首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The dissimilation of leucine, isoleucine and valine to volatile fatty acids was determined in Fasciola hepatica and the degradation of (U−14C) branched amino acids to the volatile fatty acids end products demonstrated. F. hepatica was found to metabolize leucine, isoleucine and valine to isovaleric, 2-methylbutyric and isobutyric acid respectively. The rate of formation of isobutyrate, isovalerate and 2-methylbutyrate was found to be positively related to the rate of propionic acid production with air or nitrogen as the gas phase. However, under 95% O2/5% CO2 the formation of the branched chain acids was independent of propionic acid production. The production of isobutyrate, isovalerate and 2-methylbutyrate caused a simultaneous reduction in the rate of acetate formation. The role of propionate formation in regulating metabolism is discussed.  相似文献   

2.
Syntrophic degradation of normal- and branched-chain fatty acids with 4 to 9 carbons was investigated with a mesophilic syntrophic isobutyrate-butyrate-degrading triculture consisting of the non-spore-forming, syntrophic, fatty acid-degrading, gram-positive rod-shaped strain IB, Methanobacterium formicicum T1N, and Methanosarcina mazei T18. This triculture converted butyrate and isobutyrate to methane and converted valerate and 2-methylbutyrate to propionate and methane. This triculture also degraded caproate, 4-methylvalerate, heptanoate, 2-methylhexanoate, caprylate, and pelargoate. During the syntrophic conversion of isobutyrate and butyrate, a reversible isomerization between butyrate and isobutyrate occurred; isobutyrate and butyrate were isomerized to the other isomeric form to reach nearly equal concentrations and then their concentrations decreased at the same rates. Butyrate was an intermediate of syntrophic isobutyrate degradation. When butyrate was degraded in the presence of propionate, 2-methylbutyrate was synthesized from propionate and isobutyrate formed from butyrate. During the syntrophic degradation of valerate, isobutyrate, butyrate, and 2-methylbutyrate were formed and then degraded. During syntrophic degradation of 2-methylbutyrate, isobutyrate and butyrate were formed and then degraded.  相似文献   

3.
A defined medium was developed for Methanomicrobium mobile BP. M. mobile required acetate for growth; the optimal concentration was 30 mM. Other requirements and their optimal concentrations included isobutyrate (0.65 mM), isovalerate (0.73 mM), and 2-methylbutyrate (1.5 mM). The appropriate branched-chain amino acids did not substitute for these branched-chain fatty acids. M. mobile required tryptophan at an optimal concentration of 24 microM. Indole substituted for tryptophan, but the possible precursor compounds shikimic acid and anthranilic acid and the degradation compound skatole did not. Vitamin requirements and their optimal concentrations included pyridoxine (0.49 microM), thiamine (0.15 microM), biotin (0.04 microM), and vitamin B12 (0.04 microM); p-aminobenzoic acid (0.18 microM) was required for optimal growth, but folic acid did not replace p-aminobenzoic acid. M. mobile required an unidentified growth factor found in ruminal fluid or extracts of Methanobacterium thermoautotrophicum for growth. M. mobile has a complex nutrition compared with that of other methanogens, but not an unusual nutrition in the context of organisms from the ruminal ecosystem.  相似文献   

4.
Nutritional requirements of Methanomicrobium mobile.   总被引:3,自引:3,他引:0       下载免费PDF全文
A defined medium was developed for Methanomicrobium mobile BP. M. mobile required acetate for growth; the optimal concentration was 30 mM. Other requirements and their optimal concentrations included isobutyrate (0.65 mM), isovalerate (0.73 mM), and 2-methylbutyrate (1.5 mM). The appropriate branched-chain amino acids did not substitute for these branched-chain fatty acids. M. mobile required tryptophan at an optimal concentration of 24 microM. Indole substituted for tryptophan, but the possible precursor compounds shikimic acid and anthranilic acid and the degradation compound skatole did not. Vitamin requirements and their optimal concentrations included pyridoxine (0.49 microM), thiamine (0.15 microM), biotin (0.04 microM), and vitamin B12 (0.04 microM); p-aminobenzoic acid (0.18 microM) was required for optimal growth, but folic acid did not replace p-aminobenzoic acid. M. mobile required an unidentified growth factor found in ruminal fluid or extracts of Methanobacterium thermoautotrophicum for growth. M. mobile has a complex nutrition compared with that of other methanogens, but not an unusual nutrition in the context of organisms from the ruminal ecosystem.  相似文献   

