首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoanaerobacter (T.) brockii, T. ethanolicus, andT. thermohydrosulfuricus were tested for their capacities to oxidize H2 in the presence of thiosulfate.T. brockii oxidized H2 actively, whileT. ethanolicus andT. thermohydrosulfuricus oxidized it poorly. At the end of the exponential growth, H2 was oxidized byT. brockii in the presence of an energy source and thiosulfate. This oxidative process improved the growth ofT. brockii. Thermoanaerobacter species could be divided into two groups with regard to their H2 metabolism in the presence of thiosulfate. Thiosulfate reduction by species of the genusThermoanaerobacter is of significance in mineralizing organic matter in thermophilic environments.  相似文献   

2.
The growth of Thiobacillus (T.) intermedius strain K12 and Thiobacillus versutus strain DSM 582 on thiosulfate and tetrathionate was studied combining on-line measurements of metabolic activity and sulfur compound analysis. Most results indicate that T. intermedius oxidized thiosulfate via tetrathionate to sulfate. Concomittantly, sulfur compound intermediates like triand pentathionate were detectable. The formation is probably the result of highly reactive sulfane monosulfonic acids. The formation of tetrathionate allows the cells to buffer temporarily the proton excretion from sulfuric acid production. With T. versutus intermediate sulfur compounds were not detectable, however, sulfur was detectable. The possibility of a thiosulfate oxidation via dithionate, S2O inf6 sup2- , is discussed. The on-line measurement of metabolic activity by microcalorimetry enabled us to detect that cells of T. intermedius adhere to surfaces and produce a biofilm by a metabolic process whereas those of T. versutus fail to do so. The importance of the finding is discussed.  相似文献   

3.
The oxidation of organic compounds with elemental sulfur or thiosulfate as electron acceptor was studied in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum. T. tenax was grown on either glucose or casamino acids and sulfur; P. islandicum on peptone and either elemental sulfur or thiosulfate as electron acceptor. During exponential growth only CO2 and H2S rather than acetate, alanine, lactate, and succinate were detected as fermentation products of both organisms; the ratio of CO2/H2S formed was 1:2 with elemental sulfur and 1:1 with thiosulfate as electron acceptor. Cell extracts of T. tenax and P. islandicum contained all enzymes of the citric acid cycle in catabolic activities: citrate synthase, aconitase, isocitrate dehydrogenase (NADP+-reducing), oxoglutarate: benzylviologen oxidoreductase, succinyl-CoA synthetase, succinate dehydrogenase, fumarase and malate dehydrogenase (NAD+-reducing). Carbon monoxide dehydrogenase activity was not detected. We conclude that in T. tenax and P. islandicum organic compounds are completely oxidized to CO2 with sulfur or thiosulfate as electron acceptor and that acetyl-CoA oxidation to CO2 proceeds via the citric acid cycle.  相似文献   

4.
Nuclear genes essential for the biogenesis of the chloroplast cytochrome b 6 f complex were identified by mutations that cause the specific loss of the complex. We describe four transposon-induced maize mutants that lack cytochrome b 6 f proteins but contain normal levels of other photosynthetic complexes. The four mutations define two nuclear genes. To identify the step at which each mutation blocks protein accumulation, mRNAs encoding each subunit were examined by Northern hybridization analysis and the rates of subunit synthesis were examined in pulse-labeling experiments. In each mutant the mRNAs encoding the known subunits of the complex were normal in size and abundance and the major subunits were synthesized at normal rates. Thus, these mutations block the biogenesis of the cytochrome b 6 f complex at a post-translational step. The two nuclear genes identified by these mutations may encode previously unknown subunits, be involved in prosthetic group synthesis or attachment, or facilitate assembly of the complex. These mutations were also used to provide evidence for the authenticity of a proposed fifth subunit of the complex and to demonstrate a role for the cytochrome b 6 f complex in protecting photosystem 11 from light-induced degradation.  相似文献   

