首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In human intestinal disease induced by Salmonella enterica serotype Typhimurium (S. typhimurium) transepithelial migration of polymorphonuclear leukocytes (PMNs) rapidly follows attachment of the bacteria to the epithelial apical membrane. Previously, we have shown that the S. typhimurium effector protein, SipA, plays a pivotal role in signalling epithelial cell responses that lead to the transepithelial migration of PMNs. Thus, the objective of this study was to determine the functional domain of SipA that regulates this signalling event. SipA was divided into two fragments: the SipAb C-terminal fragment(426-684) (259 AA), which binds actin, and the SipAa fragment(2-425) (424 AA), which a role has yet to be described. In both in vitro and in vivo models of S. typhimurium-induced intestinal inflammation the SipAa fragment exhibited a profound ability to induce PMN transmigration, whereas the SipAb actin-binding domain failed to induce PMN transmigration. Subsequent mapping of the SipAa domain identified a 131-amino-acid region (SipAa3(294-424)) responsible for modulating PMN transepithelial migration. Interestingly, neither intracellular translocation nor actin association of SipA was necessary for its ability to induce PMN transepithelial migration. As these results indicate SipA has at least two separate functional domains, we speculate that during infection S. typhimurium requires delivery of SipA to both extracellular and intracellular spaces to maximize pro-inflammatory responses and mechanisms of bacterial invasion.  相似文献   

2.
Salmonella typhimurium elicits an acute inflammatory response in the host intestinal epithelium, characterized by the movement of polymorphonuclear leukocytes (PMN) across the epithelial monolayer to the intestinal lumen. It was recently shown that SipA, a protein secreted by S. typhimurium, is necessary and sufficient to drive PMN transmigration across model intestinal epithelia (Lee, C. A., Silva, M., Siber, A. M., Kelly, A. J., Galyov, E., and McCormick, B. A. (2000) Proc. Natl. Acad Sci. USA 97, 12283-12288). However, the epithelial factors responsible for this process have not been identified. Here, for the first time, we demonstrate that S. typhimurium-induced PMN transmigration across Madin-Darby canine kidney-polarized monolayers is regulated by the GTPase ARF6. Apically added S. typhimurium promoted the translocation of ARF6 and its exchange factor ARNO to the apical surface. Overexpression of a dominant-negative mutant of ARF6 inhibited Salmonella-induced PMN transmigration, which was due to a reduction in apical release of the PMN chemoattractant PEEC (pathogen-elicited epithelial chemoattractant), without affecting bacterial internalization. Furthermore, ARF6 and its effector phospholipase D (PLD) were both required for bacteria-induced translocation of protein kinase C (PKC) to membranes. These results describe a novel signal transduction pathway, in which Salmonella initiates an ARF6- and PLD-dependent lipid signaling cascade that, in turn, directs activation of PKC, release of PEEC, and subsequent transepithelial PMN movement.  相似文献   

3.
The establishment of tight junctions (TJ) between columnar epithelial cells defines the functional barrier, which enteroinvasive pathogens have to overcome. Salmonella enterica serovar Typhimurium (S. typhimurium) directly invades intestinal epithelial cells but it is not well understood how the pathogen is able to overcome the intestinal barrier and gains access to the circulation. Therefore, we sought to determine whether infection with S. typhimurium could regulate the molecular composition of the TJ and, if so, whether these modifications would influence bacterial translocation and polymorphonuclear leukocyte (PMN) movement across model intestinal epithelium. We found that infection of a model intestinal epithelium with S. typhimurium over 2 h resulted in an approximately 80% loss of transepithelial electrical resistance. Western blot analysis of epithelial cell lysates demonstrated that S. typhimurium regulated the distribution of the TJ complex proteins claudin-1, zonula occludens (ZO)-2, and E-cadherin in Triton X-100-soluble and insoluble fractions. In addition, S. typhimurium was specifically able to dephosphorylate occludin and degrade ZO-1. This TJ alteration in the epithelial monolayer resulted in 10-fold increase in bacterial translocation and a 75% increase in N-formylmethionin-leucyl-phenyalanine-induced PMN transepithelial migration. Our data demonstrate that infection with S. typhimurium is associated with the rapid targeting of the tight junctional complex and loss of barrier function. This results in enhanced bacterial translocation and initiation of PMN migration across the intestinal barrier. Therefore, the ability to regulate the molecular composition of TJs facilitates the pathogenicity of S. typhimurium by aiding its uptake and distribution within the host.  相似文献   

