首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Pattern formation during animal development is often induced by extracellular signaling molecules, known as morphogens, which are secreted from localized sources. During wing development in Drosophila, Wingless (Wg) is activated by Notch signaling along the dorsal-ventral boundary of the wing imaginal disc and acts as a morphogen to organize gene expression and cell growth. Expression of wg is restricted to a narrow stripe by Wg itself, repressing its own expression in adjacent cells. This refinement of wg expression is essential for specification of the wing margin. Here, we show that a homeodomain protein, Defective proventriculus (Dve), mediates the refinement of wg expression in both the wing disc and embryonic proventriculus, where dve expression requires Wg signaling. Our results provide evidence for a feedback mechanism that establishes the wg-expressing domain through the action of a Wg-induced gene product.  相似文献   

2.
The view that only the production and deposition of Abeta plays a decisive role in Alzheimer's disease has been challenged by recent evidence from different model systems, which attribute numerous functions to the amyloid precursor protein (APP). To investigate the potential cellular functions of APP and its paralogs, we use transgenic Drosophila as a model. Upon overexpression of the APP-family members, transformations of cell fates during the development of the peripheral nervous system were observed. Genetic analysis showed that APP, APLP1 and APLP2 induce Notch gain-of-function phenotypes, identified Numb as a potential target and provided evidence for a direct involvement of Disabled and Neurotactin in the induction of the phenotypes. The severity of the induced phenotypes not only depended on the dosage and the particular APP-family member but also on particular domains of the molecules. Studies with Drosophila APPL confirmed the results obtained with human proteins and the analysis of flies mutant for the appl gene further supports an involvement of APP-family members in neuronal development and a crosstalk between the APP family and Notch.  相似文献   

3.
Temporal and spatial regulation of morphogenesis is pivotal to the formation of organs from simple epithelial tubes. In a genetic screen for novel genes controlling cell movement during posterior foregut development, we have identified and molecularly characterized two alleles of the domeless gene which encodes the Drosophila Janus kinase (JAK)/STAT receptor. We demonstrate that mutants for domeless or any other known component of the canonical JAK/STAT signaling pathway display a failure of coordinated cell movement during the development of the proventriculus, a multiply folded organ which is formed by stereotyped cell rearrangements in the posterior foregut. Whereas the JAK/STAT receptor is expressed in all proventricular precursor cells, expression of upd encoding its ligand and of STAT92E, the signal transducer of the pathway, is locally restricted to cells that invaginate during proventriculus development. We demonstrate by analyzing gene expression mediated by a model Notch response element and by studying the expression of the Notch target gene short stop, which encodes a cytoskeletal crosslinker protein, that JAK/STAT signaling is required for the activation of Notch-dependent gene expression in the foregut. Our results provide strong evidence that JAK/STAT and Notch signaling cooperate in the regulation of target genes that control epithelial morphogenesis in the foregut.  相似文献   

4.
5.
Notch signaling controls formation of joints at leg segment borders and growth of the developing Drosophila leg. Here, we identify the odd-skipped gene family as a key group of genes that function downstream of the Notch receptor to promote morphological changes associated with joint formation during leg development. odd, sob, drm, and bowl are expressed in a segmental pattern in the developing leg, and their expression is regulated by Notch signaling. Ectopic expression of odd, sob, or drm can induce invaginations in the leg disc epithelium and morphological changes in the adult leg that are characteristic of endogenous invaginating joint cells. These effects are not due to an alteration in the expression of other genes of the developing joint. While odd or drm mutant clones do not affect leg segmentation, and thus appear to act redundantly, bowl mutant clones do perturb leg development. Specifically, bowl mutant clones result in a failure of joint formation from the distal tibia to tarsal segment 5, while more proximal clones cause melanotic protrusions from the leg cuticle. Together, these results indicate that the odd-skipped family of genes mediates Notch function during leg development by promoting a specific aspect of joint formation, an epithelial invagination. As the odd-skipped family genes are involved in regulating cellular morphogenesis during both embryonic segmentation and hindgut development, we suggest that they may be required in multiple developmental contexts to induce epithelial cellular changes.  相似文献   

