首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Lee YJ  Ahn JK  Chung JH 《IUBMB life》2000,50(1):57-61
Insect defensin refers to a group of antibacterial peptides derived from a variety of insect species as well as from scorpion and possessing a three-dimensional structure highly similar to that of scorpion toxins. A full-length cDNA encoding an insect defensin-like peptide was isolated from the venom gland cDNA library of the Chinese scorpion Buthus martensii Karsch. The precursor, the overall organization of which is similar to that of insect defensins, consists of 61 amino acid residues with a putative signal peptide of 15 residues, a propeptide of 7 residues, and a mature peptide of 39 residues (named BmTXKS2). The positions of six cysteines and a conserved glycine in mature BmTXKS2 are the same as those in LqDef, the first defensin found in scorpions, which suggests these peptides should present a similar cysteine-stabilized alphabetamotif. Phylogenetic analysis further shows that the structure of BmTXKS2 is closer to that of ancient defensins (e.g., LqDef and AaDef, two insect defensins present in the scorpion hemolymph) than to scorpion toxins.  相似文献   

2.
3.
4.
A humoral immune response in larvae of the coleopteran insect, Anomala cuprea has been examined for exploring the molecular basis of host-pathogen interactions. The antibacterial activity against the Gram-positive strain, Micrococcus luteus was detected at a low level in absence of injection. The activity increased strikingly in the hemolymph of the larvae challenged with Escherichia coli, showing the fluctuating profile through a time course, which consists of the static induction phase, the production phase rising to a maximum level, and the reduction phase extending over a long duration. Two peptides were purified and characterized by reverse-phase HPLC, Edman degradation and mass spectrometry. They were isoforms, composed of similar sequences with two amino acid substitutions in 43 residues, and novel members of the insect defensins, cysteine-rich antibacterial peptides. Anomala defensins A and B showed potent activity against Gram-positive bacteria, with slight differences in activity against a few strains of tested bacteria. Anomala defensin B was active at high concentration of 40 microM against the Gram-negative strain, Xenorhabdus japonicus, a pathogen toward the host, A. cuprea larvae.  相似文献   

5.
Injection of low doses of bacteria into the aquatic larvae of the dipteran insect Chironomus plumosus induces the appearance in their hemolymph of a potent antibacterial activity. We have isolated two 36-residue peptides from this hemolymph which are active against Gram-positive bacteria. The peptides are novel members of the insect defensin family and their sequences present marked differences with those of insect defensins isolated from other dipteran species. We have developed a method for efficient renaturation of this cysteine-rich molecule and obtained a highly pure synthetic Chironomus defensin.  相似文献   

6.
Plant defensins   总被引:30,自引:2,他引:28  
Thomma BP  Cammue BP  Thevissen K 《Planta》2002,216(2):193-202
Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern that is stabilized by eight disulfide-linked cysteines. They are termed plant defensins because they are structurally related to defensins found in other types of organism, including humans. To date, sequences of more than 80 different plant defensin genes from different plant species are available. In Arabidopsis thaliana, at least 13 putative plant defensin genes (PDF) are present, encoding 11 different plant defensins. Two additional genes appear to encode plant defensin fusions. Plant defensins inhibit the growth of a broad range of fungi but seem nontoxic to either mammalian or plant cells. Antifungal activity of defensins appears to require specific binding to membrane targets. This review focuses on the classification of plant defensins in general and in Arabidopsis specifically, and on the mode of action of plant defensins against fungal pathogens.  相似文献   

