首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The predatory mirid Dicyphus hesperus Knight (Hemiptera: Miridae) is native to North America. The species has been used for the control of glasshouse whitefly on aubergine in the Netherlands, and is currently being evaluated for continued and wider release in Europe. Field and laboratory studies were conducted on a population collected from southern California, USA, to assess the cold tolerance and potential for outdoor establishment under prevailing northern European climates. The supercooling points (whole animal freezing temperatures) of nymphal and adult insects were around −20°C. The lethal temperatures (LTemp50) of non-diapausing nymphs and adults and diapausing adults were close to their respective freezing temperatures at −17.6, −17.6 and −19.2°C. At 5°C, the LTime50 was 54, 101.7 and 117.5 days for fed nymphs, non-diapausing and diapausing adults respectively. When first instar nymphs were placed in the field in winter, starved samples died out after 70 days, but 5% of the fed nymphs survived until the end of winter (140 days) and developed to adult on return to the laboratory. After a similar 5-month field exposure, 50% of fed diapausing adults and 15% of fed non-diapausing adults were still alive at the end of winter, whereas starved diapausing adults died after 140 days. On return to the laboratory after 5 months in the field, both diapausing and non-diapausing adults mated and laid eggs, forming viable populations. Overall, the field and laboratory experiments indicate that this population of D. hesperus is able to enter diapause and that winter temperatures are not a barrier to establishment in northern Europe.  相似文献   

2.
Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae, Aphidiinae) is a parasitic wasp which plays an important role in the biological control of a number of aphid species. Through assessment of its thermal biology and low temperature tolerance, this study ascertains the establishment potential of L. testaceipes in cool temperate climates typical of northern Europe. The developmental threshold of L. testaceipes was 5.8°C. Rearing of parasitoids at shorter day lengths and lower temperatures indicated no ability to enter a diapause state. The supercooling points (SCP) of non-acclimated and acclimated parasitoid life stages were between −24.6°C and −17.7°C, with LTemp50 temperatures approaching these values, indicating a high level of cold tolerance in short exposures. At 5°C the LTime50 of acclimated larvae within parasitized aphids was 42.8 days. Acclimated pupae continued to develop with 54% adult emergence from mummies within 60 days. Acclimated parasitoid larvae and pupae, within living and mummified aphids, continued to develop during 70 days of winter field exposure and emerging adult parasitoids were reproductively viable under field conditions. These data indicate that where suitable host species are available throughout the year, L. testaceipes would be able to establish in northern Europe.  相似文献   

3.
Tomato is the most important vegetable crop in Spain. The mirid bug Nesidiocoris tenuis (Reuter) commonly appears in large numbers in protected and open-air tomato crops where little or no broad-spectrum insecticides are used. Nesidiocoris tenuis is known to be a predator of whiteflies, thrips and several other pest species. However, it is also considered a pest because it can feed on tomato plants, causing necrotic rings on stems and flowers and punctures in fruits. Our objectives were to evaluate predation by N. tenuis on sweetpotato whitefly Bemisia tabaci Gennadius under greenhouse conditions and establish its relationship to N. tenuis feeding on tomato. Two different release rates of N. tenuis were compared with an untreated control (0, 1 and 4 N. tenuis plant−1) in cages of 8 m2. Significant reductions of greater than 90% of the whitefly population and correspondingly high numbers of N. tenuis were observed with both release rates. Regression analysis showed that necrotic rings on foliage caused by N. tenuis were best explained by the ratio of B. tabaci nymphs:N. tenuis as predicted by the equation y = 15.086x − 0.6359.
Alberto UrbanejaEmail:
  相似文献   