6.
The cell surface receptor Notch is required during development of Drosophila melanogaster for differentiation of numerous tissues. Notch is often required for specification of precursor cells by lateral inhibition and subsequently for differentiation of tissues from these precursor cells. We report here that certain embryonic cells and tissues that develop after lateral inhibition, like the connectives and commissures of the central nervous system, are enriched for a form of Notch not recognized by antibodies made against the intracellular region carboxy-terminal of the CDC10/Ankyrin repeats. Western blotting and immunoprecipitation analyses show that Notch molecules lacking this region are produced during embryogenesis and form protein complexes with the ligand Delta. Experiments with cultured cells indicate that Delta promotes accumulation of a Notch intracellular fragment lacking the carboxyl terminus. Furthermore, Notch lacking the carboxyl terminus functions as a receptor for Delta. These results suggest that Notch activities during development include generation and activity of a truncated receptor we designate NDeltaCterm.  相似文献   

7.
杨曦  陈鹏  蒋霞  潘敏慧  鲁成 《昆虫学报》2021,64(2):250-258
Notch 信号通路由 Notch 受体、Notch 配体(DSL 蛋白)、CSL[C promoter binding factor-1(CBF1),Suppressor of hairless(Su(H)),Lag-1]转录因子、其他效应子和Notch调节分子构成,在动物组织的发育和器官的细胞命运决定中起着基础性的...  相似文献   

8.
9.
10.
11.
12.
Notch signaling is involved in several cell lineage determination processes during embryonic development. Recently, we have shown that Sox9 is most likely a primary target gene of Notch1 signaling in embryonic stem cells (ESCs). By using our in vitro differentiation protocol for chondrogenesis from ESCs through embryoid bodies (EBs) together with our tamoxifen-inducible system to activate Notch1, we analyzed the function of Notch signaling and its induction of Sox9 during EB differentiation towards the chondrogenic lineage. Temporary activation of Notch1 during early stages of EB, when lineage determination occurs, was accompanied by rapid and transient Sox9 upregulation and resulted in induction of chondrogenic differentiation during later stages of EB cultivation. Using siRNA targeting Sox9, we knocked down and adjusted this early Notch1-induced Sox9 expression peak to non-induced levels, which led to reversion of Notch1-induced chondrogenic differentiation. In contrast, continuous Notch1 activation during EB cultivation resulted in complete inhibition of chondrogenic differentiation. Furthermore, a reduction and delay of cardiac differentiation observed in EBs after early Notch1 activation was not reversed by siRNA-mediated Sox9 knockdown. Our data indicate that Notch1 signaling has an important role during early stages of chondrogenic lineage determination by regulation of Sox9 expression.  相似文献   

13.
During the development of the Drosophila wing, the activity of the Notch signalling pathway is required to establish and maintain the organizing activity at the dorsoventral boundary (D/V boundary). At early stages, the activity of the pathway is restricted to a small stripe straddling the D/V boundary, and the establishment of this activity domain requires the secreted molecule fringe (fng). The activity domain will be established symmetrically at each side of the boundary of Fng-expressing and non-expressing cells. Here, I present evidence that the Drosophila tumour-suppressor gene lethal (2) gaint discs (lgd) is required to restrict the activity of Notch to the D/V boundary. In the absence of lgd function, the activity of Notch expands from its initial domain at the D/V boundary. This expansion requires the presence of at least one of the Notch ligands, which can activate Notch more efficiently in the mutants. The results further suggest that Lgd appears to act as a general repressor of Notch activity, because it also affects vein, eye, and bristle development.  相似文献   

14.
The remodeling of the actin cytoskeleton is essential for cell migration, cell division, and cell morphogenesis. Actin-binding proteins play a pivotal role in reorganizing the actin cytoskeleton in response to signals exchanged between cells. In consequence, actin-binding proteins are increasingly a focus of investigations into effectors of cell signaling and the coordination of cellular behaviors within developmental processes. One of the first actin-binding proteins identified was filamin, or actin-binding protein 280 (ABP280). Filamin is required for cell migration (Cunningham et al. 1992), and mutations in human alpha-filamin (FLN1; Fox et al. 1998) are responsible for impaired migration of cerebral neurons and give rise to periventricular heterotopia, a disorder that leads to epilepsy and vascular disorders, as well as embryonic lethality. We report the identification and characterization of a mutation in Drosophila filamin, the homologue of human alpha-filamin. During oogenesis, filamin is concentrated in the ring canal structures that fortify arrested cleavage furrows and establish cytoplasmic bridges between cells of the germline. The major structural features common to other filamins are conserved in Drosophila filamin. Mutations in Drosophila filamin disrupt actin filament organization and compromise membrane integrity during oocyte development, resulting in female sterility. The genetic and molecular characterization of Drosophila filamin provides the first genetic model system for the analysis of filamin function and regulation during development.  相似文献   