4.
In human intestinal disease induced by Salmonella typhimurium, transepithelial migration of neutrophils (PMN) rapidly follows attachment of the bacteria to the epithelial apical membrane. In this report, we model those interactions in vitro, using polarized monolayers of the human intestinal epithelial cell, T84, isolated human PMN, and S. typhimurium. We show that Salmonella attachment to T84 cell apical membranes did not alter monolayer integrity as assessed by transepithelial resistance and measurements of ion transport. However, when human neutrophils were subsequently placed on the basolateral surface of monolayers apically colonized by Salmonella, physiologically directed transepithelial PMN migration ensued. In contrast, attachment of a non-pathogenic Escherichia coli strain to the apical membrane of epithelial cells at comparable densities failed to stimulate a directed PMN transepithelial migration. Use of the n-formyl-peptide receptor antagonist N-t-BOC-1-methionyl-1-leucyl-1- phenylalanine (tBOC-MLP) indicated that the Salmonella-induced PMN transepithelial migration response was not attributable to the classical pathway by which bacteria induce directed migration of PMN. Moreover, the PMN transmigration response required Salmonella adhesion to the epithelial apical membrane and subsequent reciprocal protein synthesis in both bacteria and epithelial cells. Among the events stimulated by this interaction was the epithelial synthesis and polarized release of the potent PMN chemotactic peptide interleukin-8 (IL-8). However, IL-8 neutralization, transfer, and induction experiments indicated that this cytokine was not responsible for the elicited PMN transmigration. These data indicate that a novel transcellular pathway exists in which subepithelial PMN respond to lumenal pathogens across a functionally intact epithelium. Based on the known unique characteristics of the intestinal mucosa, we speculate that IL-8 may act in concert with an as yet unidentified transcellular chemotactic factor(s) (TCF) which directs PMN migration across the intestinal epithelium.  相似文献   

5.
Salmonella enterica Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from Salmonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast‐two‐hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP‐22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface.  相似文献   

6.
《The Journal of cell biology》1995,131(6):1599-1608
During intestinal disease induced by Salmonella typhimurium transepithelial migration of neutrophils (PMN) rapidly follows attachment of the bacteria to the epithelial apical membrane. Among the events stimulated by these interactions is the release of chemotaxins that guide PMN through the subepithelial matrix and subsequently through the epithelium itself (McCormick, B.A., S.P. Colgan, C. Delp- Archer, S.I. Miller, and J.L. Madara. 1993. J. Cell Biol. 123:895-907). Given the substantial volume flow that normally characterizes matrix compartments underlying transporting epithelia, it is unclear how such transmatrix signaling is sustained. Here we show that when underlying matrices are isolated from biophysically confluent polarized monolayers of the human intestinal epithelial cell line T84, they fail to support substantial transmatrix migration of PMN unless an exogenous chemotactic gradient is imposed. In contrast, such matrices isolated from confluent monolayers apically colonized with S. typhimurium support spontaneous transmatrix migration of PMN. Such chemotactic imprinting of underlying matrices is resistant to volume wash and is paralleled by secretion of the known matrix-binding chemokine IL-8. Chemotactic imprinting of the matrix underlying S. typhimurium- colonized monolayers is dependent on epithelial protein synthesis, is directional implying the existence of a gradient, and is neutralized by antibodies either to IL-8 or to the IL-8 receptor on PMN. An avirulent S. typhimurium strain, PhoPc, which attaches to epithelial cells as efficiently as wild-type S. typhimurium, fails to induce basolateral secretion of IL-8 and likewise fails to imprint matrices. Together, these observations show that the epithelial surface can respond to the presence of a luminal pathogen and subsequently imprint the subepithelial matrix with retained IL-8 gradients sufficient to resist washout effects of the volume flow that normally traverses this compartment. Such data further support the notion that the primary role for basolateral secretion of IL-8 by the intestinal and likely other epithelia is recruitment of PMN through the matrix to the subepithelial space, rather than directing the final movement of PMN across the epithelium.  相似文献   

