首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Tissue-type plasminogen activator (tPA) and its substrate plasminogen (Plg) are key components in the fibrinolytic system. We have recently demonstrated, that truncated human recombinant soluble melanotransferrin (sMTf) could stimulate the activation of Plg by urokinase plasminogen activator and inhibit angiogenesis. Since various angiogenesis inhibitors were shown to stimulate tPA-mediated plasminogen activation, we examined the effects of sMTf on tPA-dependent fibrinolysis. This study demonstrated that sMTf enhanced tPA-activation of Plg by 6-fold. sMTf also increased the release of [125I]-fibrin fragments by tPA-activated plasmin. Moreover, we observed that the interaction of sMTf with Plg provoked a change in the fibrin clot structure by cleaving the fibrin alpha and beta chains. Overall, the present study shows that sMTf modulates tPA-dependent fibrinolysis by modifying the clot structure. These results also suggest that sMTf properties could involve enhanced dissolution of the provisional extracellular fibrin matrix.  相似文献   

2.
The increased levels of extracellular DNA found in a number of disorders involving dysregulation of the fibrinolytic system may affect interactions between fibrinolytic enzymes and inhibitors. Double-stranded (ds) DNA and oligonucleotides bind tissue-(tPA) and urokinase (uPA)-type plasminogen activators, plasmin, and plasminogen with submicromolar affinity. The binding of enzymes to DNA was detected by EMSA, steady-state, and stopped-flow fluorimetry. The interaction of dsDNA/oligonucleotides with tPA and uPA includes a fast bimolecular step, followed by two monomolecular steps, likely indicating slow conformational changes in the enzyme. DNA (0.1-5.0 μg/ml), but not RNA, potentiates the activation of Glu- and Lys-plasminogen by tPA and uPA by 480- and 70-fold and 10.7- and 17-fold, respectively, via a template mechanism similar to that known for fibrin. However, unlike fibrin, dsDNA/oligonucleotides moderately affect the reaction between plasmin and α(2)-antiplasmin and accelerate the inactivation of tPA and two chain uPA by plasminogen activator inhibitor-1 (PAI-1), which is potentiated by vitronectin. dsDNA (0.1-1.0 μg/ml) does not affect the rate of fibrinolysis by plasmin but increases by 4-5-fold the rate of fibrinolysis by Glu-plasminogen/plasminogen activator. The presence of α(2)-antiplasmin abolishes the potentiation of fibrinolysis by dsDNA. At higher concentrations (1.0-20 μg/ml), dsDNA competes for plasmin with fibrin and decreases the rate of fibrinolysis. dsDNA/oligonucleotides incorporated into a fibrin film also inhibit fibrinolysis. Thus, extracellular DNA at physiological concentrations may potentiate fibrinolysis by stimulating fibrin-independent plasminogen activation. Conversely, DNA could inhibit fibrinolysis by increasing the susceptibility of fibrinolytic enzymes to serpins.  相似文献   

3.
alpha 2-antiplasmin (alpha 2-AP) exerts its inhibitory effect on fibrinolysis by rapidly inhibiting the plasmin evolved; in addition, it has been suggested that interference with the binding of plasminogen to fibrin, a function shared with histidine-rich glycoprotein (HRGP), may also be significant in inhibition of fibrinolysis. To elucidate if plasminogen binding by these two alpha 2-globulins may decrease the generation of plasmin by tissue-type plasminogen activator (t-PA) at the surface of fibrin, a system mimicking the fibrin/plasma interface was used. Attempts were made to differentiate the plasminogen binding from the plasmin inhibitory function of alpha 2-AP. The activation of human Glu-plasminogen (native plasminogen with NH2-terminal glutamic acid) by fibrin-bound t-PA was performed in a plasma environment using either normal plasma, alpha 2-AP- or HRGP-depleted plasmas supplemented with increasing amounts of the lacking protein, or in a reconstituted system with purified plasminogen and various concentrations of alpha 2-AP and HRGP. The activation of Glu-plasminogen in alpha 2-AP-depleted plasma containing a normal concentration of HRGP produced a time-dependent increase in the generation of plasmin. The addition of 1 microM-alpha 2-AP to this plasma prevented the formation of Lys-derivatives and produced a marked decrease (42%) in the number of plasminogen-binding sites. In contrast, the addition of 1.5 microM-HRGP to HRGP-depleted plasma containing a normal amount of alpha 2-AP produced only a modest (17%) decrease in the amount of plasmin(ogen) bound. Moreover, in a purified system the amount of plasminogen-binding sites and thereby of plasmin generated at the surface of fibrin in the presence of both alpha-2 globulins was similar to the amount generated in the presence of alpha 2-AP alone. These results indicate clearly that the formation of reversible complexes between plasminogen and alpha 2-AP does not interfere with the binding and activation of plasminogen at the fibrin surface. In contrast, the inhibition of plasmin by alpha 2-AP decreases importantly the number of plasminogen-binding sites (carboxyl-terminal lysines) and inhibits thereby the accelerated phase of fibrinolysis. It can be concluded that interference of the binding of plasminogen to fibrin by alpha 2-AP during plasminogen activation, does not play a significant role in inhibition of fibrinolysis, and that the plasminogen-binding effect of HRGP, if any, is obscured by the important inhibitory effect of alpha 2-AP.  相似文献   

