm2 dmol-1, which would correspond to a low helical content. Free sulfhydryl and histidine residues were necessary for the enzyme activity. The enzyme contained four reactive sulfhydryl groups. Chemical modification of the sulfhydryls with iodoacetate resulted in unfolding of the protein molecule as detected by fluorescence emission spectroscopy. Antisera against both the native and the denatured protein were able to immunoprecipitate the native enzyme. However, upon denaturation, the acid phosphatase lost about 70% of the antigenic determinants. Both antisera cross-reacted with a single 17-kDa polypeptide on immunoblotting.  相似文献   

2.
The appA gene that was previously shown to code for an acid phosphatase instead codes for a bifunctional enzyme exhibiting both acid phosphatase and phytase activities. The purified enzyme with a molecular mass of 44,708 Da was further separated by chromatofocusing into two isoforms of identical size with isoelectric points of 6.5 and 6.3. The isoforms had identical pH optima of 4.5 and were stable at pH values from 2 to 10. The temperature optimum for both phytase isoforms was 60 degrees C. When heated at different pH values the enzyme showed the greatest thermal resistance at pH 3. The pH 6.5 isoform exhibited K(m) and Vmax values of 0.79 mM and 3165 U.mg-1 of protein for phytase activity and 5.5 mM and 712 U.mg-1 of protein for acid phosphatase, respectively. The pH 6.3 isoform exhibited slightly lower K(m) and Vmax values. The enzyme exhibited similar properties to the phytase purified by Greiner et al. (1993), except the specific activity of the enzyme was at least 3.5-fold less than that previously reported, and the N-terminal amino acid sequence was different. The Bradford assay, which was used by Greiner et al. (1993) for determination of enzyme concentration was, in our hands, underestimating protein concentration by a factor of 14. Phytase production using the T7 polymerase expression system was enhanced by selection of a mutant able to grow in a chemically defined medium with lactose as the carbon source and inducer. Using this strain in fed-batch fermentation, phytase production was increased to over 600 U.mL-1. The properties of the phytase including the low pH optimum, protease resistance, and high activity, demonstrates that the enzyme is a good candidate for industrial production as a feed enzyme.  相似文献   

3.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

4.
Rat liver has been shown to contain an enzyme that catalyzes the dephosphorylation of retinyl monophosphate. This activity was extracted with 0.1 M Tris buffer (pH 7.5). Maximum reaction rate was observed at a pH range of 7.0-7.5. It did not require metal ions for activity and was sensitive to fluoride ion. The retinyl monophosphate phosphatase activity was proportional to time and protein and substrate concentration. Triton X-100 (range of 0.05-0.10%) increased the activity 100%, whereas other detergents (Tween 80, cholate, and deoxycholate) did not activate the enzyme. A number of phosphorylated compounds tested as inhibitors of retinyl monophosphatase activity, such as glucose 6-phosphate (20 mM), glycerophosphate (20 mM), phosphatidic acid (8 mM), and dolichyl phosphate (3 mM), did not compete with retinyl monophosphate as substrate. However, at 20 mM concentration, ATP, ADP, 5'-AMP, and pyrophosphate were inhibitors of the enzyme. It is not possible at present to give further details about the specificity of the phosphatase activity. The enzyme described could play a regulatory role in retinol-mediated glycosylations, by altering the endogenous level of retinyl monophosphate.  相似文献   

5.
Alcohol dehydrogenase was purified in 14 h from male Fischer-344 rat livers by differential centrifugation, (NH4)2SO4 precipitation, and chromatography over DEAE-Affi-Gel Blue, Affi-Gel Blue, and AMP-agarose. Following HPLC more than 240-fold purification was obtained. Under denaturing conditions, the enzyme migrated as a single protein band (Mr congruent to 40,000) on 10% sodium dodecyl sulfate-polyacrylamide gels. Under nondenaturing conditions, the protein eluted from an HPLC I-125 column as a symmetrical peak with a constant enzyme specific activity. When examined by analytical isoelectric focusing, two protein and two enzyme activity bands comigrated closely together (broad band) between pH 8.8 and 8.9. The pure enzyme showed pH optima for activity between 8.3 and 8.8 in buffers of 0.5 M Tris-HCl, 50 mM 2-(N-cyclohexylamino)ethanesulfonic acid (CHES), and 50 mM 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS), and above pH 9.0 in 50 mM glycyl-glycine. Kinetic studies with the pure enzyme, in 0.5 M Tris-HCl under varying pH conditions, revealed three characteristic ionization constants for activity: 7.4 (pK1); 8.0-8.1 (pK2), and 9.1 (pK3). The latter two probably represent functional groups in the free enzyme; pK1 may represent a functional group in the enzyme-NAD+ complex. Pure enzyme also was used to determine kinetic constants at 37 degrees C in 0.5 M Tris-HCl buffer, pH 7.4 (I = 0.2). The values obtained were Vmax = 2.21 microM/min/mg enzyme, Km for ethanol = 0.156 mM, Km for NAD+ = 0.176 mM, and a dissociation constant for NAD+ = 0.306 mM. These values were used to extrapolate the forward rate of ethanol oxidation by alcohol dehydrogenase in vivo. At pH 7.4 and 10 mM ethanol, the rate was calculated to be 2.4 microM/min/g liver.  相似文献   

