首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water and nitrogen dynamics in an arid woodland   总被引:5,自引:0,他引:5  
Arid environments are characterized by spatial and temporal variation in water and nitrogen availability. differences in 15N and D of four co-occurring species reveal contrasting patterns of plant resource acquisition in response to this variation. Mineralization potential and nitrogen concentration of surface soils associated with plant canopies were greater than inter-canopy locations, and values decreased with increasing depth in both locations. Mineralization potential and nitrogen concentration were both negatively correlated with soil 15N. The spatial variation in soil 15N caused corresponding changes in plant 15N such that plant 15N values were negatively correlated with nitrogen concentration of surface soils. Plants occurring on soils with relatively high nitrogen concentrations had lower 15N, and higher leaf nitrogen concentrations, than plants occurring on soils with relatively low nitrogen concentrations. Two general temporal patterns of water and nitrogen use were apparent. Three species (Juniperus, Pinus andArtemisia) relied on the episodic availability of water and nitrogen at the soil surface. 15N values did not vary through the year, while xylem pressure potentials and stem-water D values fluctuated with changes in soil moisture at the soil surface. In contrast,Chrysothamnus switched to a more stable water and nitrogen source during drought. 15N values ofChrysothamnus increased throughout the year, while xylem pressure potentials and stem-water D values remained constant. The contrasting patterns of resource acquisition have important implications for community stability following disturbance. Disturbance can cause a decrease in nitrogen concentration at the soil surface, and so plants that rely on surface water and nitrogen may be more susceptible than those that switch to more stable water and nitrogen sources at depth during drougnt.  相似文献   

2.
Spatial variations in nitrogen availability were studied in a desert community codominated byLarrea tridentata (DC.) Cov. andProsopis glandulosa Torr. Measurements of natural 15N values in tissues suggested thatProsopis obtains approximately half of its nitrogen through direct symbiotic fixation. Soils were collected under 1)Prosopis shrubs, 2)Larrea shrubs 2 m fromProsopis (LP), and 3)Larrea 2 m from otherLarrea but> 5 m from the nearestProsopis (LL).Prosopis soils showed significantly higher rates of nitrogen mineralization than LL soils in both A and B horizons. Rates of mineralization in LP soils were significantly higher than rates in LL soils only in the B horizon and were not significantly different from rates inProsopis soils. Leaf nitrogen concentrations were significantly higher in LP shrubs (2.06%) than in LL shrubs (1.78%), although 15N values did not differ between the two shrub types. Nitrogen concentrations inPerezia nana Gray, a perennial herb, were greater in plants underProsopis shrubs (2.09%) than under LP shrubs (1.93%) or LL shrubs (1.67%). Despite apparent differences in nitrogen availability, biomass ofLarrea and density ofPerezia did not differ significantly among these sites.  相似文献   

3.
Wang  G.H. 《Photosynthetica》2003,41(4):525-531
Differences in leaf 13C among four dominant species as well as the species-specific response to the fluctuations of either soil moisture or monthly mean temperature were examined along a secondary succession sere with a time scale from 3 to 149 y on the Loess Plateau in north-western China. We used leaf 13C as a surrogate for water use efficiency (WUE) of the mentioned dominant species. Bothrichloa ischaemun as a dominant species in the final succession stage belongs to C4 photosynthesis pathway, while the other three dominant species occurring in the first three succession stages belong to C3 pathway. The overall trend of leaf 13C variation among the three C3 species was Artemisia gmelinii (in the third stage) and Lespedeza davurica (in the second stage) > Artemisia scoparia (in the first stage). This suggests that species with higher WUE (more positive leaf 13C) would have substantial competitive advantages in the context of vegetation succession. Furthermore, species with highest WUE (i.e. C4 pathway) have great potential to be dominant in the final succession stage in the habitats (such as the study area) undergoing strong water stress in growing season. The evolution of WUE among the dominant species occurring in different succession stages strongly depends on the time scale of given stage since abandonment. The longer the time scale is, the more significant the differences among them in terms of leaf 13C, hence WUE. Our results support the notions that leaf 13C may be more positive when water supply is less favourable.  相似文献   