4.
Quolls (Dasyurus) are medium-sized carnivorous dasyurid marsupials. Tiger (3,840 g) and eastern quolls (780 g) are mesic zone species, northern quolls (516 g) are tropical zone, and chuditch (1,385 g) were once widespread through the Australian arid zone. We found that standard physiological variables of these quolls are consistent with allometric expectations for marsupials. Nevertheless, inter-specific patterns amongst the quolls are consistent with their different environments. The lower T b of northern quolls (34°C) may provide scope for adaptive hyperthermia in the tropics, and they use torpor for energy/water conservation, whereas the larger mesic species (eastern and tiger quolls) do not appear to. Thermolability varied from little in eastern (0.035°C °C−1) and tiger quolls (0.051°C oC−1) to substantial in northern quolls (0.100°C oC−1) and chuditch (0.146°C oC−1), reflecting body mass and environment. Basal metabolic rate was higher for eastern quolls (0.662 ± 0.033 ml O2 g−1 h−1), presumably reflecting their naturally cool environment. Respiratory ventilation closely matched metabolic demand, except at high ambient temperatures where quolls hyperventilated to facilitate evaporative heat loss; tiger and eastern quolls also salivated. A higher evaporative water loss for eastern quolls (1.43 ± 0.212 mg H2O g−1 h−1) presumably reflects their more mesic distribution. The point of relative water economy was low for tiger (−1.3°C), eastern (−12.5°C) and northern (+3.3) quolls, and highest for the chuditch (+22.6°C). We suggest that these differences in water economy reflect lower expired air temperatures and hence lower respiratory evaporative water loss for the arid-zone chuditch relative to tropical and mesic quolls.  相似文献   

5.
In January and February 2010, heavy sea ice formed along the coast of the Bohai Sea and the northern Yellow Sea, China. Intertidal organisms were subjected to serious freezing stress. In this study, we investigated the freezing tolerance of the upper intertidal economic seaweed Porphyra yezoensis. The maximum photochemical efficiency of PS II (F v/F m) in undehydrated thalli remained high after 24 h at −2°C and that in dehydrated thalli decreased in a proportion to thallial water loss. F v/F m dropped sharply after 24 h at −20°C, regardless of absolute cellular water content (AWC). The F v/F m in frozen thalli recovered rapidly at 0–20°C. A wide range of water loss in the thalli enhanced their tolerance to freezing. F v/F m values in undehydrated thalli dropped sharply after 3 d at −2°C or 10 d at −20°C while those in dehydrated thalli (20–53% AWCs) remained at high levels after 9 d at −2°C or 30 d at −20°C. These results indicate that P. yezoensis has high freezing tolerance by means of dehydration during the ebb tide and rapid recovery of F v/F m from freezing. A strategy of P. yezoensis industry to avoid heavy loss during freezing season is discussed based on these findings.  相似文献   

6.
The change of current pools of soil C in Norway spruce ecosystems in Sweden were studied using a process-based model (CoupModel). Simulations were conducted for four sites representing different regions covering most of the forested area in Sweden and representing annual mean temperatures from 0.7°C to 7.1°C. The development of both tree layer and field layer (understory) was simulated during a 100-year period using data on standing stock volumes from the Swedish Forest Inventory to calibrate tree growth using different assumptions regarding N supply to the plants. The model successfully described the general patterns of forest stand dynamics along the Swedish climatic transect, with decreasing tree growth rates and increasing field layer biomass from south to north. However, the current tree growth pattern for the northern parts of Sweden could not be explained without organic N uptake and/or enhanced mineralisation rates compared to the southern parts. Depending on the assumption made regarding N supply to the tree, different soil C sequestration rates were obtained. The approach to supply trees with both mineralised N and organic N, keeping the soil C:N ratio constant during the simulation period was found to be the most realistic alternative. With this approach the soils in the northern region of Sweden lost 5 g C m−2 year−1, the soils in the central region lost 2 g C m−2 year−1, and the soils in the two southern regions sequestered 9 and 23 g C m−2 year−1, respectively. In addition to climatic effects, the feedback between C and N turnover plays an important role that needs to be more clearly understood to improve estimates of C sequestration in boreal forest ecosystems.  相似文献   