4.
Tissue-type plasminogen activator (tPA) regulates fibrin clot lysis by stimulating the conversion of plasminogen into the active protease plasmin. Fibrin is required for efficient tPA-mediated plasmin generation and thereby stimulates its own proteolysis. Several fibrin regions can bind to tPA, but the structural basis for this interaction is unknown. Amyloid beta (Abeta) is a peptide aggregate that is associated with neurotoxicity in brains afflicted with Alzheimer's disease. Like fibrin, it stimulates tPA-mediated plasmin formation. Intermolecular stacking of peptide backbones in beta sheet conformation underlies cross-beta structure in amyloid peptides. We show here that fibrin-derived peptides adopt cross-beta structure and form amyloid fibers. This correlates with tPA binding and stimulation of tPA-mediated plasminogen activation. Prototype amyloid peptides, including Abeta and islet amyloid polypeptide (IAPP) (associated with pancreatic beta cell toxicity in type II diabetes), have no sequence similarity to the fibrin peptides but also bind to tPA and can substitute for fibrin in plasminogen activation by tPA. Moreover, the induction of cross-beta structure in an otherwise globular protein (endostatin) endows it with tPA-activating potential. Our results classify tPA as a multiligand receptor and show that cross-beta structure is the common denominator in tPA binding ligands.  相似文献   

5.
Matrix Metalloproteinases and Cellular Fibrinolytic Activity   总被引:10,自引:0,他引:10  
Several molecular interactions between the matrix metalloproteinase (MMP) and the plasminogen/plasmin (fibrinolytic) system may affect cellular fibrinolysis. MMP-3 (stromelysin-1) specifically hydrolyzes urokinase (u-PA), yielding a 17 kD NH2-terminal fragment containing the functionally intact receptor (u-PAR)-binding sequence and a 32 kD COOH-terminal fragment containing the intact serine proteinase domain. MMP-3 generates an angiostatin like fragment (containing kringles 1-4 with the cellular binding domains) from plasminogen. Treatment with MMP-3 of monocytoid THP-1 cells saturated with bound plasminogen, resulted in a dose-dependent reduction of the amount of u-PA-activatible plasminogen. Treatment with MMP-3 of cell-bound u-PA, in contrast, did not alter cell-associated u-PA activity. These data thus indicate that MMP-3 may downregulate cell-associated plasmin activity by decreasing the amount of activatible plasminogen, with out affecting cell-bound u-PA activity. MMP-3 also specifically interacts with the main inhibitors of the fibrinolytic system. Thus, MMP-3 specifically hydrolyzes human 2-antiplasmin (2-AP), the main physiological plasmin inhibitor. 2-AP cleaved by MMP-3 no longer forms a stable complex with plasmin and no longer interacts with plasminogen. Cleavage and inactivation of 2-AP by MMP-3 may constitute a mechanism favoring local plasmin-mediated proteolysis. Furthermore, MMP-3 specifically hydrolyzes and inactivates human plasminogen activator inhibitor-1 (PAI-1). Stable PAI-1 bound to vitronectin is cleaved and inactivated by MMP-3 in a comparable manner as free PAI-1; the cleaved protein, however, does not bind to vitronectin. Cleavage and inactivation of PAI-1 by MMP-3 may thus constitute a mechanism decreasing the antipro teolytic activity of PAI-1 and impairing the potential inhibitory effect of vitronectin-bound PAI-1 on cell adhesion and/or migration. These molecular interactions of MMP-3 with enzymes, substrates and inhibitors of the fibrinolytic system may thus play a role in the regulation of (cellular) fibrinolysis. Furthermore, the temporal and topographic expression pattern of MMP components, as well as studies in gene-deficient mice, suggest a functional role in neointima formation after vascular injury.  相似文献   