4.
Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of summer precipitation is generally assumed to affect long-term plant growth and thus alter competitive interactions that structure plant communities and determine potential responses to climate change. We assessed ecophysiological and growth responses to large short-term irrigation pulses over one to three growing seasons for several widespread Great Basin and northern Mojave Desert shrub species: Chrysothamnus nauseosus, Sarcobatus vermiculatus, Atriplex confertifolia, and A. parryi. We compared control and watered plants in nine case studies that encompassed adults of all four species, juveniles for three of the species, and two sites for two of the species. In every comparison, plants used summer water pulses to improve plant water status or increase rates of functioning as indicated by other ecophysiological characters. Species and life history stage responses of ecophysiological parameters (leaf N, 15N, 13C, gas exchange, sap flow) were consistent with several previous short-term studies. However, use of summer water pulses did not affect canopy growth in eight out of nine comparisons, despite the range of species, growth stages, and site conditions. Summer water pulses affected canopy growth only for C. nauseosus adults. The general lack of growth effects for these species might be due to close proximity of groundwater at these sites, co-limitation by nutrients, or inability to respond due to phenological canalization. An understanding of the connections between short-term ecophysiological responses and growth, for different habitats and species, is critical for determining the significance of summer precipitation for desert community dynamics.  相似文献   

5.
Summary Oxygen isotope ratios were determined in leaf cellulose from two plant species at Barro Colorado (Republic of Panama) in 4 different plots, two of which were undergoing an irrigation treatment during the dry season. There is a gradient in 18O values of leaf cellulose from the understory to canopy leaves, reflecting the differences in relative humidity between these two levels of the forest. This gradient is most pronounced in irrigated plots. For irrigated plots there was a highly significant correlation between 18O and 13C values, which was not observed in control plots. This relationship can be explained by humidity controlling stomatal conductance. Low humidity affects 18O values of leaf water during photosynthesis, which isotopically labels cellulose during its synthesis. Low humidity also decreases stomatal conductance, which affects discrimination against carbon-13 by photosynthetic reactions, thus affecting the 13C values of photosynthates. WUE values calculated by using plant carbon and oxygen isotope ratios were similar to those observed with gas exchange measurements in other tropical and temperate area. Thus the concurrent analysis of carbon and oxygen isotope ratios of leaf material can potentially be useful for long term estimation of assimilation and evapotranspiration regimes of plants.  相似文献   

6.
Campbell DR  Galen C  Wu CA 《Oecologia》2005,144(2):214-225
Hybrids between related species vary widely in relative fitness, and that fitness can depend upon the environment. We investigated aspects of physiology that might influence fitness patterns in a plant hybrid zone. Seeds of Ipomopsis aggregata, I. tenuituba, F1 hybrids, F2 hybrids, and offspring of crosses between natural hybrids were planted into the relatively mesic site of origin for I. aggregata and the drier site for natural hybrids. We measured rates of photosynthesis (A max), transpiration (E), instantaneous (A/E) and long-term (δ13C) indices of water use efficiency (WUE), and leaf nitrogen and carbon. We also examined correlations of these traits with plant size. Photosynthetic rate and A/E were higher in vegetative than flowering plants. WUE varied between sites and years, but differences among genotypic classes were spatially and temporally consistent. Instantaneous WUE was higher for F1 hybrids than for the average of the parental species, thereby showing heterosis. There was no evidence of hybrid breakdown, as WUE was no different in the F2 than the average across the F1 and parental species. Nor did WUE depend on cross direction in producing F1 progeny. Carbon isotope discrimination revealed higher long-term water use efficiency in I. tenuituba than I. aggregata. Leaf nitrogen was higher in I. tenuituba than I. aggregata, and higher in offspring of natural hybrids than in the F2. Results indicate heterosis for water use efficiency, with no hybrid breakdown. Heterosis in WUE may help to explain the relatively high survival of both reciprocal F1 hybrids in dry sites within the natural hybrid zone.  相似文献   

7.
Summary The red mangrove (Rhizophora mangle L.) occurs frequently in both scrub and fringe mangrove forests. Our previous study demonstrated that individuals of this mangrove species growing in scrub and fringe forests differ significantly in both morphological and physiological characteristics. To further characterize physiological differences between scrub and fringe mangroves, we compared their differences in water uptake and photosynthetic gas exchange during different seasons. In the wet season (June–October, 1990), scrub mangroves showed lower D and 18O values of stem water than fringe mangroves, indicating more usage of rain-derived freshwater. In the dry season (Jan–April, 1991), however, scrub mangroves utilized the same water source as fringe mangroves, reflected by their similar D and 18O values of stem water. Consistently, there were significant differences in predawn water potentials between scrub and fringe mangroves in the wet season (October 1990) with higher values for scrub mangroves, but no significant differences in the dry season (January 1991). Higher elevation in the scrub forest seems to be the major factor responsible for the shift of water sources in scrub mangroves. On Apr. 27 and Aug. 8, 1990, scrub mangroves showed lower CO2 assimilation rate, stomatal conductance, and intercellular CO2 concentration than fringe mangroves. There were no differences in these gas exchange characteristics on the other two measuring dates: Oct. 17, 1990 and Jan. 11, 1991. Instantaneous water use efficiency was significantly higher for scrub mangroves than for fringe mangroves on three of the four sampling dates. Similarly, leaf carbon isotope discrimination of scrub mangroves was always significantly lower than that of fringe mangroves, indicating higher long-term water use efficiency. Higher water use efficiency in scrub mangroves is a result of stomatal limitation on photosynthesis, which may entail considerable carbon cost to the plants.  相似文献   