7.
The responses of human neutrophils (PMN) involve reorganization and phosphorylation of cytoskeletal components. We investigated the translocation of protein kinase C (PKC) isoforms to PMN cytoskeletal (Triton-insoluble) fractions, in conjunction with activation of the respiratory burst enzyme NADPH oxidase. In resting PMN, PKC-delta (29%) and small amounts of PKC-alpha (0.6%), but not PKC-betaII, were present in cytoskeletal fractions. Upon stimulation with the PKC agonist PMA, the levels of PKC-alpha, PKC-betaII, and PKC-delta increased in the cytoskeletal fraction, concomitant with a decrease in the noncytoskeletal (Triton-soluble) fractions. PKC-delta maximally associated with cytoskeletal fractions at 160 nM PMA and then declined, while PKC-alpha and PKC-betaII plateaued at 300 nM PMA. Translocation of PKC-delta was maximal by 2 min and sustained for at least 10 min. Translocation of PKC-alpha and PKC-betaII was biphasic, plateauing at 2-3 min and then increasing up to 10 min. Under maximal stimulation conditions, PKC isoforms were entirely cytoskeletal associated. Translocation of the NADPH oxidase component p47phox to the cytoskeletal fraction correlated with translocation of PKC-alpha and PKC-betaII, but not with translocation of PKC-delta. Oxidase activity in cytoskeletal fractions paralleled translocation of PKC-alpha, PKC-betaII, and p47phox. Stimulation with 1,2-dioctanoylglycerol resulted in little translocation of PKC isoforms or p47phox, and in minimal oxidase activity. We conclude that conventional PKC isoforms (PKC-alpha and/or PKC-betaII) may regulate PMA-stimulated cytoskeletal association and activation of NADPH oxidase. PKC-delta may modulate other PMN responses that involve cytoskeletal components.  相似文献   