7.
Insect defensins containing cysteine-stabilized alpha/beta motifs (Cs-alpha/beta defensin) are cationic, inducible antibacterial peptides involved in humoral defence against pathogens. To examine trends in molecular evolution of these antimicrobial peptides, sequences similar to the well-characterized Cs-alpha/beta defensin peptide of Anopheles gambiae, using six cysteine residues as landmarks, were retrieved from genomic and protein databases. These sequences were derived from different orders of insects. Genes of insect Cs-alpha/beta defensin appear to constitute a multigene family in which the copy number varies between insect species. Phylogenetic analysis of these sequences revealed two main lineages, one group comprising mainly lepidopteran insects and a second, comprising Hemiptera, Coleoptera, Diptera and Hymenoptera insects. Moreover, the topology of the phylogram indicated dipteran Cs-alpha/beta defensins are diverse, suggesting diversity in immune mechanisms in this order of insects. Overall evolutionary analysis indicated marked diversification and expansion of mature defensin isoforms within the species of mosquitoes relative to non-mosquito defensins, implying the presence of finely tuned immune responses to counter pathogens. The observed higher synonymous substitution rate relative to the nonsynonymous rate in almost all the regions of Cs-alpha/beta defensin of mosquitoes suggests that these peptides are predominately under purifying selection. The maximum-likelihood models of codon substitution indicated selective pressure at different amino acid sites in mosquito mature Cs-alpha/beta defensins is differ and are undergoing adaptive evolution in comparison to non-mosquito Cs-alpha/beta defensins, for which such selection was inconspicuous; this suggests the acquisition of selective advantage of the Cs-alpha/beta defensins in the former group. Finally, this study represents the most detailed report on the evolutionary strategies of Cs-alpha/beta defensins of mosquitoes in particular and insects in general, and indicates that insect Cs-alpha/beta defensins have evolved by duplication followed by divergence, to produce a diverse set of paralogues.  相似文献   

8.
Genomics information relating to human body lice is surprisingly scarce, and this has constrained studies of their physiology, immunology and vector biology. To identify novel body louse genes, we used engorged adult lice to generate a cDNA library. Initially, 1152 clones were screened for inserts, edited for removal of vector sequences and base pairs of poor quality, and viewed for splicing variations, gene families and polymorphism. Computational methods identified 506 inferred open reading frames including the first predicted louse defensin. The inferred defensin aligns well with other insect defensins and has highly conserved cysteine residues, as are known for other defensin sequences. Two cysteine and five serine proteinases were categorized according to their inferred catalytic sites. We also discovered seven putative ubiquitin-pathway genes and four iron metabolizing deduced enzymes. Finally, glutathione-S-transferases and cytochrome P450 genes were among the detoxification enzymes found. Results from this first systematic effort to discover human body louse genes should promote further studies in Phthiraptera and lice.  相似文献   

9.
10.
11.
Defensins are cysteine-rich peptides involved in the innate immunity of insects and many other organisms. In the present study, two novel defensin-encoding cDNAs and the respective genomic DNAs (def3 and def4) of Triatoma brasiliensis were identified and their tissue-specific and temporal expression was characterized. Both of the deduced mature peptides consisted of 43 amino acid residues and were highly similar to previously identified triatomine defensins (81.4-100%). Semi-quantitative RT-PCR data showed that def3 was constitutively expressed in the fat body and was induced in salivary glands and the small intestine at 5 and 3 days after feeding (daf), respectively. The def4 mRNA level was highly up-regulated in the stomach and fat-body tissues at 5 and 3 daf, respectively. The three-dimensional structures of these defensins were predicted using a homology modeling approach with Def-AAA, the defensin from Anopheles gambiae, as template (62-74% identity). A map of the electrostatic potential of these models revealed that, despite their similar folding patterns, mature Def2 and Def4 have a more cationic structure than is the case for Def1 and Def3. Such differences may orient the antimicrobial profile of these defensins against distinct targets in different organs of the insect.  相似文献   

12.
13.
14.
The defensin‐like antimicrobial peptides have been characterized from various other arthropods including insects, scorpions, and ticks. But no natural spider defensin‐like antimicrobial peptides have ever been isolated from spiders, except couple of cDNA and DNA sequences of five spider species revealed by previous genomic study. In this work, a defensin‐like antimicrobial peptide named Oh‐defensin was purified and characterized from the venoms of the spider, Ornithoctonus hainana. Oh‐defensin is composed of 52 amino acid (aa) residues including six Cys residues that possibly form three disulfide bridges. Its aa sequence is MLCKLSMFGAVLGV PACAIDCLPMGKTGGSCEGGVCGCRKLTFKILWDKKFG. By BLAST search, Oh‐defensin showed significant sequence similarity to other arthropod antimicrobial peptides of the defensin family. Oh‐defensin exerted potent antimicrobial activities against tested microorganisms including Gram‐positive bacteria, Gram‐negative bacteria, and fungi. The cDNA encoding Oh‐defensin precursor was also cloned from the cDNA library of O. hainana. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Defensins found in mammals belong to mainly two subfamilies α- and β-defensins. Mammalian defensins are small molecules (18–45 residues) that are cysteine, arginine rich compounds. Antimicrobial activities of these peptides were shown against a wide variety of microbes including bacteria, fungi, viruses and protozoan parasites. To investigate the structure and activity relationship, amino acid substitutions that alter charge were introduced into synthetic defensin peptides by adding 2–2 Arg (RR) and Asp (DD) at both the terminal and tested their effects on HIV-1, E. coli, S. aureus, and P. aeruginosa. In the present study, we have chemically synthesized native defensin peptides and their variants with Arg (RR) and Asp (DD) amino acid residues at N- and C-termini. Later, we assayed their anti-HIV, anti-microbial activities, stability, cytotoxicity and hemolytic properties. We reported that anti-HIV and antimicrobial activities of native defensins is increased significantly by adding Arg (RR) residues at both the termini while the substitution of Arg (RR) with Asp (DD), eliminate anti-HIV and antimicrobial activity against all bacterial species tested. While other physical features i.e. stability, cell toxicity and hemolytic property were not affected by any of the changes in the sequence. The results suggest that the terminal residues in defensins are crucial functional elements that determine their microbicidal potency. The enhanced microbicidal activity observed for defensin peptides with Arg (RR) residues could be due to optimization of amphiphilicity of the structure, which could facilitate specific interactions with the microbial membranes.  相似文献   