8.
The effect of leaf water potential () on net CO2 assimilation rate (A), stomatal conductance (g), transpiration (E) and water-use efficiency (WUE) was measured for three cultivars of cacao (Theobroma cacao L.) seedlings during three recurrent drought cycles. Net assimilation varied greatly at high water potentials, but as dropped below approximately -0.8 and -1.0 MPa, A was reduced to less than 1.5 mol CO2 m-2 s-1. The relation between g and A was highly significant and conformed to an asymptotic exponential model, with A approaching maximal values at stomatal conductances of 55–65 mmol H2O m-2 s-1. Net assimilation varied linearly (r=0.95) with transpiration, and the slope of the A-E relation (WUE) was approximately 3.0 mol CO2 mmol-1 H2O throughout the range of stomatal conductances observed. C i was insensitive to water stress, even though both g and A were strongly affected. Under the experimental conditions used here, mesophyll photosynthesis did not appear to control g through changes in C i. As stress intensified within each drying cycle, WUE of nonirrigated seedlings did not decline relative to that of controls even though CO2 and water vapor exchange rates underwent large displacements. The effect of seed source was highly significant for WUE, and the basis for observed differences among genotypes is discussed.Abbreviations ABA Abscisic Acid  相似文献   

9.
Acacia ampliceps Maslin and Eucalyptus camaldulensis Dehnh. were grown for one year in lysimeters at three soil moisture regimes: 100 % (well-watered), 75 % (medium-watered) and 50 % (low-watered) of total plant available water. Biomass yield of both species increased with increase in soil moisture. Water-use efficiency (WUE) of E. camaldulensis decreased and that of A. ampliceps increased markedly with decrease in available soil moisture. A. ampliceps showed 4 – 5 times more biomass yield than E. camaldulensis grown at similar soil moisture. A. ampliceps showed almost 5, 9 and 12 times higher WUE than E. camaldulensis under low-, medium- and well-watered treatments, respectively. Significant negative correlation of 13C with WUE (r = –0.99) was observed in A. ampliceps. In contrast, 13C of E. camaldulensis showed a significant positive correlation with WUE (r = 0.82).  相似文献   

10.
Akhter  J.  Mahmood  K.  Tasneem  M.A.  Naqvi  M.H.  Malik  K.A. 《Plant and Soil》2003,249(2):263-269
Water-use efficiency (WUE) of Leptochloa fusca (L.) Kunth (Kallar grass) and Sporobolus arabicus Boiss. was determined under different soil moisture regimes. Plants grown in lysimeters were subjected to three soil moisture regimes, viz. well-watered (100%), medium-watered (75%), and low-watered (50%) of total available water (TAW). The soil moisture was restored on alternate days by adding the required volume of water on the basis of neutron moisture meter readings taken from neutron access tubes installed in each lysimeter. The grasses were harvested after suitable intervals (4 months) to obtain maximum biomass. Leaf samples collected at each harvest were analyzed for carbon-isotope discrimination (13C) with an isotope ratio (13C/12C) mass spectrometer. Results indicated significant differences in WUE of both grasses subjected to different water regimes. Sporobolus arabicus showed higher WUE than Kallar grass. However, Kallar grass showed better value of yield response factor (k y = 0.649) compared with Sporobolus (k y = 1.06) over the entire season. The data confirm that these grasses can be grown successfully in water-limited environments by selecting an optimum soil moisture level for maximum biomass production. The mean carbon-isotope discrimination (13C) of Kallar grass (–14.4) and Sporobolus (–12.8) confirm that both are C4 plants. The carbon-isotope discrimination () was significantly and negatively correlated with WUE of the two species studied. The results of the present study confirm that 13C or of leaves can be used as good predictor of WUE in some C4 plants.  相似文献   