5.
Although the activation of phospholipase A2 (PLA2) in ras-transformed cells has been well documented, the mechanisms underlying this activation are poorly understood. In this study we tried to elucidate whether the membrane phospholipid composition and physical state influence the activity of membrane-associated PLA2 in ras-transformed fibroblasts. For this purpose membranes from non-transfected and ras-transfected NIH 3T3 fibroblasts were enriched with different phospholipids by the aid of partially purified lipid transfer protein. The results showed that of all tested phospholipids only phosphatidylcholine (PC) increased PLA2 activity in the control cells, whereas in their transformed counterparts both PC and phosphatidic acid (PA) induced such effect. Further we investigated whether the activatory effect was due only to the polar head of these phospholipids, or if it was also related to their acyl chain composition. The results demonstrated that the arachidonic acid-containing PC and PA molecules induced a more pronounced increase of membrane-associated PLA2 activity in ras-transformed cells compared to the corresponding palmitatestearate- or oleate- containing molecular species. However, we did not observe any specific effect of the phospholipid fatty acid composition in non-transformed NIH 3T3 fibroblasts. In ras-transformed cells incubated with increasing concentrations of arachidonic acid, PLA2 activity was altered in parallel with the changes of the cellular content of this fatty acid. The role of phosphatidic and arachidonic acids as specific activators of PLA2 in ras-transformed cells is discussed with respect to their possible role in the signal transduction pathways as well as in the processes of malignant transformation of cells.  相似文献   

6.
Purple sulfur bacterium Thiocapsa roseopersicina strain BBS requiring vitamin B12 may grow in the dark in media containing no other organic compounds. Under such conditions the cells oxidize sulfide and thiosulfate with the use of O2 and assimilate carbon dioxide. After 10–30 s assimilation of NaH14CO3 about 60% of radioactivity is found in phosphorylated compounds characteristic for the reductive pentose phosphate cycle. The possibility of the function of this cycle in the dark in the presence of O2 is confirmed by the capacity of cells grown under such conditions to synthesize ribulose-1,5-diphosphate carboxylase. All this evidence suggests the ability of T. roseopersicina to change from phototrophy to aerobic chemolithoautotrophy.  相似文献   

7.
All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated O2 additions. The amounts of O2 consumed indicated that the organic substrates were oxidized incompletely to acetate; only Desulfobacter postgatei oxidized acetate with O2 completely to CO2. Many of the strains oxidized sulfite (completely to sulfate) or sulfide (incompletely, except Desulfobulbus propionicus); thiosulfate was oxidized only by strains of Desulfovibrio desulfuricans; trithionate and tetrathionate were not oxidized by any of the strains. With Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus the oxidation of inorganic sulfur compounds was characterized in detail. D. desulfuricans formed sulfate during oxidation of sulfite, thiosulfate or elemental sulfur prepared from polysulfide. D. propionicus oxidized sulfite and sulfide to sulfate, and elemental sulfur mainly to thiosulfate. A novel pathway that couples the sulfur and nitrogen cycles was detected: D. desulfuricans and (only with nitrite) D. propionicus were able to completely oxidize sulfide coupled to the reduction of nitrate or nitrite to ammonia. Cell-free extracts of both strains did not oxidize sulfide or thiosulfate, but formed ATP during oxidation of sulfite (37 nmol per 100 nmol sulfite). This, and the effects of AMP, pyrophosphate and molybdate on sulfite oxidation, suggested that sulfate is formed via the (reversed) sulfate activation pathway (involving APS reductase and ATP sulfurylase). Thiosulfate oxidation with O2 probably required a reductive first step, since it was obtained only with energized intact cells.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - APS adenosine phosphosulfate or adenylyl sulfate  相似文献   