7.
Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NPmax), maximum efficiency of photosystem II [variable fluorescence (F v)/maximum fluorescence yield (F m)] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NPmax did not differ between control (0.2 g N m−2 year−1) and high N (3.0 g N m−2 year−1), but was higher in the mid N treatment (1.5 g N m−2 year−1). N, C, carotenoids and chlorophyll concentration increased in shoot apices after N addition. F v/F m did not differ between N treatments. Increased temperature (+3.6°C) had a small negative effect on N concentration, but had no significant effect on NPmax or F v/F m. Addition of 2 g S m−2 year−1 showed a weak negative effect on NPmax and F v/F m. Our results suggest a unimodal response of NPmax to N addition and tissue N concentration in S. balticum, with an optimum N concentration for photosynthetic rate of ~13 mg N g−1. In conclusion, high S deposition may reduce photosynthetic capacity in Sphagnum, but the negative effects may be relaxed under high N availability. We suggest that previously reported negative effects on Sphagnum productivity under high N deposition are not related to negative effects on the photosynthetic apparatus, but differences in optimum N concentration among Sphagnum species may affect their competitive ability under different N deposition regimes.  相似文献   

8.
The cold tolerance abilities of only a few nematode species have been determined. This study shows that the oatmeal nematode, Panagrellus redivivus, has modest cold tolerance with a 50% survival temperature (S 50) of −2.5°C after cooling at 0.5°C min−1 and freezing for 1 h. It can survive low temperatures by freezing tolerance and cryoprotective dehydration; although freezing tolerance appears to be the dominant strategy. Freezing survival is enhanced by low temperature acclimation (7 days at 5°C), with the S 50 being lowered by a small but significant amount (0.42°C). There is no cold shock or rapid cold hardening response under the conditions tested. Cryoprotective dehydration enhances the ability to survive freezing (the S 50 is lowered by 0.55°C, compared to the control, after 4 h freezing at −1°C) and this effect is in addition to that produced by acclimation. Breeding from survivors of a freezing stress did not enhance the ability to survive freezing. The cold tolerance abilities of this nematode are modest, but sufficient to enable it to survive in the cold temperate environments it inhabits.  相似文献   

9.
Energy crises, global warming, and climatic changes call for technological and commercial advances in manufacturing high-quality transportation fuels from unconventional feedstocks. Microalgae is one of the most promising sources of biofuels due to the high yields attained per unit area and because it does not displace food crops. Neochloris oleabundans (Neo) microalga is an important promising microbial source of single-cell oil (SCO). Different experimental growth and lipid production conditions were evaluated and compared by using optical density (540 nm), dry-weight determination, and flow cytometry (FC). Best Neo average biomass productivity was obtained at 30°C under conditions of nitrogen-sufficiency and CO2 supplementation (N+/30°C/CO2), with an average doubling time of 1.4 days. The second and third highest productivities occurred with N-sufficient cultures without CO2 supplementation at 26°C (N+/26°C) and at 30°C (N+/30°C), with doubling times of 1.7 and 2.2 days, respectively. Microbial lipid production was monitored by flow cytometry using Nile red (NR), a lipophilic fluorochrome that possesses several advantageous characteristics for in situ screening near real time (at line). Results showed maximum lipid content (56%) after 6 days of nitrogen depletion under nitrogen starvation without CO2 supplementation (N−/30°C), followed by N−/30°C/CO2 and N−/26°C conditions with 52% lipid content, after 5 and 6 days of N starvation, respectively. The adequate fatty acid profile and iodine value of Neo lipids reinforced this microalga as a good source of SCO, in particular for use as biodiesel.  相似文献   

10.
This study investigated the effect of temperature on the development and overwintering capacity of the pupal parasitoid, Diadromus pulchellus Wesmael (Hymenoptera: Ichneumonidae), a candidate classical biological control agent against leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae) in Canada. It was estimated that 256.4 day-degrees, above a lower threshold temperature of 7.3°C, were required for D. pulchellus to complete development, from egg to adult eclosion. Laboratory and field experiments on the immature and mature parasitoids indicated that D. pulchellus overwinters primarily, if not exclusively, in the adult stage. Only adults were able to survive an entire winter under natural outdoor conditions in central Europe. Immature parasitoids developing inside their pupal hosts were capable of withstanding short periods of temperatures as low as −5°C or −10°C, but even much higher temperatures were lethal if sustained for several weeks. Among adults, females demonstrated greater cold hardiness than males. The LTime50 at −12°C, simulating winter temperatures without snow cover, was 4–5 and 6–7 days for males and females, respectively. The LTime50 at −4°C, simulating winter temperatures beneath an insulating snow layer, was 1–2 and 2–3 weeks for males and females, respectively, with maximum survival of eight weeks. It is likely that survival would be even greater in a natural environment where the parasitoids could select optimal overwintering sites and have the option to feed when temperatures rise enough to permit activity. Based on these results, D. pulchellus is expected to survive winters in the targeted release areas of Ontario and Quebec.  相似文献   