11.
Correia  O.  Diaz Barradas  M.C. 《Plant Ecology》2000,149(2):131-142
Previous studies in spatial distribution of male and female shrubs of Pistacia lentiscus have demonstrated that less perturbed areas, older communities with a well developed cover, have male-biased sex ratios, whereas in abandoned old agricultural areas there are no significant differences between the number of male and female plants. In this study, we analyse both sexes in terms of their photosynthetic features that could provide a physiological basis for habitat partitioning between sexes. Rates of light-saturated assimilation and stomatal conductance were studied in male and female plants during summer. Assimilation rates were higher in the morning than in the afternoon and mean daily maximum assimilation rates reached 10.9 and 6.6 mol m–2 s–1, for male and female plants, respectively. In the absence of drought stress (laboratory conditions), the measured photosynthetic characteristics of leaves of male and female plants, provided by fluorescence studies and light and CO2 response curves, were similar. Under natural stress conditions however, lower CO2 assimilation rates and stomatal conductances were recorded in female plants. The differences in the light response curve of effective quantum yield (II) recorded under stress conditions showed also higher quantum yield for male plants under low irradiances. From this study we suggest that the differences observed between male and females are largely due to different degrees of stomatal control rather than to differences in photosynthetic activity, leading to higher water use efficiency (WUE) in female plants. However, despite the higher leaf control of water loss by females, they reduce the water potential to the same values as male plants, probably due to specific characteristics of the root system or of the conducting xylem. These results suggest that the ecological advantage of male plants in older communities is due to a higher competition for water uptake, while in the youngest open areas is the higher WUE in female plants that confer an ecological advantage.  相似文献   

12.
In order to scale up from the ecophysiological characters of individual plants to population-level questions, we need to determine if character patterns in natural populations are stable through time, and if the characters are related to growth and survival. We investigated these questions in a 3-year study for one character, integrated water-use efficiency (WUE) as estimated by carbon isotope discrimination () in a population of the Great Basin shrub, Chrysothamnus nauseosus. WUE was a conservative character for a given plant within and across seasons, and a previously documented difference between two size classes (represented by juveniles and adults) was maintained; smaller juveniles had a lower WUE than larger adults. The lower WUE of juveniles was often accompanied by higher rates of photosynthesis and stomatal conductance as compared to adults even though juveniles generally had more negative xylem pressure potentials. Although many discussions of the role of WUE in natural populations have been based on the expectation that higher WUE (lower ) is generally associated with less growth, we found no such relation-ship for juvenile plants in this population (i.e was not positively correlated with height increase). In addition, juvenile plant mortality was not correlated with . Although there were stable patterns of WUE for plants in this population, the positive correlation between WUE and size, and the lack of a negative correlation between WUE and height growth, make it unlikely that the WUE of an individual plant will be related in a simple manner to its growth and survival in the population.  相似文献   

13.
The leaves and nodules from the shrub and tree legumes, particularly, Aeschynomene spp., Sesbania spp., Mimosa spp. and Leucaena spp., and Casuarina spp. and the leaves from neighbouring non-fixing plants were analyzed for their natural abundances of 15N ( 15N).The 15N in the leaves of non-fixing plants was +5.9% on average, whereas those from shrub legumes and Casuarina spp. were lower and close to the values of atmospheric N2, suggesting the large contribution of N2 fixation as the N source in these plants. The 15N values of the leaves from tree legumes except for Leucaena spp. were between the shrub legumes and non-fixing plants, which suggests that the fractional contribution of fixed N2 in tree legumes may be smaller than that in the shrub legumes. Casuarina spp. was highly dependent on N2 fixation. The 15N values of the nodules from most of the shrub legumes investigated were higher than those of the leaves.  相似文献   