5.
Summary Anaerobic incubation of intactAscaris suum mitochondria with pyruvate and propionate results in the formation of acetate, 2-methylvalerate, and 2-methylpentenoate and involves a rotenone sensitive, electron-transport associated phosphorylation. Malate inhibits 2-methylvalerate formation in these incubations, apparently by dissipating reducing power necessary for 2-methylvalerate formation. Indeed, malonate, an inhibitor of NADH-dependent fumarate reduction, dramatically stimulates 2-methylvalerate formation in incubations containing malate/propionate and malate/pyruvate/propionate but not pyruvate/propionate. In addition, malonate stimulates both 2-methylbutyrate and 2-methylvalerate formation in incubations with malate alone. The results of the present study suggest that branched-chain fatty acid synthesis inA. suum mitochondria is energy linked and that the inability of isolated, intact mitochondria to form branched-chain fatty acids from malate, their presumed physiological substrate, may result from an imbalance in the initial malate dismutation.Abbreviations BFA branched-chain fatty acid - 2-MB 2-methylbutyrate - 2-MC 2-methylcrotonate - 2-MP 2-methylpentenoate - 2-MV 2-methylvalerate Supported in part by NIH grant No. AI 18427  相似文献   

6.
Listeria monocytogenes, the causative agent of listeriosis, can build up to dangerous levels in refrigerated foods potentially leading to expensive product recalls. An important aspect of the bacterium's growth at low temperatures is its ability to increase the branched-chain fatty acid anteiso C15:0 content of its membrane at lower growth temperatures, which imparts greater membrane fluidity. Mutants in the branched-chain α-keto dehydrogenase (bkd) complex are deficient in branched-chain fatty acids (BCFAs,) but these can be restored by feeding C4 and C5 branched-chain carboxylic acids (BCCAs). This suggests the presence of an alternate pathway for production of acyl CoA precursors for fatty acid biosynthesis. We hypothesize that the alternate pathway is composed of butyrate kinase (buk) and phosphotransbutyrylase (ptb) encoded in the bkd complex which produce acyl CoA products by their sequential action through the metabolism of carboxylic acids. We determined the steady state kinetics of recombinant His-tagged Buk using 11 different straight-chain and BCCA substrates in the acyl phosphate forming direction. Buk demonstrated highest catalytic efficiency with pentanoate as the substrate. Low product formation observed with acetate (C2) and hexanoate (C6) as the substrates indicates that Buk is not involved in either acetate metabolism or long chain carboxylic acid activation. We were also able to show that Buk catalysis occurs through a ternary complex intermediate. Additionally, Buk demonstrates a strong preference for BCCAs at low temperatures. These results indicate that Buk may be involved in the activation and assimilation of exogenous carboxylic acids for membrane fatty acid biosynthesis.  相似文献   

7.
Smith EA  Macfarlane GT 《Anaerobe》1997,3(5):327-337
The abilities of slurries of human faecal bacteria to ferment 20 different amino acids were investigated in batch culture incubations. Ammonia, short chain fatty acids, and in some cases, amines, were the principal products of dissimilatory metabolism. The types of SCFA produced were dependent on the chemical compositions of the test substrates. Thus, acetate and butyrate were formed from the acidic amino acid glutamate, while acetate and propionate predominated in aspartate fermentations. Breakdown of the basic amino acids lysine and arginine was rapid, and yielded butyrate and acetate, and ornithine and citrulline, respectively. The major products of histidine deamination were also acetate and butyrate. However, fermentation of sulphur-containing amino acids was slow and incomplete. Acetate, propionate and butyrate were formed from cysteine, whereas the main products of methionine metabolism were propionate and butyrate. The simple aliphatic amino acids alanine and glycine were fermented to acetate, propionate and butyrate, and acetate and methylamine, respectively. Branched-chain amino acids were slowly fermented by colonic bacteria, with the main acidic products being branched-chain fatty acids one carbon atom shorter than the parent amino acid. Low concentrations of amines were also detected in these fermentations. Aliphatic-hydroxy amino acids were rapidly deaminated by large intestinal microorganisms. Serine was primarily fermented to acetate and butyrate, while threonine was mainly metabolised to propionate. Proline was poorly utilized by intestinal bacteria, but hydroxyproline was efficiently fermented to acetate and propionate. The aromatic amino acids tyrosine, phenylalanine and tryptophan were broken down to a range of phenolic and indolic compounds.  相似文献   