15.
The development of the Drosophila leg is a good model to study processes of pattern formation, cell death and segmentation. Such processes require the coordinate activity of different genes and signaling pathways that progressively subdivide the leg territory into smaller domains. One of the main pathways needed for leg development is the Notch pathway, required for determining the proximo-distal axis of the leg and for the formation of the joints that separate different leg segments. The mechanisms required to coordinate such events are largely unknown. We describe here that the zinc finger homeodomain-2 (zfh-2) gene is highly expressed in cells that will form the leg joints and needed to establish a correct size and pattern in the distal leg. There is an early requirement of zfh-2 to establish the correct proximo-distal axis, but zfh-2 is also needed at late third instar to form the joint between the fourth and fifth tarsal segments. The expression of zfh-2 requires Notch activity but zfh-2 is necessary, in turn, to activate Notch targets such as Enhancer of split and big brain. zfh-2 is controlled by the Drosophila activator protein 2 gene and regulates the late expression of tarsal-less. In the absence of zfh-2 many cells ectopically express the pro-apoptotic gene head involution defective, activate caspase-3 and are positive for acridine orange, indicating they undergo apoptosis. Our results demonstrate the key role of zfh-2 in the control of cell death and Notch signaling during leg development.  相似文献   

16.
Heparan sulfate (HS) regulates the activity of various ligands and is involved in molecular recognition events on the cell surface and in the extracellular matrix. Specific binding of HS to different ligand proteins depends on the sulfation pattern of HS. For example, the interaction between antithrombin and a particular 3-O sulfated HS motif is thought to modulate blood coagulation. However, a recent study of mice defective for this modification suggested that 3-O sulfation plays other biological roles. Here, we show that Drosophila melanogaster HS 3-O sulfotransferase-b (Hs3st-B), which catalyzes HS 3-O sulfation, is a novel component of the Notch pathway. Reduction of Hs3st-B function by transgenic RNA interference compromised Notch signaling, producing neurogenic phenotypes. We also show that levels of Notch protein on the cell surface were markedly decreased by loss of Hs3st-B. These findings suggest that Hs3st-B is involved in Notch signaling by affecting stability or intracellular trafficking of Notch protein.  相似文献   

17.
18.
19.
Autophagy, an evolutionarily conserved lysosome-mediated degradation, promotes cell survival under starvation and is controlled by insulin/target of rapamycin (TOR) signaling. In Drosophila, nutrient depletion induces autophagy in the fat body. Interestingly, nutrient availability and insulin/TOR signaling also influence the size and structure of Drosophila ovaries, however, the role of nutrient signaling and autophagy during this process remains to be elucidated. Here, we show that starvation induces autophagy in germline cells (GCs) and in follicle cells (FCs) in Drosophila ovaries. This process is mediated by the ATG machinery and involves the upregulation of Atg genes. We further demonstrate that insulin/TOR signaling controls autophagy in FCs and GCs. The analysis of chimeric females reveals that autophagy in FCs, but not in GCs, is required for egg development. Strikingly, when animals lack Atg gene function in both cell types, ovaries develop normally, suggesting that the incompatibility between autophagy-competent GCs and autophagy-deficient FCs leads to defective egg development. As egg morphogenesis depends on a tightly linked signaling between FCs and GCs, we propose a model in which autophagy is required for the communication between these two cell types. Our data establish an important function for autophagy during oogenesis and contributes to the understanding of the role of autophagy in animal development.  相似文献   

20.
The evolutionarily conserved neoplastic tumor suppressor protein, Lethal (2) giant larvae (Lgl), plays roles in cell polarity and tissue growth via regulation of the Hippo pathway. In our recent study, we showed that in the developing Drosophila eye epithelium, depletion of Lgl leads to increased ligand-dependent Notch signaling. lgl mutant tissue also exhibits an accumulation of early endosomes, recycling endosomes, early-multivesicular body markers and acidic vesicles. We showed that elevated Notch signaling in lgl tissue can be rescued by feeding larvae the vesicle de-acidifying drug chloroquine, revealing that Lgl attenuates Notch signaling by limiting vesicle acidification. Strikingly, chloroquine also rescued the lgl overgrowth phenotype, suggesting that the Hippo pathway defects were also rescued. In this extraview, we provide additional data on the regulation of Notch signaling and endocytosis by Lgl, and discuss possible mechanisms by which Lgl depletion contributes to signaling pathway defects and tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号