11.
Two experiments were performed to determine how application of the cytokinin benzyladenine (BA) influenced flowering in Doritaenopsis and Phalaenopsis orchid clones. In the first experiment, two vegetative orchid clones growing in 15-cm pots were transferred from a 28°C greenhouse that inhibited flowering to a 23°C greenhouse for flower induction (day 0). A foliar spray (0.2 L m−2) containing BA at 100, 200, or 400 mg L−1 or 25, 50, or 100 mg L−1 each of BA and gibberellins A4 + A7 (BA+GA) was applied on days 0, 7, and 14. Plants treated with BA alone at 200 or 400 mg L−1 had a visible inflorescence 3–9 days earlier and had a mean of 0.7–3.5 more inflorescences and 3–8 more flowers per plant than nontreated plants. The application of BA+GA had no effect on inflorescence number and total flower number at the rates tested. In the second experiment, three orchid clones received a single foliar spray of BA at 200 mg L−1 at six time points relative to time of transfer from 29°C to 23°C (−1, 0, +1, +2, +4, or +6 weeks). A separate group of plants received a BA application at week 0 but was maintained at 29°C. Inflorescence number was greatest in all three orchid clones when plants were treated with BA 1 week after the temperature transfer. Plants that were sprayed with BA and maintained at 29°C did not initiate inflorescences. The promotion of flowering by the application of BA suggests that cytokinins at least partially regulate inflorescence initiation of Doritaenopsis and Phalaenopsis, but its promotion is conditional and BA application cannot completely substitute for an inductive low temperature.  相似文献   

12.
Little is known about how adults of the corn leafhopper,Dalbulus maidis (DeLong & Wolcott), and its congeners survive subfreezing temperatures at high elevations during the dry winter in Mexico. In the laboratory, duration of survival at −5°C was measured for four MexicanDalbulus species:D. maidis, D. elimatus (Ball),D. gelbus DeLong andD. quinquenotatus DeLong & Nault; and a closely related North American species,Baldulus tripsaci Kramer & Whitcomb. Adult leafhoppers reared under environmental conditions that simulated the beginning of the dry winter season during October in Mexico (‘October-reared’) were at least twice as tolerant of −5°C than adults reared under environmental conditions that simulated the beginning of the wet summer season during June (‘June-reared’).Dalbulus species found primarily at high elevations, such asD. elimatus, were seven times more tolerant of −5°C thanD. quinquenotatus, a species which overwinters at low to mid elevations on itsTripsacum hosts. October-rearedD. maidis adults survived relatively short periods at −5°C (LT50=8.9h) compared to October-rearedD. elimatus adults (LT50=42.3h). This suggests that in Mexico,D. maidis either overwinters in protected habitats at higher elevations or it migrates to lower, frost-free regions. October-rearedB. tripsaci adults, which overwinter in the egg stage, were intolerant of −5°C (LT50=2.6h). A conditioning period for 1 h at +5°C before and after exposure to −5°C significantly improved survival forD. maidis. Supercooling points (SCPs) were between −23 and −20°C, indicating that mortality of these leafhoppers at −5°C was due to cold shock injury rather than internal ice formation.  相似文献   