8.
The fatty acid composition of a thermophilic Bacillus sp. was altered by the addition of isobutyrate, isovalerate, alpha-methylbutyrate, leucine, and isoleucine to the growth medium. With isobutyrate, 81% of the fatty acids had 16 carbon atoms and 79% were iso-fatty acids with an even number of carbon atoms. With leucine, 58% of the fatty acids had 15 carbon atoms and 86% were iso-fatty acids with an odd number of carbon atoms. With isoleucine, 72% of the fatty acids had 17 carbon atoms and 88% were anteiso-fatty acids with an odd number of carbon atoms. Thus, by altering the composition of the growth medium, cells were produced in which the majority of the fatty acids had either 15, 16, or 17 carbons and belonged to each of the three groups of branched-chain fatty acids. The wide variation observed in the fatty acid composition makes it unlikely that any specific branched-chain fatty acid is required for vital functions.  相似文献   

9.
A moderately thermophilic anaerobic bacterium (strain Su883), which decarboxylated succinate to propionate, was isolated from granular methanogenic sludge. The bacterium appeared to ferment a number of amino acids including glutamate, histidine, arginine, ornithine, citrulline, and threonine to propionate, acetate and hydrogen. Propionate was formed via the oxidative decarboxylation of -ketoglutarate to succinyl-CoA. In addition, the strain degraded glucose, fructose, glycerol, pyruvate, serine, alanine, citrate and malate to acetate, carbon dioxide and hydrogen, and branched-chain amino acids to branched-chain fatty acids. With all single substrates solely hydrogen was formed as reduced fermentation product. Mixed cultures of strain Su883 and Methanobacterium thermoautotrophicum H showed a more rapid conversion of substrates and with some substrates a shift from acetate to propionate formation.Strain Su883 is a motile, gram-negative, non-sporeforming, slightly curved rod with a DNA base ratio of 56.5 mol% guanine-plus-cytosine. Selenomonas acidaminovorans Su883 is proposed as type strain for the new species within the genus Selenomonas.  相似文献   

10.
Streptomyces cinnamonensis produces a new substance named AIB (for anti-isobutyrate) factor which, on a solid medium, efficiently counteracts toxic concentrations not only of isobutyrate but also of other salts of short-chain monocarboxylic acids. In the present study we demonstrate that the AIB factor activity is widely spread because this effect was positively detected in 25 of 31 randomly chosen microorganisms (streptomycetes, ascomycetes, zygomycetes and basidiomycetes). The AIB factor produced by the tested microorganisms on an agar media allows for germination, growth, and sporulation of the testingStreptomyces coelicolor on an agar medium containing 20 mmol/L acetate, propionate, butyrate, isobutyrate, valerate, isovalerate, and 2-methylbutyrate. The activity of the AIB factor from different sources towards these substances differs.  相似文献   

11.
Thermoanaerobacter brockii fermented serine to acetate and ethanol. It oxidized leucine to isovalerate, isoleucine to 2-methylbutyrate, and valine to isobutyrate only in the presence of thiosulfate, or when co-cultured with Methanobacterium sp. This oxidative deamination was rendered thermodynamically possible by the ability ofT. brockii to reduce thiosulfate to sulfide or the transfer of reducing equivalents to the hydrogenotrophic methanogen. The results suggest that T. brockii may be of ecological significance in thermal environments in the turnover of amino acids, especially with thiosulfate or H(2)-utilizing methanogens are present.  相似文献   

12.
Two types of mesophilic methanogenic granules (R- and F-granules) were developed on different synthetic feeds containing acetate, propionate and butyrate as major carbon sources and their metabolic properties were characterized. The metabolic activities of granules on acetate, formate and H2-CO2 were related to the feed composition used for their development. These granules performed a reversible reaction between H2 production from formate and formate synthesis from H2 plus bicarbonate. Both types of granules exhibited high activity on normal and branched volatile fatty acids with three to five carbons and low activity on ethanol and glucose. The granules performed a reversible isomerization between isobutyrate and butyrate during butyrate or isobutyrate degradation. Valerate and 2-methylbutyrate were produced and consumed during propionate-butyrate degradation. The respective apparent K m (mm) for various substrates in disrupted R- and F-granules was: acetate, 0.43 and 0.41; propionate, 0.056 and 0.038; butyrate, 0.15 and 0.19; isobutyrate, 0.12 and 0.19; valerate, 0.15 and 0.098. Both granules had an optimum temperature range from 40 to 50° C for H2-CO2 and formate utilization and 40° C for acetate, propionate and butyrate utilization and a similar optimum pH. Correspondence to: J. G. Zeikus  相似文献   