8.
Neutrophil, or polymorphonuclear leukocyte (PMN), migration across intestinal epithelial barriers, such as occurs in many disease states, appears to result in modifications of epithelial barrier and ion transport functions (Nash, S., J. Stafford, and J. L. Madara. 1987. J. Clin. Invest. 80:1104-1113; Madara, J. L., C. A. Parkos, S. P. Colgan, R. J. MacLeod, S. Nash, J. B. Matthews, C. Delp, and W. I. Lencer. 1992. J. Clin. Invest. 89:1938-1944). Here we investigate the effects of epithelial exposure to IFN-gamma on PMN migration across cultured monolayers of the human intestinal epithelial cell line T84. Transepithelial migration of PMN was initially assessed in the apical- to-basolateral direction, since previous studies indicate general qualitative similarities between PMN migration in the apical-to- basolateral and in the basolateral-to-apical directions. In the apical- to-basolateral direction, epithelial exposure to IFN-gamma markedly upregulated transepithelial migration of PMN in a dose- and time- dependent fashion as measured by both electrical and myeloperoxidase assays. This IFN-gamma-elicited effect on transmigration was specifically due to a IFN-gamma effect on epithelial cells and was not secondary to IFN-gamma effects on epithelial tight junction permeability. Moreover, this IFN-gamma effect was dependent on epithelial protein synthesis, and involved a pathway in which CD11b/18, but not ICAM-1 or CD11a/18, appeared to play a crucial role in PMN- epithelial adhesion. IFN-gamma also substantially modified PMN transepithelial migration in the natural, basolateral-to-apical direction. The IFN-gamma effect on naturally directed transmigration was also specifically due to an IFN-gamma effect on epithelial cells, showed comparable time and dose dependency to that of oppositely directed migration, was CD11b/18 dependent, and required epithelial protein synthesis. Additionally, however, important qualitative differences existed in how IFN-gamma affected transmigration in the two directions. In contrast to apical-to-basolateral directed migration, IFN-gamma markedly downregulated transepithelial migration of PMN in the natural direction. This downregulation of PMN migration in the natural direction, however, was not due to failure of PMN to move across filters and into monolayers. Indeed, IFN-gamma exposure to epithelia increased the number of PMN which had moved into the basolateral space of the epithelium in naturally directed transmigration. These results represent the first detailed report of influences on PMN transepithelial migration by a cytokine, define conditions under which a qualitative difference in PMN transepithelial migration exists, and suggest that migration of PMN across epithelia in the natural direction may involve multiple steps which can be differentially regulated by cytokines.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
10.
The host response to Salmonella typhimurium involves movement of polymorphonuclear leukocytes (PMN) across the epithelium and into the intestinal lumen. Following their arrival in the lumen, the PMN attempt to combat bacterial infection by activating antimicrobial defenses such as granule release, oxidative burst, phagocytosis, and cell signaling. We sought to examine PMN-S. typhimurium interaction following PMN arrival in the lumenal compartment. Here, for the first time, we demonstrate that PMN that have transmigrated across model intestinal epithelia have an enhanced ability to kill S. typhimurium. Our data provide evidence to indicate that the extracellular release of the primary and secondary granules of PMN, myeloperoxidase and lactoferrin, respectively, is correlated with enhanced bacterial killing. Furthermore, epithelial cells, during PMN transmigration, release the cytokine IL-6. IL-6 is known to increase intracellular stores of Ca(2+), and we have determined that this epithelial released cytokine is not only responsible for priming the PMN to release their granules, but also stimulating the PMN to kill S. typhimurium. These results substantiate the pathway in which PMN transmigration activates the epithelial release of IL-6, which in turn increases intracellular Ca(2+) storage. Our results, herein, extend this pathway to include an enhanced PMN granule release and an enhanced killing of S. typhimurium.  相似文献   

11.
Active migration of polymorphonuclear leukocytes (PMN) through the intestinal crypt epithelium is a hallmark of inflammatory bowel disease and correlates with patient symptoms. Previous in vitro studies have shown that PMN transepithelial migration results in increased epithelial permeability. In this study, we modeled PMN transepithelial migration across T84 monolayers and demonstrated that enhanced paracellular permeability to small solutes occurred in the absence of transepithelial migration but required both PMN contact with the epithelial cell basolateral membrane and a transepithelial chemotactic gradient. Early events that occurred before PMN entering the paracellular space included increased permeability to small solutes (<500 Da), enhanced phosphorylation of regulatory myosin L chain, and other as yet undefined proteins at the level of the tight junction. No redistribution or loss of tight junction proteins was detected in these monolayers. Late events, occurring during actual PMN transepithelial migration, included redistribution of epithelial serine-phosphorylated proteins from the cytoplasm to the nucleus in cells adjacent to migrating PMN. Changes in phosphorylation of multiple proteins were observed in whole cell lysates prepared from PMN-stimulated epithelial cells. We propose that regulation of PMN transepithelial migration is mediated, in part, by sequential signaling events between migrating PMN and the epithelium.  相似文献   

12.
Neutrophil (PMN) infiltration and associated release of serine proteases contribute to epithelial injury during active phases of mucosal disorders such as inflammatory bowel disease. Previous studies have demonstrated that PMN contact with basolateral surfaces of intestinal epithelial cells in the presence of a chemoattractant results in disruption of barrier function even without transmigration. Similarly, serine protease-mediated activation of epithelial protease-activated receptors (PARs) has been shown to increase permeability. In this study, we assessed whether transmigrating PMNs can regulate barrier function through epithelial PAR activation. Transepithelial resistance (TER) decreased significantly after PMN contact with basolateral surfaces of T84 monolayers or after incubation with PMN elastase and proteinase-3, but not cathepsin G. Inhibition of PMN serine proteases, but not selective inhibition of elastase or cathepsin G, prevented the fall in TER induced by PMN contact and blocked PMN transepithelial migration. Basolateral, but not apical, PAR-1 and -2 activation with selective agonists also decreased TER. PAR-1 and -2 were localized intracellularly and in close proximity to lateral surfaces beneath tight junctions, and expression was increased in colonic mucosa from individuals with Crohn's disease. Combined, but not individual, transfection with small interfering RNAs targeted against epithelial PAR-1 and -2, prevented the fall in TER induced by PMN contact. Furthermore, basolateral PAR-1 and -2 activation induced phosphorylation of myosin L chain kinase and regulatory myosin L chain. Lastly, epithelial PAR-1 and -2 knockdown decreased the rate of PMN transepithelial migration. These results suggest that protease-mediated epithelial PAR-1 and -2 activation, by migrating PMNs, induces signaling events that increase epithelial permeability thereby facilitates PMN transepithelial migration.  相似文献   