8.
Oxidation of reduced sulfur compounds by the microaerophilic sulfur bacterium spirillum winogradskii was found to occur only concomitantly with consumption of an organic substrate and was not linked to their utilization as electron donors in energy metabolism. No enzymes of dissimilatory sulfur metabolism were found in the cells of the sulfur bacterium oxidizing thiosulfate to tetrathionate; oxidation of thiosulfate and sulfide was caused by their reaction with reactive oxygen species (ROSs), mostly H2O2 produced in the course of aerobic growth. A decreased lytic effect of ROSs in the presence of thiosulfate resulted in a twofold increase in the cell yield under aerobic conditions and more efficient substrate utilization. The latter effect was caused by decreased expenditure of energy for the biosynthesis of oxygen-protective polysaccharides. The stimulatory effect of thiosulfate on the growth processes was due to the activation of a number of TCA cycle enzymes producing the intermediates for constructive metabolism, especially of the NADP-dependent malic enzyme. As a result of thiosulfate-induced synthesis of SH-containing cell components, the integral antioxidative activity increased 1.5-fold.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 17–25.Original Russian Text Copyright © 2005 by Podkopaeva, Grabovich, Dubinina.  相似文献   

9.
PGE2 involvement in experimental Trypanosoma cruzi infection depends on the lethal capacity of the parasite subpopulation used. Mice acutely infected with non-lethal K98 displayed an enhancement in PGE2 serum levels during the acute period, while those infected with lethal T. cruzi subpopulations (RA or K98-2) showed levels not different from normal mice. The enhancement detected in K98 group could be related both to an increased number of CD8+ T cell number and to enhanced PGE2 release per cell by CD8+; values of PGE2 release by adherent cells were not altered in this group. Treatment with cyclooxygenase inhibitors enhanced mortality rates of mice infected with K98, and administration of 16,16-dimethyl PGE2 (dPGE) reversed this effect. However, mice infected with RA did not reduce their mortality rates by administration of diverse doses of dPGE. These findings suggest that PGE2 could play a role in resistance in mice infected with K98.  相似文献   

10.
The biomass yield of freshwater filamentous sulfur bacteria of the genus Beggiatoa, when grown lithoheterotrophically or mixotrophically, has been shown to increase 2 to 2.5 times under microaerobic conditions (0.12 mg/l oxygen) as compared to aerobic conditions (9 mg/l oxygen). The activity of the glyoxylate cycle key enzymes have been found to increase two to three times under microaerobic conditions (at an O2 concentration of 2 mg/l), and the activities of the sulfur metabolism enzymes increased three to five times (at an O2 concentration of 0.1–0.5 mg/l). It has also been found that, under microaerobic conditions, thiosulfate was almost completely oxidized to sulfate by the bacteria, without accumulation of intermediate metabolites. At the same time, a 2- to 15-fold decrease in the activities of the tricarboxylic acid cycle enzymes involved in the reduction of NAD and FAD was observed. Reorganization of the respiratory chain after changes in aeration and type of nutrition was also observed. It has been found that, in cells grown heterotrophically, the terminal part of the respiratory chain contained an aa 3-type oxidase, whereas, during mixotrophic, lithoheterotrophic, and autotrophic growth, aa 3-type oxidase synthesis was inhibited, and the synthesis of a cbb 3-type oxidase, which is induced under microaerobic conditions, was activated. The gene of the catalytic subunit CcoN of the cbb 3-type oxidase was sequenced and proved to be highly homologous to the corresponding genes of other proteobacteria.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 452–459.Original Russian Text Copyright © 2005 by Muntyan, Grabovich, Patritskaya, Dubinina.  相似文献   

11.
In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 M CO2 in C. reinhardtii, C. pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N inC. pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p < 0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C. pyrenoidosa and S. obliquus when exposed to high photon flux density. The photoinhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grownC. pyrenoidosa and S. obliquus. Although pH and pCO2 effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus.  相似文献   