13.
After incubation of muscle preparations with [U-14C]branched-chain amino acids or 2-oxo acids, radioactive metabolites were separated, identified and quantified. Homogenates of rat heart and skeletal muscle incubated with 4-methyl-2-oxopentanoate accumulated isovalerate, 3-hydroxyisovalerate and the corresponding carnitine esters. Incubation with 3-methyl-2-oxobutanoate resulted in the production of isobutyrate, 3-hydroxyisobutyrate and their carnitine esters. Addition of L-carnitine increased the production of the esters. The enzymes 3-methylcrotonyl-CoA carboxylase and 3-hydroxyisobutyric acid dehydrogenase apparently are inactive during incubation of muscle homogenates. With liver homogenates the degradation of both 2-oxo acids was more complete. Rat hemidiaphragms incubated with leucine, valine and isoleucine accumulated the corresponding branched-chain 2-oxo acids, fatty acids and hydroxylated fatty acids. The degradation of valine was markedly limited by the release of these metabolites. Considerable amounts (relatively smaller for valine) of radioactivity were also recovered in CO2 and glutamine and glutamate. Incubations with branched-chain 2-oxo acids gave the same radioactive products, except for glutamine and glutamate. Radioactivity was never found in lactate, pyruvate or alanine. These data indicate that the carbon-chains of amino acids entering the citric acid cycle in muscle, are not used for oxidation or for alanine synthesis, but are converted exclusively to glutamine.  相似文献   

14.
An acetate kinase from the photolithoautotrophically grown purple bacterium Rhodopseudomonas palustris was purified to apparent homogeneity by use of high resolving liquid chromatography steps. The monomeric enzyme was characterized by a relative molecular mass of 46,500 and an isoelectric point of 4.9. There was an absolute requirement for divalent metal ions in the enzymatic reaction. Mg2+ and Mn2+ were the most activating cations. The acetate kinase used pyrimidine and purine nucleotides almost equally well as phosphoryl donors. The enzyme phosphorylated acetate, propionate, butyrate and isobutyrate. ATP and acetate revealed the lowest apparent Km values and seemed to act as the favoured substrates. The apparent Km values for ATP formation were considerable lower than those for the formation of acetyl phosphate. The activation energy Ea = 21 kJ/mol of the acetyl phosphate formation was determined by application of Arrhenius plots.  相似文献   

15.
Butyrate and isobutyrate (after isomerization to n-butyrate) are specific precursors for the biosynthesis of monensin A in Streptomyces cinnamonensis. High concentrations of both butyrate and isobutyrate (greater than 20 and 10 mM, respectively) were toxic to S. cinnamonensis plated on solid medium. Spontaneous mutants resistant to these substances were isolated. These new strains produced monensins at even higher concentrations of butyrate or isobutyrate, with an increased yield of monensin A. S. cinnamonensis produced an anti-isobutyrate (AIB) factor, which was originally found to be excreted by some isobutyrate-resistant stains growing on solid medium containing isobutyrate. On plates, the AIB factor efficiently counteracted toxic concentrations not only of isobutyrate, but also of acetate, propionate, butyrate, 2-methylbutyrate, valerate and isovalerate against S. cinnamonensis as well as other Streptomyces species. Although the AIB factor enabled normal growth, sporulation and monensin production on plates, it did not have positive effects on submerged cultures of S. cinnamonensis with isobutyrate. The partial purification of the AIB factor was achieved. The role of the AIB factor during spore germination on solid medium containing isobutyrate or its homologues is discussed.  相似文献   

16.
Hindquarters from starved rats were perfused with plasma concentrations of amino acids, but without other added substrates. Release of amino acids was similar to that previously reported, but, if total amino acid changes were recorded, alanine and glutamine were not formed in excess of their occurrence in muscle proteins. In protein balance (excess insulin) there was no net formation of either alanine or glutamine, even though the branched-chain amino acids and methionine were consumed. If [U-14C]valine was present, radiolabelled 3-hydroxyisobutyrate and, to a lesser extent, 2-oxo-3-methylbutyrate accumulated and radiolabel was incorporated into citrate-cycle intermediates and metabolites closely associated with the citrate cycle (glutamine and glutamate, and, to a smaller extent, lactate and alanine). If a 2-chloro-4-methylvalerate was present to stimulate the branched-chain oxo acid dehydrogenase, flux through this step was accelerated, resulting in increased accumulation of 3-hydroxyisobutyrate, decreased accumulation of 2-oxo-3-methylbutyrate, and markedly increased incorporation of radiolabel (specific and total) into all measured metabolites formed after 3-hydroxyisobutyrate. It is concluded that: amino acid catabolism by skeletal muscle is confined to degradation of the branched-chain amino acids, methionine and those that are interconvertible with the citrate cycle; amino acid catabolism is relatively minor in supplying carbon for net synthesis of alanine and glutamine; and partial degradation products of the branched-chain amino acids are quantitatively significant substrates released from muscle for hepatic gluconeogenesis. For valine, 3-hydroxyisobutyrate appears to be quantitatively the most important intermediate released from muscle. A side path for inter-organ disposition of the branched-chain amino acids is proposed.  相似文献   