13.
Neutrophil (PMN) transepithelial migration is dependent on the leukocyte beta(2) integrin CD11b/CD18, yet the identity of epithelial counterreceptors remain elusive. Recently, a JAM protein family member termed JAM-C was implicated in leukocyte adhesive interactions; however, its expression in epithelia and role in PMN-epithelial interactions are unknown. Here, we demonstrate that JAM-C is abundantly expressed basolaterally in intestinal epithelia and localizes to desmosomes but not tight junctions. Desmosomal localization of JAM-C was further confirmed by experiments aimed at selective disruption of tight junctions and desmosomes. In assays of PMN transepithelial migration, both JAM-C mAbs and JAM-C/Fc chimeras significantly inhibited the rate of PMN transmigration. Additional experiments revealed specific binding of JAM-C to CD11b/CD18 and provided evidence of other epithelial ligands for CD11b/CD18. These findings represent the first demonstration of direct adhesive interactions between PMN and epithelial intercellular junctions (desmosomes) that regulate PMN transepithelial migration and also suggest that JAM-C may play a role in desmosomal structure/function.  相似文献   

14.
15.
Neutrophil (PMN) transepithelial migration is a major effector of epithelial defense in inflammatory diseases involving mucosal surfaces. However, major receptor-ligand interactions between epithelial cells and PMN remain incompletely characterized. To better define the molecular events involved in PMN interactions with epithelial cells, we produced a monoclonal antibody called g82 that inhibited PMN transepithelial migration in the physiological basolateral-to-apical direction. The g82 antigen localized to the apical surface of human colonic epithelium and was significantly upregulated under inflammatory conditions. Immunoprecipitation revealed two polypeptides of M(r) 207 and 32 kDa. F(ab')(2) fragments from g82 IgG had no effect on transmigration, suggesting Fc dependence. Further experiments confirmed dependence on the PMN Fc receptor CD32A and that the observed effects were secondary to a failure of PMN to detach from the apical epithelial surface. These Fc-mediated events were epitope specific since binding, isotype-matched antibodies did not affect detachment. These results identify a new mechanism for retention of PMN at the apical epithelial surface following transepithelial migration. This pathway may be important in pathogen clearance and mucosal pathophysiology associated with autoimmunity.  相似文献   

16.
Our objective was to study the influence of HIV infection of polymorphonuclear leukocytes (PMN) on transepithelial migration. To date, reports of functional PMN chemotaxis in AIDS are contradictory. This is the first attempt to assess this function via an in vitro model allowing transmigration of neutrophils through an intestinal epithelial barrier. PMN were isolated from 45 HIV-infected patients and 45 healthy volunteers. PMN transmigration across T84 epithelial cells was initiated by applying either various concentrations of formyl-met-leu-phe peptide (f-MLP) or interleukin-8 and assayed by quantification of myeloperoxidase activity. CD11b, CD18, and CD47 expression on PMN was compared before and after transepithelial migration by flow cytometry analysis. CD11b expression was studied by electron microscopy. Apoptosis of transmigrated HIV PMN and control PMN was investigated by morphology and DNA fragmentation characterization. Compared to control PMN, HIV PMN exhibited a decrease in transepithelial migration that directly correlated with CD4+ counts. Basal and transepithelial migration-mediated expression of CD11b, CD18, and CD47 were unmodified in HIV PMN compared to control PMN. Electron microscopy labeling confirmed no difference in CD11b expression on HIV and control PMN. The index of apoptosis in transmigrated HIV PMN and control PMN was identical. These data provide evidence of a defect in the f-MLP-induced chemotaxis of PMN from HIV-infected patients across an intestinal epithelial barrier. This defective migration is not due to a quantitative modification of CD11b, CD18 and CD47 on HIV PMN suggesting a more subtle alteration. The impairment in the transmigration function may contribute in vivo to an increased susceptibility to intestinal bacterial infection in HIV-infected patients.  相似文献   