6.
Tartrate-inhibitable acid phosphatase was purified to apparent homogeneity from human placenta. The enzyme is composed of two subunits with an apparent molecular mass of 48 kDa. Each subunit carries one oligosaccharide of the high-mannose/hybride type. The purified enzyme has an isoelectric point of pH 6.2. It cleaves phosphomonoester bonds at acid pH, is competitively inhibited by L-tartrate, Ki = 0.51 microM, and phosphate, Ki = 0.8mM. A monospecific antiserum raised against the purified placental enzyme precipitated 62% and 85% of the tartrate-inhibitable acid phosphatase present in extracts of placenta and fibroblasts, respectively. By means of subcellular fractionation and immunoprecipitation it was shown that the majority of tartrate-inhibitable acid phosphatase is located in lysosomes in normal and mucolipidosis II fibroblasts. In the human Hep G-2 hepatoma cells a significant fraction of the enzyme appears to be associated with non-lysosomal organelles.  相似文献   

7.
A gene (tap) encoding a thermostable alkaline phosphatase from the thermophilic bacterium Thermus thermophilus XM was cloned and sequenced. It is 1506 bp long and encodes a protein of 501 amino acid residues with a calculated molecular mass of 54.7 kDa. Comparison of the deduced amino acid sequence with other alkaline phosphatases showed that the regions in the vicinity of the phosphorylation site and metal binding sites are highly conserved. The recombinant thermostable alkaline phosphatase was expressed as a His6-tagged fusion protein in Escherichia coli and its enzymatic properties were characterized after purification. The pH and temperature optima for the recombinant thermostable alkaline phosphatases activity were pH 12 and 75 ℃. As expected, the enzyme displayed high thermostability, retaining more than 50% activity after incubating for 6 h at 80 ℃. Its catalytic function was accelerated in the presence of 0.1 mM Co^2+, Fe^2+, Mg^2+, or Mn^2+ but was strongly inhibited by 2.0 mM Fe^2+. Under optimal conditions, the Michaelis constant (Kin) for cleavage of p-nitrophenyl-phosphate was 0.034 mM. Although it has much in common with other alkaline phosphatases, the recombinant thermostable alkaline phosphatase possesses some unique features, such as high optimal pH and good thermostability.  相似文献   

8.
One acid phosphatase (optimum pH at 5.4) was purified from maize scutellum after 96 hr of germination. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE) with or without sodium dodecyl sulfate (SDS). The enzyme has a MW of 65 000 ± 4000 as determined by Sephadex G-200 gel filtration and SDS-PAGE. The enzyme contained 16% neutral sugars, and cations are not required for activity. The purified enzyme was not inactivated by DTNB at pH 8. The hydrolysis of glucose-6-phosphate in the presence of 4 mM fluoride and 4 mm EDTA, at pH 6.7 (optimum pH), seems to be catalysed by this acid phosphatase.  相似文献   

9.
A sedimentable form of acid phosphatase (EC 3.1.3.2) from Tetrahymena pyriformis was found to be solubilized by Triton X-100. The total enzyme activity in the insoluble cell fraction increased almost 200% upon solubilization with Triton X-100 or Nonidet P-40. Removal of membrane lipids and Triton X-100 from the particulate wash solution with a chloroform extraction resulted in non-specific enzyme-protein aggregation which was reversible upon addition of Triton X-100. The results indicate that this acid phosphatase is an integral membrane protein. The pH optima for this particulate bound acid phosphatase was 3.5 with o-carboxyphenyl phosphate and 4.0 with p-nitrophenyl phosphate as substrates. The Km values of each substrate were 3.1 and 0.031 mM, respectively.  相似文献   