14.
Lucero  D. W.  Grieu  P.  Guckert  A. 《Plant and Soil》2000,227(1-2):1-15
The combined effects of soil water deficit and above and below ground interspecific plant competition on the growth, water-use efficiency (WUE), and measured carbon isotopic composition (δ13C) values of white clover and ryegrass were studied. White clover and ryegrass were grown in specially designed crates 1) individually; 2) in shoot competition; or 3) in shoot + root competition and either well-watered or at a moderate or severe soil water deficit. The effects of shoot + root competition on shoot dry matter growth were substantial and benefited both white clover and ryegrass when well-watered or at a moderate soil water deficit, while severely reducing white clover shoot dry matter growth at severe soil water deficit. Plant competition did not affect the WUE of white clover or ryegrass. As soil water deficit increased, the WUE of white clover did not change whereas the WUE of ryegrass increased and was greater than that of white clover. This was attributed to the lower leaf water conductance of ryegrass which conserved water and maintained growth longer compared to white clover. A stronger correlation existed between soil water deficit and measured δ13C values for ryegrass at each plant competition level (P<0.001) than existed for white clover (individual: P<0.01; shoot + root: P<0.001; shoot: P<0.10). Unlike white clover, the relationship between measured δ13C values and shoot dry matter growth indicated that C assimilation for ryegrass was dependent on type of plant competition. That WUE remained constant for white clover while measured δ13C values increased as soil water deficit increased, suggests that the role below ground respiration rate played in determining δ13C values increased. The WUE of white clover appears to be independent of the nature of the competition between plants and the soil water deficit level at which it is grown, whereas for ryegrass, the addition of root competition to shoot competition should lead to increases in its WUE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
In early stages of primary succession, colonizing plants can create resource patches that influence the abundance and distribution of other species. To test whether different colonizing shrubs generate contrasting patches on coastal sand dunes, we compared soil characteristics and light availability under the nitrogen-fixing shrub Lupinus arboreus, under the non-nitrogen-fixing shrub Artemisia pycnocephala, and between shrubs on dunes at a site in northern California. Concentrations of inorganic nitrogen and net nitrogen mineralization rates were generally 1–10 times greater in soil under Lupinus than under Artemisia or between shrubs. Soil water content was mostly lower under shrubs. Mean photon flux density near ground level was reduced by at least 80% at 35 cm inside shrub canopies. Topography appeared to have more effect on soil moisture but less direct effect on nitrogen availability than did Lupinus. However, Lupinus probably increases nitrogen levels more on higher, drier dunes. Microhabitats under and between nitrogen-fixing shrubs constitute a mosaic of individually poor but complementary patches in which high levels of light and moderate levels of soil nitrogen are present but tend not to occur together.  相似文献   

16.
Ekblad  Alf  Nordgren  Anders 《Plant and Soil》2002,245(1):115-122
To study whether the biomass of soil microorganisms in a boreal Pinus sylvestris-Vaccinium vitis-idaea forest was limited by the availability of carbon or nitrogen, we applied sucrose from sugar cane, a C4 plant, to the organic mor-layer of the C3–C dominated soil. We can distinguish between microbial mineralization of the added sucrose and respiration of endogenous carbon (root and microbial) by using the C4-sucrose as a tracer, exploiting the difference in natural abundance of 13C between the added C4-sucrose (13C –10.8) and the endogenous C3–carbon (13C –26.6 ). In addition to sucrose, NH4Cl (340 kg N ha–1) was added factorially to the mor-layer. We followed the microbial activity for nine days after the treatments, by in situ sampling of CO2 evolved from the soil and mass spectrometric analyses of 13C in the CO2. We found that microbial biomass was limited by the availability of carbon, rather than nitrogen availability, since there was a 50% increase in soil respiration in situ between 1 h and 5 days after adding the sucrose. However, no further increase was observed unless nitrogen was also added. Analyses of the 13C ratios of the evolved CO2 showed that increases in respiration observed between 1 h and 9 days after the additions could be accounted for by an increase in mineralization of the added C4–C.  相似文献   

17.
Effects of salinity and nutrients on carbon gain in relation to water use were studied in the grey mangrove, Avicennia marina, growing along a natural salinity gradient in south‐eastern Australia. Tall trees characterized areas of seawater salinities (fringe zone) and stunted trees dominated landward hypersaline areas (scrub zone). Trees were fertilized with nitrogen (+N) or phosphorus (+P) or unfertilized. There was no significant effect of +P on shoot growth, whereas +N enhanced canopy development, particularly in scrub trees. Scrub trees maintained greater CO2 assimilation per unit water transpired (water‐use efficiency, WUE) and had lower nitrogen‐use efficiency (NUE; CO2 assimilation rate per unit leaf nitrogen) than fringe trees. The CO2 assimilation rates of +N trees were similar to those in other treatments, but were achieved at lower transpiration rates, stomatal conductance and intercellular CO2 concentrations. Maintaining comparable assimilation rates at lower stomatal conductance requires greater ribulose 1·5‐bisphosphate carboxylase/oxygenase activity, consistent with greater N content per unit leaf area in +N trees. Hence, +N enhanced WUE at the expense of NUE. Instantaneous WUE estimates were supported by less negative foliar δ13C values for +N trees and scrub control trees. Thus, nutrient enrichment may alter the structure and function of mangrove forests along salinity gradients.  相似文献   

18.