12.
Competition in a chemostat between the versatile Thiobacillus A2 and the specialized T. neapolitanus for thiosulfate as the sole growth-limiting substrate, led to dominance of the specialized over the versatile organism, at dilution rates 0.025 h-1. Increasing concentrations of acetate or glycollate in the thiosulfate medium caused increased relative numbers of T. A2 in steady states at D=0.07 h-1. Eventually, with 10–12 mmol of organic substrate per litre, complete dominance of T. A2 over T. neapolitanus occurred.Mixed cultures of T. A2 and a specialized spirillumshaped heterotroph, competing for acetate as sole growth-limiting substrate resulted in complete dominance of the heterotroph at dilution rates of 0.07 and 0.15 h-1. In this case increasing concentrations of thiosulfate in the acetate medium, up to 10 mM, eventually led to the elimination of the heterotroph.These results have been interpreted as evidence that T. A2 was growing mixotrophically. As the concentration of the second substrate was raised, the number of T. A2 cells increased and as a result T. A2 consumed an increasing portion of the common substrate.In mixed chemostat cultures containing all three organisms, T. A2 could maintain itself with all tested ratios of acetate and thiosulfate in the inflowing medium. The heterotroph was excluded from the culture below a relatively low acetate to thiosulfate ratio, whilst above a relatively high acetate to thiosulfate ratio T. neapolitanus was completely eliminated.These results were discussed in relation to the ecological niche of Thiobacillus A2-type organisms.  相似文献   

13.
Two enzymes containing thiosulfate sulfur transferase activity were purified fromChlorobium vibrioforme f.thiosulfatophilum by ion exchange chromatography, gel filtration and isoelectrofocusing. Enzyme I is a basic protein with an isoelectric point at pH 9.2 and has a molecular weight of 39,000. TheK m-values for thiosulfate and cyanide of the purified basic protein were 0.25 mM (thiosulfate) and 5 mM (cyanide). Enzyme II is an acidic protein. The enzyme has an isoelectric point at pH 4.6–4.7 and a molecular weight of 34,000. TheK m-values of the acidic protein were found to be 5 mM for thiosulfate and 125 mM for cyanide.In addition to thiosulfate sulfur transferase activity, cellfree extracts ofChlorobium vibrioforme f.thiosulfatophilum also contained low thiosulfate oxidase activity and negligible thiosulfate reductase activity. The percent distribution of thiosulfate sulfur transferase and thiosulfate oxidase activities in the organism was independent of the offered sulfur compound (thiosulfate, sulfide or both) in the medium.Abbreviations C Chlorobium - SDS sodium dodecylsulfate Dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 60th birthday  相似文献   

14.
Freshly harvested whole cells from cultures ofP. bryantiiB14 grown with oat spelt xylan (OSX) as an energy source showed less than 25% of the enzyme activity against OSX, and less than 15% of the activity against birchwood xylan (BWX) and carboxymethylcellulose, that was detectable in sonicated cell preparations. This indicates that much of this hydrolytic activity is either periplasmic, membrane-associated or intracellular and may be concerned with the processing of transported oligosaccharides.P. bryantiiB14 cultures were able to utilise up to 45% and 51% of the total pentose present in OSX and BWX, respectively, after 24 h, but could utilize 84% of a water-soluble fraction of BWX. Analysis of the xylan left undegraded after incubation withP. bryantiishowed that while xylose and arabinose were removed to a similar extent, uronic acids were utilized to a greater extent than xylose. Predigestion of xylans with two cloned xylanases from the cellulolytic rumen anaerobeRuminococcus flavefaciensgave little increase in overall pentose utilization suggesting that externalP. bryantiixylanases are as effective as the clonedR. flavefaciensenzymes in releasing products that can be utilised byP. bryantiicells. The xylanase system ofP. bryantiiis able to efficiently utilise not only xylo-oligosaccharides but also larger water-soluble xylan fragments.  相似文献   