17.
BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 mAb. Similarly, freshly isolated epithelial cells from inflamed human intestine bound to CD11b/CD18 in an ICAM-1-independent fashion. CONCLUSIONS: These data indicate that ICAM-1 is strictly polarized in intestinal epithelia and does not represent a counterreceptor for neutrophil CD11b/CD18 during physiologically directed transmigration, but may facilitate apical membrane-PMN interactions after the arrival of PMN in the intestinal lumen.  相似文献   

18.
Our laboratory has previously reported that the exposure of smooth muscle cells (SMC) to the cyclic strain results in significant stimulation of protein kinase C (PKC) activity by translocating the enzyme from the cytosol to the particulate fraction. We now sought to examine the strain-induced translocation of individual PKC isoforms in SMC. Confluent bovine aortic SMC grown on collagen type I-coated plates were exposed to cyclic strain for up to 100 s at average 10% strain with 60 cycles/min. Immunoblotting analysis demonstrates that SMC express PKC-alpha, -beta and -zeta in both cytosolic and particulate fractions. Especially, PKC-alpha and -zeta were predominantly expressed in the cytosolic fraction. However, cyclic strain significantly (P < 0.05) increased PKC-alpha and -zeta in the particulate fraction and decreased in the cytosolic fraction. Thus, the cyclic strain-mediated stimulation of PKC activity in SMC may be due to the translocation of PKC-alpha and -zeta from the cytosolic to the particulate fraction. These results demonstrate that mechanical deformation causes rapid translocation of PKC isoforms, which may initiate a cascade of proliferation responses of SMC since NF-kappaB, which is involved in the cellular proliferation has been known to be activated by these PKC isoforms.  相似文献   

19.
To elucidate the involvement of protein kinase C (PKC) isoforms in insulin-induced and phorbol ester-induced glucose transport, we expressed several PKC isoforms, conventional PKC-alpha, novel PKC-delta, and atypical PKC isoforms of PKC-lambda and PKC-zeta, and their mutants in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Endogenous expression and the activities of PKC-alpha and PKC-lambda/zeta, but not of PKC-delta, were detected in 3T3-L1 adipocytes. Overexpression of each wild-type PKC isoform induced a large amount of PKC activity in 3T3-L1 adipocytes. Phorbol 12-myristrate 13-acetate (PMA) activated PKC-alpha and exogenous PKC-delta but not atypical PKC-lambda/zeta. Insulin also activated the overexpressed PKC-delta but not PKC-alpha. Expression of the wild-type PKC-alpha or PKC-delta resulted in significant increases in glucose transport activity in the basal and PMA-stimulated states. Dominant-negative PKC-alpha expression, which inhibited the PMA activation of PKC-alpha, decreased in PMA-stimulated glucose transport. Glucose transport activity in the insulin-stimulated state was increased by the expression of PKC-delta but not of PKC-alpha. These findings demonstrate that both conventional and novel PKC isoforms are involved in PMA-stimulated glucose transport and that other novel PKC isoforms could participate in PMA-stimulated and insulin-stimulated glucose transport. Atypical PKC-lambda/zeta was not significantly activated by insulin, and expression of the wild-type, constitutively active, and dominant-negative mutants of atypical PKC did not affect either basal or insulin-stimulated glucose transport. Thus atypical PKC enzymes do not play a major role in insulin-stimulated glucose transport in 3T3-L1 adipocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号