Background

In a semi-arid ecosystem, water is one of the most important factors that affect vegetation dynamics, such as shrub plantation. A water use strategy, including the main water source that a plant species utilizes and water use efficiency (WUE), plays an important role in plant survival and growth. The water use strategy of a shrub is one of the key factors in the evaluation of stability and sustainability of a plantation.

Methodology/Principal Findings

Caragana intermedia is a dominant shrub of sand-binding plantations on sand dunes in the Gonghe Basin in northeastern Tibet Plateau. Understanding the water use strategy of a shrub plantation can be used to evaluate its sustainability and long-term stability. We hypothesized that C. intermedia uses mainly deep soil water and its WUE increases with plantation age. Stable isotopes of hydrogen and oxygen were used to determine the main water source and leaf carbon isotope discrimination was used to estimate long-term WUE. The root system was investigated to determine the depth of the main distribution. The results showed that a 5-year-old C. intermedia plantation used soil water mainly at a depth of 0–30 cm, which was coincident with the distribution of its fine roots. However, 9- or 25-year-old C. intermedia plantations used mainly 0–50 cm soil depth water and the fine root system was distributed primarily at soil depths of 0–50 cm and 0–60 cm, respectively. These sources of soil water are recharged directly by rainfall. Moreover, the long-term WUE of adult plantations was greater than that of juvenile plantations.

Conclusions

The C. intermedia plantation can change its water use strategy over time as an adaptation to a semi-arid environment, including increasing the depth of soil water used for root growth, and increasing long-term WUE.  相似文献   

19.
Winter and spring precipitation that saturates to deep soil layers precedes summer droughts in the Intermountain West. Occasional summer convection storms relieve summer drought, but are infrequent and unreliable from year to year, leading to the hypothesis that dominant tree species might not invest limited carbon reserves to surface roots to take up summer precipitation in these regions. We compared the hydrogen (D) and oxygen (18O) isotope ratios of winter, spring and summer precipitation to that of xylem sap water in Acer grandidentatum and Quercus gambelii, two dominant trees of this region. By this method we could identify water sources utilized throughout the growing season. Xylem D and 18O values changed significantly when each species leafed-out; this change was not associated with changes in either soil or plant water status (as measured by predawn and midday water potentials). This shift is apparently related increased transpirational flux, which may flush out residual stem water from the previous growing season. D values of xylem sap of both species matched winter precipitation input values throughout most of the summer, indicating a reliance on deep-soil moisture sources throughout the growing season. Mature Q. gambelii did not take up summer precipitation, whereas A. grandidentatum responded slightly to the largest summer rain event. Small trees of both species, particularly A. grandidentatum, showed a limited uptake of summer rains.  相似文献   

20.
Natural abundances of nitrogen isotopes, 15N, indicate that, in the same habitat, Alaskan Picea glauca and P. mariana use a different soil nitrogen compartment from the evergreen shrub Vaccinium vitis-idaea or the deciduous grass Calamagrostis canadensis. The very low 15N values (-7.7 ) suggest that (1) Picea mainly uses inorganic nitrogen (probably mainly ammonium) or organic N in fresh litter, (2) Vaccinium (-4.3 ) with its ericoid mycorrhizae uses more stable organic matter, and (3) Calamagrostis (+0.9 ) exploits deeper soil horizons with higher 15N values of soil N. We conclude that species limited by the same nutrient may coexist by drawing on different pools of soil N in a nutrient-deficient environment. The differences among life-forms decrease with increasing N availability. The different levels of 15N are associated with different nitrogen concentrations in leaves, Picea having a lower N concentration (0.62 mmol g–1) than Vaccinium (0.98 mmol g–1) or Calamagrostis (1.33 mmol g–1). An extended vector analysis by Timmer and Armstrong (1987) suggests that N is the most limiting element for Picea in this habitat, causing needle yellowing at N concentrations below 0.5 mmol g–1 or N contents below 2 mmol needle–1. Increasing N supply had an exponential effect on twig and needle growth. Phosphorus, potassium and magnesium are at marginal supply, but no interaction between ammonium supply and needle Mg concentration could be detected. Calcium is in adequate supply on both calcareous and acidic soils. The results are compared with European conditions of excessive N supply from anthropogenic N depositions.Dedicated to Prof. Dr. Drs. h.c. H. Ziegler on the occasion of his 70th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号