15.
Recently the rice (Oryza sativa L.) OsPR1a and OsPR1b genes were primarily characterized against jasmonic acid, ethylene and protein phosphatase 2A inhibitors. The dicot PR1 are recognized as reliable marker genes in defence/stress responses, and we also propose OsPR1 as marker genes in rice, a model monocot crop genus. Therefore, to gain further insight into the expression/regulation of OsPR1 genes, we characterized their activation against signalling molecules such as salicylic acid (SA), abscisic acid (ABA) and hydrogen peroxide (H2O2), and the blast pathogen Magnaporthe grisea. Here, we report that SA and H2O2 strongly induced the mRNA level of both OsPR1 genes, whereas ABA was found to be moderately effective. These inductions were specific in nature and required a de novo synthesized protein factor. A potential interaction amongst the signalling molecules in modulating the expression of OsPR1 genes was observed. Moreover, a specific induction of OsPR1 expression in an incompatible versus compatible host-pathogen interaction was also found. Finally, based on our present and previous results, a model of OsPR1 expression/regulation has been proposed, which reveals their essential role in defence/stress responses in rice and use as potent gene markers.  相似文献   

16.
The capacity for chemoautotrophic, mixotrophic and organotrophic growth in the dark was tested with 45 strains of 17 species (11 genera) of the Chromatiaceae. The auxanographic deep agar shake culture method was used; the gas phase contained 5% O2 and 1% CO2 in N2. All strains tested of Chromatium vinosum, C. minus, C. violascens, C. gracile, Thiocystis violacea, Amoebobacter roseus, Thiocapsa roseopersicina gave positive growth responses under chemoautotrophic and mixotrophic conditions (extra carbon source acetate); one strain of Thiocapsa roseopersicina grew also organotrophically on acetate alone. No growth was obtained with the remaining 17 strains of ten species. None of the five type species (three genera) of the Chlorobiaceae grew under chemotrophic conditions. With Thiocystis violacea 2311 a growth yield of 11.3g dry weight per mol thiosulfate consumed was obtained under chemoautotrophic conditions; under mixotrophic conditions with acetate the yield increased to 69g dry weight per mol thiosulfate consumed. With Thiocystis violacea 2311 maximal specific respiration rates were obtained with thiosulfate as electron donor irrespective of the presence or absence of sulfur globules in the cells; organic substrates served as carbon sources only and did not support respiration. With Chromatium vinosum D utilization of thiosulfate was not constitutive; maximal respiration rates on thiosulfate were obtained only with thiosulfate grown cells containing sulfur globules. Respiration rates were further increased by malate, fumarate or propionate; these substrates also served as sole electron donors for respiration. Acetate and pyruvate were used as carbon sources only. The ecological significance of the chemotrophic metabolism is discussed.  相似文献   

17.
An anaerobic, dehalogenating, sulfate-reducing bacterium, strain DCB-1, is described and nutritionally characterized. The bacterium is a Gram-negative, nonmotile, non-sporeforming large rod with an unusual morphological feature which resembles a collar. The microorganism reductively dehalogenates meta substituted halobenzoates and also reduces sulfate, sulfite and thiosulfate as electron acceptors. The bacterium requires nicotinamide, 1,4-naphthoquinone and thiamine for optimal growth in a defined medium. The microorganism can grow autotrophically on H2:CO2 with sulfate or thiosulfate as terminal electron acceptors. It can also grow heterotrophically with pyruvate, several methoxybenzoates, formate plus sulfate or benzoate plus sulfate. It ferments pyruvate to acetate and lactate in the absence of other electron acceptors. The bacterium is inhibited by MoO inf4 sup2- or SeO inf4 sup2- as well as tetracycline, chloramphenicol, kanamycin or streptomycin. Cytochrome c3 and desulfoviridin have been purified from cells grown in defined medium. 16S rRNA sequence analysis indicates the organism is a new genus of sulfate-reducing bacteria in the delta subdivision of the class Proteobacteria. We propose that the strain be named Desulfomonile tiedjei.Non-standard abbreviations PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - MES 2-[N-morpholino]ethanesulfonic acid - TES N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid - HQNO 2-N-heptyl-4-hydroxy-quinoline-N-oxide - CCCP carbonyl-cyanide-m-chlorophenylhydrazine - CM carboxymethyl  相似文献   