10.
Human liver acid phosphatases.   总被引:2,自引:0,他引:2  
Human liver contains three chromatographically distinct forms of non-specific acid phosphatase (EC 3.1.3.2). Acid phosphatases I, II and III have molecular weights of greater than 200 000, of 107 000, and of 13 400, respectively. Following partial purification, isoenzyme II was obtained as a single activity band, as assessed by activity staining with p-nitrophenyl phosphate and alpha-naphthyl phosphate on polyacrylamide gels run at several pH values. With 50mM p-nitrophenyl phosphate as a substrate, enzymes II and III exhibit plateaus of activity over the pH range 3 - 5 and 3.5 - 6, respectively.Acid phosphatase II is not significantly inhibited by 0.5% formaldehyde. The activity of human liver acid phosphatase II and of human prostatic acid phosphatase towards several substrates is compared. The liver enzyme, is marked contrast to the prostatic enzyme, does not hydrolyze O-phosphoryl choline.  相似文献   

11.
Alkaline phosphatase was purified from plasma membranes of rat ascites hepatoma AH-130, the homogenate of which had 50-fold higher specific activity than that found in the liver homogenate. The presence of Triton X-100, 0.5%, was essential to avoid its aggregation and to stabilize its activity. The purified enzyme, a glycoprotien, was homogeneous in polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated a protein molecular weight of 140,000. The addition of beta-mercaptoethanol caused the dissociation of the alkaline phosphatase into two subunits of identical molecular weight, 72,000. Isoelectric focusing revealed that the pI of this enzyme is 4.7. The pH optimum for the purified enzyme was 10.5 or higher with p-nitrophenylphosphate, and slightly lower pH values (pH 9.5--10.2) were obtained when other substrates were used. Of the substrates tested, p-nitrophenylphosphate (Km-0.3 mM) was most rapidly hydrolyzed. Vmax values of other substrates relative to that of p-nitrophenylphosphate were as follows; beta-glycerophosphate, 76%; 5'-TMP, 82%; 5'-AMP, 62%; 5'-IMP, 43%; glucose-6-phosphate, 39%; ADP, 36% and ATP, 15%. More than 90% of the activity of the purified enzyme was irreversibly lost when it was heated at 55 degrees C for 30 min, or exposed either to 10 mM beta-mercaptoethanol for 10 min to 3 M urea for 30 min, or to an acidic pH below pH 5.0 for 2 h. Of the effects by divalent cations, Mg2+ activated the enzyme by 20% whereas Zn2+ strongly inhibited it by 95% at 0.5 mM. EDTA at higher than 1 mM inactivated the enzyme irreversibly, although the effect of EDTA at lower than 0.1 mM was reversible by the addition of divalent cations, particularly by Mg2+. The enzyme was most strongly inhibited by L-histidine among the amino acids tested, and also strongly inhibited by imidazole. These results suggest that alkaline phosphatase of rat hepatoma AH-130 is very similar to that of rat liver in most of the properties reported so far.  相似文献   

12.
Auxin‐induced secretion of an acid phosphatase (EC 3.1.3.2) leads to the hypothesis that this enzyme may be involved in plant cell elongation growth (W. Pfeiffer. 1996. Physiol. Plant. 98: 773–779). Elongation growth can be characterized by the effects of pH, phosphate and citrate, and the correlation with a particular region of the root: the elongation region. Therefore, it was investigated whether these parameters may reveal further correlations between acid phosphatase and elongation growth. The following results were obtained. (1) An extracellular acid phosphatase with high substrate affinity was characterized (Michaelis‐Menten constant, 0.03 m M for 4‐methylumbelliferyl phosphate; pH optimum, 3.0). The pH dependence of the enzyme was similar to that of elongation growth of coleoptile segments after pretreatment with phosphate (U. Kutschera and P. Schopfer. 1985. Planta 163: 483–493). (2) Phosphate inhibited both the acid phosphatase and coleoptile growth. Phosphate was a competitive inhibitor of the acid phosphatase (inhibitor constant, 2.5 m M ). (3) Citrate inhibited coleoptile growth and the acid phosphatase in a similar way (inhibitor constant, 21 mM). (4) The elongation region of maize roots contained more apoplastic acid phosphatase than adjacent regions (170%). The pH dependence of the enzyme suggests that the low pH reported for the elongation region would result in an additional increase of the enzymatic activity (pH optimum at 3.0).  相似文献   