16.
Insect antimicrobial peptides and their applications   总被引:1,自引:0,他引:1  
Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20–50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.  相似文献   

17.
家蝇防御素基因的cDNA克隆及序列分析   总被引:12,自引:0,他引:12  
Defensin is a kind of cationic.inducible antimicrobial peptide found in a large range of living organisms that contributes to host defense by disrupting the cytoplasmic membrane of microorganisms.with their broad antimicrobial spectrum and strong pharmaceutical effects.antimicrobial peptides,including defensins,represent a source of novel antibiotic agents.A novel full-length 430 base pairs cDNA of an insect defensin was cloned using polymerase chain reaction (PCR) from the cDnA library of houseflies(Musca domestica) that had been challenged by E.coli and staphylococcus taincd an NH2-terminal signal sequence(1-22)followed by a propeptide and the mature peptide(53-92),The sequence identity with other insect defensin is between 51% and 73%.The mature peptide,with a predicted molecular weight of 4.0kDa,and pI of 8.69,has 1 negative charged amino acid and 4 positice ones,the putative housefly defensin is characterized by 6 invariant cysteine residues forming 3 disulfide bonds,Cys1-Cys4,Cys2-Cys5 and Cys3-Cys6,These results suggest that the novel full-length cDNA of the defensin gene.Denominated Mdde,has been successfully cloned from houseflies.  相似文献   

18.
19.
Plant defensins are small (5-10 kDa) basic peptides thought to be an important component of the defense pathway against fungal and/or bacterial pathogens. To understand the role of plant defensins in protecting plants against the brown planthopper, a type of insect herbivore, we isolated the Brassica rapa Defensin 1 (BrD1) gene and introduced it into rice (Oryza sativa L.) to produce stable transgenic plants. The BrD1 protein is homologous to other plant defensins and contains both an N-terminal endoplasmic reticulum signal sequence and a defensin domain, which are highly conserved in all plant defensins. Based on a phylogenetic analysis of the defensin domain of various plant defensins, we established that BrD1 belongs to a distinct subgroup of plant defensins. Relative to the wild type, transgenic rices expressing BrD1 exhibit strong resistance to brown planthopper nymphs and female adults. These results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.  相似文献   

20.
防御素的生物学特性及其抗病基因工程   总被引:1,自引:0,他引:1  
Fu LB  Yu JL  Liu WH 《遗传》2011,33(5):512-519
防御素是一种富含半胱氨酸的小分子多肽,对细菌等微生物具有广谱抗性,且作用机制特殊。迄今为止,国内外在防御素方面进行了大量的研究,已经从各类生物体中分离出不同种类的防御素,并在基因工程和医药领域呈现广泛的应用前景。文章对防御素的分类、生物学特性,包括哺乳动物α-、β-、θ-防御素、昆虫以及植物防御素的分子结构及抗菌活性进行了综述,阐述了防御素的膜作用及与细胞内复合物结合的作用机制。总结和归纳了防御素基因的分离、表达研究进展及动、植物防御素基因在抗病基因工程领域的应用,并对防御素在未来的生物制药和植物抗病基因工程方面的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号