18.
The site of Ahl al Oughlam near Casablanca, Morocco, dated to ca. 2·5 Ma, has yielded a good sample of Theropithecus atlanticus (Thomas, 1884), a North African late Pliocene species previously known only by its holotype, a lower molar from Algeria. Theropithecus atlanticus, which can now be much better defined, is clearly distinct from other species of the genus, which is thus more diverse than previously thought. The mandible of T. atlanticus has a very characteristic deep and long post-molar sulcus and a deep and well excavated supra-lateral triangular depression of the ramus, with a sharp postero-inferior ridge. The upper and lower canines are rather large but low. The male P3is very wide, with well developed posterior crests; the P4is rounded, with a large talonid and weak notches and clefts. Median lingual notches of the lower molars form an acute angle. Although our incomplete knowledge of T. atlanticus precludes a detailed phylogenetic analysis, we suggest that it arose by clado-genesis from the T. dartiT. oswaldi lineage; it is replaced by the latter species in the Pleistocene.Le gisement de Ahl al Oughlam près de Casablanca (Maroc), daté d'environ 2,5 Ma, a livré une belle collection deTheropithecus atlanticus (Thomas, 1884), espèce du Pliocène supérieur nord-africain qui n'était jusque là connue que par son holotype, une molaire inférieure d'Algérie. T. atlanticus, qui peut maintenant être bien mieux défini, se distingue bien des autres espèces du genre, dont la diversité est ainsi accrue. La mandibule de T. atlanticus est très caractéristique par son espace rétro-molaire vaste et profond, et sa dépression supra-latérale de la branche montante également très profonde, avec un rebord inférieur aigu. Les canines supérieures et inférieures sont grosses mais basses. La P3mâle est très large, avec des crêtes postérieures très développées; la P4est arrondie, avec un grand talonide et des sillons peu profonds. Sur les molaires inférieures, le débouché de la vallée médiane forme un angle aigu. Bien que notre connaissance imparfaite de T. atlanticus interdise une analyse phylétique détaillée, nous suggérons une dérivation par cladogenèse à partir de la lignée T. dartiT. oswaldi; cette dernière espèce le remplace au Pléistocène.  相似文献   

19.
20.
Influence of short-term water stress on plant growth and leaf gas exchange was studied simultaneously in a growth chamber experiment using two annual grass species differing in photosynthetic pathway type, plant architecture and phenology:Triticum aestivum L. cv. Katya-A-1 (C3, a drought resistant wheat cultivar of erect growth) andTragus racemosus (L.) All. (C4, a prostrate weed of warm semiarid areas). At the leaf level, gas exchange rates declined with decreasing soil water potential for both species in such a way that instantaneous photosynthetic water use efficiency (PWUE, mmol CO2 assimilated per mol H2O transpired) increased. At adequate water supply, the C4 grass showed much lower stomatal conductance and higher PWUE than the C3 species, but this difference disappeared at severe water stress when leaf gas exchange rates were similarly reduced for both species. However, by using soil water more sparingly, the C4 species was able to assimilate under non-stressful conditions for a longer time than the C3 wheat did. At the whole-plant level, decreasing water availability substantially reduced the relative growth rate (RGR) ofT. aestivum, while biomass partitioning changed in favour of root growth, so that the plant could exploit the limiting water resource more efficiently. The change in partitioning preceded the overall reduction of RGR and it was associated with increased biomass allocation to roots and less to leaves, as well as with a decrease in specific leaf area. Water saving byT. racemosus sufficiently postponed water stress effects on plant growth occurring only as a moderate reduction in leaf area enlargement. For unstressed vegetative plants, relative growth rate of the C4 T. racemosus was only slightly higher than that of the C3 T. aestivum, though it was achieved at a much lower water cost. The lack of difference in RGR was probably due to growth conditions being relatively suboptimal for the C4 plant and also to a relatively large investment in stem tissues by the C4 T. racemosus. Only 10% of the plant biomass was allocated to roots in the C4 species while this was more than 30% for the C3 wheat cultivar. These results emphasize the importance of water saving and high WUE of C4 plants in maintaining growth under moderate water stress in comparison with C3 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号