13.
An extracellular acid phosphatase (EC 3.1.3.2) from crude culture filtrate of Penicillium chrysogenum was purified to homogeneity using high-performance ion-exchange chromatography and size-exclusion chromatography. SDS-PAGE of the purified enzyme exhibited a single stained band at an Mr of approx. 57,000. The mobility of the native enzyme indicated the Mr to be 50,000, implying that the active form is a monomer. The isoelectric point of the enzyme was estimated to be 6.2 by isoelectric focusing. Like acid phosphatases from several yeasts and fungi the Penicillium enzyme was a glycoprotein. Removal of carbohydrate resulted in a protein band with an Mr of 50,000 as estimated by SDS-PAGE, suggesting that 12% of the mass of the enzyme was carbohydrate. The enzyme was catalytically active at temperatures ranging from 20 degrees C to 65 degrees C with a maximum activity at 60 degrees C and the pH optimum was at 5.5. The Michaelis constant of the enzyme for p-nitrophenyl phosphate was 0.11 mM and it was inhibited competitively by inorganic phosphate (ki = 0.42 mM).  相似文献   

14.
Uric acid inhibited 50% of the activity of bovine kidney low molecular mass phosphotyrosine protein phosphatase at concentrations of 1.0, 0.4, 1.3, and 0.2 mM, respectively for p-nitrophenyl phosphate (p-NPP), flavine mononucleotide, beta-naphthyl phosphate and tyrosine phosphate (Tyr-P) as substrates. The mixed type inhibition of p-NPP hydrolysis was fully reversible, with Kic and Kiu values of 0.4 and 1.1 mM, respectively; the inhibition by uric acid shifted the pH optimum from 5.0 to 6.5. When Tyr-P was the substrate, competitive inhibition was observed with a Ki value of 0.05 mM. Inhibition studies by uric acid in the presence of thiol compounds, and preincubation studies in the presence of inorganic phosphate suggest that the interaction of uric acid with the enzyme occurred at the active site, but did not involve SH residues, and that the mechanism of inhibition depended on the structure of the substrates.  相似文献   

15.
Phosphatidic acid phosphatase (EC 3.1.3.4) was purified 30-fold by ammonium sulfate fractionation and hydroxyapatite chromatography from the soluble fraction of rat liver. ADP was found to stimulate the enzyme activity with half-maximal stimulation at 0.2 mM. Similar effects were seen when ADP was replaced by GDP or CDP. In contrast, ATP inhibited the enzyme; half-maximal inhibition observed at 0.2 mM. Again, the degree of inhibition did not differ when GTP or CTP replaced ATP. Thus, the structure of the base part of the nucleotide was not critical for mediating these effects. The positions of the phosphate groups in the nucleotide structure were however found to be of importance for the enzyme activity. Variations in the structure of the phosphate ester bound at the 5'-position had a pronounced effect on phosphatidic acid phosphatase activity. The effect of nucleotides depended on pH, and the inhibition by ATP was more pronounced at pH levels lower than 7.0, whereas the stimulatory effect of ADP was virtually the same from pH 6.0 to pH 8.0. The enzyme showed substrate saturation kinetics with respect to phosphatidic acid, with an apparent Km of 0.7 mM. Km increased in the presence of ATP, whereas both apparent Vmax and Km increased in the presence of ADP, suggesting different mechanisms for the action of the two types of nucleotides. The results indicated that physiological levels of nucleotides with a diphosphate or a triphosphate ester bound at the 5'-position of the ribose moiety influenced the activity of phosphatidic acid phosphatase. The possibility is discussed that these effects might be of importance for the regulation of triacylglycerol biosynthesis.  相似文献   

16.
Protein phosphatases are signalling molecules that regulate a variety of fundamental cellular processes including cell growth, metabolism and apoptosis. The aim of this work was to correlate the cytotoxicity of pervanadate and okadaic acid on HL60 cells and their effect on the phosphatase obtained from these cells. The cytotoxicity of these protein phosphatase inhibitors was evaluated on HL60 cells using phosphatase activity, protein quantification and MTT reduction as indices. The major phosphatase presents in the cellular extract showed high activity (80%) and affinity (Km = 0.08 mM) to tyrosine phosphate in relation to p-nitrophenyl phosphate (pNPP)-(Km = 0.51 mM). Total phosphatase (pNPP) was inhibited in the presence of 10 mM vanadate (98%), 200 microM pervanadate (95%) and 100 microM p-chloromercuribenzoate (80%) but okadaic acid caused a slight increase in enzyme activity (25%). When the HL60 cells were treated with the phosphatase inhibitors (pervanadate and okadaic acid) for 24hours, only 20% residual activity was observed in presence of 200 microM pervanadate, whereas in the presence of okadaic acid this inhibitory effect was not observed. However, in respect to mitochondrial function, cell viability decreased about 80% in the presence of 100 nM okadaic acid. The total protein content was decreased 25% when the cells were treated with 100 nM okadaic acid in combination with 200 microM pervanadate. Our results suggest that both phosphatase inhibitors presented different mechanisms of action on HL60 cells. However, their effect on the cell redox status have to be considered.  相似文献   