13.
Maturation to adulthood and successful reproduction in the Antarctic fairy shrimp, Branchinecta gaini, must be completed within a physiologically challenging temporal window of ca. 2.5 months in the southern Antarctic Peninsula. Although adults show considerable metabolic opportunism at positive temperatures, little is known of their tolerance of two physiological insults potentially typical to pool life in the maritime Antarctic: sub-zero temperatures and salinity. B. gaini are freeze-avoiding crustaceans with temperatures of crystallisation (T cs) of −5°C. No antifreeze proteins were detected in the haemolymph. Adults osmoregulate in relation to temperature, but rapid mortality in saline solutions of even low concentration, indicate they cannot osmoregulate in relation to salinity. Survival of ice encasement at temperatures above their T c was found to be pressure but not time dependent: at severe inoculative ice pressures, there was little immediate survival and none survived after 48 h below −2°C; at mild inoculative ice pressures, immediate survival was ca. 100% at −3°C, but <20% after 48 h. There was no significant difference in survival after 1 and 6 h encasement at −3°C. Observations of ventilation suggest that it is not low temperature per se, but ice that represents the primary cryo-stress, with ventilatory appendages physically handcuffed below the freezing point of pool water. Both sub-zero temperatures and salinity represent real physiological constraints on adult fairy shrimp.  相似文献   

14.
Two 60-day experiments were conducted to study the influence of photon flux density (PFD) and temperature on the attachment and development of Gloiopeltis tenax and Gloiopeltis furcata tetraspores. In the first experiment, tetraspores of the two Gloiopeltis species were incubated at five temperature ranges (8°C, 12°C, 16°C, 20°C, 24°C) under a constant PFD of 80 μmol photons m−2 s−1 with a photoperiod of 12:12. In a second experiment, tetraspores were incubated under five PFD gradients (30, 55, 80, 105, 130 μmol photons m−2 s−1) at a constant temperature of 16°C with a photoperiod of 12:12. Maximum density of attached tetraspores was observed at 16°C for both species. Maximum per cent of spore germinating into disc was recorded at 12–16°C for G. tenax and 8–12°C for G. furcata. Maximum per cent of discs producing erect axes for G. tenax and G. furcata were recorded at 24°C and 20°C, respectively. Light had no significant effect on tetraspore attachment and developing into disc, but it affected the growth, sprouting and survival of its discs. Under 30–55 μmol photons m−2 s−1, the discs of the two species of Gloiopeltis did not form thallus until the end of the experiment. Optimum PFD range for G. tenax discs was 80–105 μmol photons m−2 s−1, whilst it was 80–130 μmol photons m−2 s−1 for G. furcata. Results presented in this study are expected to assist the progress of artificial seeding of Gloiopeltis.  相似文献   

15.
16.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

17.
In this study a Brazilian granulovirus strain, PhopGV, isolated from the potato tuber moth (PTM) Phthorimaea operculella, was investigated regarding its potential for biological control and in vivo production. The relationship between mortality of P. operculella larvae and virus concentration was determined at different temperatures on potato tubers and susceptibility of P. operculella to PhopGV was also determined on potato leaves. Virulence of PhopGV to P. operculella was not affected by temperatures from 18 to 30°C. The median lethal concentration (LC50) of larvae fed on potato foliage treated with PhopGV was not higher than that verified with larvae fed on treated tubers. Optimal conditions for production of virus-infected larvae were obtained by using the virus suspensions of 41 × 105, 6.3 × 105 and 62 × 105 OBs ml−1 at 18, 24 and 30°C, which resulted in 32.0, 31.4 and 34.8% of infected larvae collected, respectively. The maximum percentage of infected larvae recovered from tubers was not affected by temperature. However, time for production of virus-infected larvae was longer at 18°C and shorter at 30°C. Persistence of PhopGV was determined on stored tubers and we observed that the virus remained effective for at least two months, causing up to 84.2% mortality of P. operculella at 1 × 107 OBs ml−1. The pathogen was also highly virulent to tomato pinworm, Tuta absoluta, inflicting high percentage of mortality, delaying larval growth and inhibiting pupation. This Brazilian PhopGV strain has potential to control PTM larvae on potato tubers at a broad range of temperature and can be produced in vivo using virus-treated tubers.  相似文献   