17.
Thermoanaerobacter brockiifermented serine to acetate and ethanol. It oxidized leucine to isovalerate, isoleucine to 2-methylbutyrate, and valine to isobutyrate only in the presence of thiosulfate, or when co-cultured withMethanobacteriumsp. This oxidative deamination was rendered thermodynamically possible by the ability ofT. brockiito reduce thiosulfate to sulfide or the transfer of reducing equivalents to the hydrogenotrophic methanogen. The results suggest thatT. brockiimay be of ecological significance in thermal environments in the turnover of amino acids, especially with thiosulfate or H2-utilizing methanogens are present.  相似文献   

18.
Interaction of various compounds with the 14CO2 production from [1-14C]-labelled branched-chain 2-oxo acids was studied in intact rat quadriceps muscle and liver mitochrondria. In the absence of carnitine, CoA esters of short-chain and branched-chain fatty acids, CoA and acetyl-L-carnitine stimulated oxidation of 4-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate in muscle mitochondria. Octanoyl-L-carnitine inhibited oxidation of the latter, but stimulated that of the former substrate. Isovaleryl-L-carnitine was inhibitory with both substrates. Carnitine stimulates markedly 3-methyl-2-oxobutanoate oxidation in liver mitochondria at substrate concentrations higher than 0.1 mM, in contrast to 4-methyl-2-oxopentanoate oxidation. In the presence of carnitine, 3-methyl-2-oxobutanoate oxidation was inhibited in muscle and liver mitochondria by octanoate, octanoyl-L-carnitine and isovaleryl-L-carnitine. The latter ester and octanoyl-D-carnitine inhibited also 4-methyl-2-oxopentanoate oxidation in muscle mitochondria. Branched-chain 2-oxo acids inhibited mutaly their oxidation, except that 3-methyl-2-oxobutanoate did not inhibit 4-methyl-2-oxopentanoate oxidation in liver mitochondria. Their degradation products, isovalerate, 3-methylcrotonate, isobutyrate and 3-hydroxyisobutyrate inhibited to a different extent 2-oxo acid oxidation in liver mitochondria. The effect of CoA esters was studied in permeabilized and with cofactors reinforced mitochondria. Acetyl-CoA and isovaleryl-CoA inhibited only 3-methyl-2-oxobutanoate oxidation in muscle mitochondria. Octanoyl-CoA inhibited oxidation of both 2-oxo acids in muscle and 4-methyl-2-oxopentanoate oxidation in liver mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Wrigley DM 《Anaerobe》2004,10(5):295-300
The effect a common fecal organism, Bacteroides fragilis, has on the sporulation of Clostridium perfringens, an organism linked to some cases of antibiotic associated diarrhea, was examined. Established B. fragilis cultures significantly decreased the number of heat resistant spores formed by C. perfringens ATCC 12915 and increased the number of vegetative cells. To determine if short-chain fatty acids (SCFA), fermentation products of B. fragilis, inhibited sporulation, the SCFA were added to sporulation broth. Sporulation decreased in the presence of acetate, isobutyrate, isovalerate, and succinate. Vegetative cell number for C. perfringens decreased in the cultures with isobutyrate. Propionate did not affect sporulation or vegetative cell number. The data support the hypothesis that the decrease in short-chain fatty acid concentration following antibiotic therapy predisposes patients to diarrheas caused by C. perfringens.  相似文献   

20.
Acetate kinase of Veillonella alcalescens has been shown to be highly regulated enzyme exhibiting two levels of control: the requirement for succinate as a heterotropic allosteric effector, and cooperative binding at the substrate level. Succinate addition was necessary for enzymatic activity in both the direction of acyl phosphate synthesis and that of ATP synthesis. Control at the substrate level was apparent in the cooperative binding (Hill coefficients of 2) of acetyl phosphate, ATP, and ADP. Typical Michaelis kinetic data were observed for succinate (Ka = 20 mM for acetyl phosphate synthesis, 0.4 mM for ATP synthesis), acetate, and propionate. The primary effect of succinate was to increase the apparent Vmax of the enzymatic reaction for the variable substrates, ATP, ADP, and acetyl phosphate. The results are interpreted as evidence that, as a heterotropic effector of the acetate kinase reaction, succinate may regulate levels of propionyl-CoA (produced from propionyl phosphate by action of phosphotransacetylase), a compound required for the conversion of succinate to propionate. Acetase kinase has been shown to be a probable dimeric protein composed of two subunits of molecular weight 44,000 each.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号