17.
We characterized the bovine polymorphonuclear neutrophil alkaline phosphatase which was considerably purified with a sp. act. of 206 units/mg of protein. The Km value for p-nitrophenylphosphate at pH 10.0 was 1.69 mM. L-Histidine, imidazole and L-homoarginine but not L-phenylalanine inhibited the enzyme. In heat stability study, the enzyme lost 50% activity at 56 degrees C for 20 min. The enzyme had a half-life of 30 min in 3 M urea at 37 degrees C and pH 7.5. The enzyme was inhibited by beta-mercaptoethanol in a dose-dependent fashion. It is suggested from above results that the neutrophil alkaline phosphatase isozyme could be distinguishable from other tissue isozymes.  相似文献   

18.
Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MW(r) of about 120 kDa and specific PNPP activity of 1200 U/mg. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 U/mg), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and beta-glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function.  相似文献   

19.
An acid phosphatase activity that displayed phosphotyrosyl-protein phosphatase has been purified from bovine cortical bone matrix to apparent homogeneity. The overall yield of the enzyme activity was greater than 25%, and overall purification was approximately 2000-fold with a specific activity of 8.15 mumol of p-nitrophenyl phosphate hydrolyzed per min/mg of protein at pH 5.5 and 37 degrees C. The purified enzyme was judged to be purified based on its appearance as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (silver staining technique). The enzyme could be classified as a band 5-type tartrate-resistant acid phosphatase isoenzyme. The apparent molecular weight of this enzyme activity was determined to be 34,600 by gel filtration and 32,500 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of reducing agent, indicating that the active enzyme is a single polypeptide chain. Kinetic evaluations revealed that the acid phosphatase activity appeared to catalyze its reaction by a pseudo Uni Bi hydrolytic two-step transfer reaction mechanism and was competitively inhibited by transition state analogs of Pi. The enzyme activity was also sensitive to reducing agents and several divalent metal ions. Substrate specificity evaluation showed that this purified bovine skeletal acid phosphatase was capable of hydrolyzing nucleotide tri- and diphosphates, phosphotyrosine, and phosphotyrosyl histones, but not nucleotide monophosphates, phosphoserine, phosphothreonine, phosphoseryl histones, or low molecular weight phosphoryl esters. Further examination of the phosphotyrosyl-protein phosphatase activity indicated that the optimal pH at a fixed substrate concentration (50 nM phosphohistones) for this activity was 7.0. Kinetic analysis of the phosphotyrosyl-protein phosphatase activity indicated that the purified enzyme had an apparent Vmax of approximately 60 nmol of [32P]phosphate hydrolyzed from [32P]phosphotyrosyl histones per min/mg of protein at pH 7.0 and an apparent Km for phosphotyrosyl proteins of approximately 450 nM phosphate group. In summary, the results of these studies represent the first purification of a skeletal acid phosphatase to apparent homogeneity. Our observation that this purified bovine bone matrix acid phosphatase was able to dephosphorylate phosphotyrosyl proteins at neutral pH is consistent with our suggestion that this enzyme may function as a phosphotyrosyl-protein phosphatase in vivo.  相似文献   

20.
An acid phosphatase from Brassica nigra (black mustard) leaf petiole cell-suspension cultures has been purified 1633-fold to a final specific activity of 1225 (mumols orthophosphate produced/min)/mg protein and near homogeneity. The native protein was a glycosylated monomer having a molecular mass of 60 kDa and a pI of 4.5. The enzyme displayed a broad pH optimum of about pH 5.6 and was heat stable. The final preparation hydrolyzed a wide variety of phosphate esters. The highest specificity constants were obtained with 3-phosphoglycerate, 2,3-diphosphoglycerate, PPi, and phosphoenolpyruvate (PEP). The enzyme was activated 1.4-fold by 4 mM Mg2+ or Mn2+, but was strongly inhibited by Mo, Pi, F, and several phosphorylated compounds. Subcellular localization experiments revealed that this nonspecific acid phosphatase is probably a secreted enzyme, localized in the cell wall. By contrast, B. nigra PEP phosphatase appeared to be localized in the cell vacuole. Peptide mapping via CNBr fragmentation was employed to investigate the structural relatedness of the two phosphatases. Their respective CNBr cleavage patterns were dissimilar, suggesting that B. nigra acid and PEP phosphatases are distinct polypeptides. Putative metabolic functions of these two phosphatases are discussed in relation to the biochemical adaptations of B. nigra cell-suspension cultures to nutritional phosphate deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号