18.
Primary photochemistry of photosystem II (F v/F m) of the Antarctic hair grass Deschampsia antarctica growing in the field (Robert Island, Maritime Antarctic) and in the laboratory was studied. Laboratory plants were grown at a photosynthetic photon flux density (PPFD) of 180 μmol m−2 s−1 and an optimal temperature (13 ± 1.5°C) for net photosynthesis. Subsequently, two groups of plants were exposed to low temperature (4 ± 1.5°C day/night) under two levels of PPFD (180 and 800 μmol m−2 s−1) and a control group was kept at 13 ± 1.5°C and PPFD of 800 μmol m−2 s−1. Chlorophyll fluorescence was measured during several days in field plants and weekly in the laboratory plants. Statistically significant differences were found in F v/F m (=0.75–0.83), F 0 and F m values of field plants over the measurement period between days with contrasting irradiances and temperature levels, suggesting that plants in the field show high photosynthetic efficiency. Laboratory plants under controlled conditions and exposed to low temperature under two light conditions showed significantly lower F v/F m and F m. Moreover, they presented significantly less chlorophyll and carotenoid content than field plants. The differences in the performance of the photosynthetic apparatus between field- and laboratory-grown plants indicate that measurements performed in ex situ plants should be interpreted with caution.  相似文献   

19.
Sparse Ulmus pumila woodlands play an important role in contributing to ecosystem function in semi-arid grassland of northern China. To understand the key attributes of soil carbon cycling in U. pumila woodland, we studied dynamics of soil respiration in the canopy field (i.e., the projected crown cover area) and the open field at locations differing in distance (i.e., at 1–1.5, 3–4, 10, and >15 m) to tree stems from July through September of 2005, and measured soil biotic factors (e.g., fine root mass, soil microbial biomass, and activity) and abiotic factors [e.g., soil water content (SWC) and organic carbon] in mid-August. Soil respiration was further separated into root component and microbial component at the end of the field measurement in September. Results showed that soil respiration had a significant exponent relationship with soil temperature at 10-cm depth. The temperature sensitivity index of soil respiration, Q 10, was lower than the global average of 2.0, and declined significantly (P < 0.05) with distance. The rate of soil respiration was generally greater in the canopy field than in the open field; monthly mean of soil respiration was 305.5–730.8 mg CO2 m−2 h−1 in the canopy field and 299.6–443.1 mg CO2 m−2 h−1 in the open field from July through September; basal soil respiration at 10°C declined with distance, and varied from ~250 mg CO2 m−2 h−1 near tree stems to <200 mg CO2 m−2 h−1 in the open field. Variations in soil respiration with distance were consistent with patterns of SWC, fine root mass, microbial biomass and activities. Regression analysis indicated that soil respiration was tightly coupled with microbial respiration and only weakly related to root respiration. Overall, variations in SWC, soil nutrients, microbial biomass, and microbial activity are largely responsible for the spatial heterogeneity of soil respiration in this semi-arid U. pumila woodland.  相似文献   

20.
To understand the influence of temperature on host–parasitoid interactions as a consequence of climatic change, we studied development, survival, and fecundity of field and laboratory strains of the Helicoverpa armigera larval endoparasitoid, Campoletis chlorideae at five different temperatures under laboratory conditions. Post-embryonic development period and degree-days required for completing the life cycle by both the strains decreased by 2.5 and 1.5 folds at 27°C compared to 18°C. Post embryonic development period showed a negative (r = −0.99, P < 0.001) and the development rate a positive (r = 0.99, P < 0.001) association with an increase in temperature. However, no parasitoid larvae survived in H. armigera larvae reared at 12 and 35°C after parasitization, suggesting that temperatures ≥35°C as a result of global warming will be lethal for development and survival of immature stages of C. chlorideae. Adult longevity was negatively associated (r = −0.91 to −0.96, P < 0.001) with temperatures between 12 and 35°C. The parasitoid adults stored at 12°C survived for longer period and exhibited higher fecundity than those kept at 27°C, but the efficiency of parasitism and adult emergence were quite low. Sex ratio of the progeny at 12°C was highly male-biased than the insects kept at 27°C. Laboratory strain of the parasitoid exhibited better survival, and the adults lived longer than the field strain at 18°C than at 27°C. Therefore, C. chlorideae adults stored at 18°C could be used for parasitism, while the immature stages should be reared at 27°C for mass production of the parasitoid for biological control of H. armigera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号