6.
Plasminogen activation: biochemistry, physiology, and therapeutics   总被引:4,自引:0,他引:4  
The mammalian serine protease zymogen, plasminogen, can be converted into the active enzyme plasmin by vertebrate plasminogen activators urokinase (uPA), tissue plasminogen activator (tPA), factor XII-dependent components, or by bacterial streptokinase. The biochemical properties of the major components of the system, plasminogen/plasmin, plasminogen activators, and inhibitors of the plasminogen activators, are reviewed. The plasmin system has been implicated in a variety of physiological and pathological processes such as fibrinolysis, tissue remodeling, cell migration, inflammation, and tumor invasion and metastasis. A defective plasminogen activator/inhibitor system also has been linked to some thromboembolic complications. Recent studies of the mechanism of fibrinolysis in human plasma suggest that tPA may be the primary initiator and that overall fibrinolytic activity is strongly regulated at the tPA level. A simple model for the initiation and regulation of plasma fibrinolysis based on these studies has been formulated. The plasminogen activators have been used for thrombolytic therapy. Three new thrombolytic agents--tPA, pro-uPA, and acylated streptokinase-plasminogen complex--have been found to possess better properties over their predecessors, urokinase and streptokinase. Further improvements of these molecules using genetic and protein engineering tactics are being pursued.  相似文献   

7.
A numerical model based on the convective-diffusive transport of reacting and adsorbing proteolytic enzymes within erodible fibrous biopolymers was used to predict lysis fronts moving across biogels such as fibrin or collagen. The fiber structure and the transport properties of solutes in fibrin (or collagen) were related to the local extent of dissolution within the dissolving structure. An accounting for solubilization of adsorbed species into solution from the eroding fiber phase provided for complete conservation of mass in reacting systems containing over 10 species. At conditions of fibrinolysis typical of clinical situations, the model accurately predicted the dynamic rate of lysis front movement for plasmin, urokinase, and tissue plasminogen activator (tPA)-mediated lysis of fibrin gels measured in vitro. However, under conditions of extremely fast fibrinolysis using high enzyme concentrations, fibrinolytic fronts moved very rapidly (>0.1 mm/mm)-faster than predicted for diffusionlimited reactions-at nearly constant velocity for over 2 h, indicating non-Fickian behavior. This was due to proteolysis-mediated retraction of dissolving fibrin fibers that resulted in fiber convection and front-sharpening within 3 mum of the reaction front, as observed by digitally enhanced microscopy. In comparing the model to fibrinolysis measurements using human lys(77)-plasmin, the average first order rate constant for non-crosslinked fibrin bond cleavage by fibrin-bound plasmin was calculated to be 5s(-1) assuming that 10 cleavages per fibrin monomer were required to solubilize each monomer. The model accurately predicted lysis front movement using pressure-driven permeation of plasmin or urokinase into fibrin as well as literature data obtained under well- mixed conditions for tPA-mediated fibrinolysis. This numerical formulation provides predictive capability for optimization of proteolytic systems which include thrombolytic therapy, wound healing, controlled drug release, and tissue engineering applications. (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
Approximately 35 years ago, it was discovered that spontaneous fibrinolytic activity in blood showed a sinusoidal variation with a period of 24 h; it increased severalfold during the day, reaching a peak at 6:OO p.m. and then dropped to trough levels at 3:00–4:00 a.m. The range of the fluctuation and the 24-h mean levels were highly reproducible within an individual; moreover, the timing of the oscillation was remarkably consistent among individuals, with a fixed phase relationship to external clock time. The biorhythm could not be accounted for simply by variations in physical activity, body posture, or sleepfwake schedule. Gender, ethnic origin, meals, or resting levels of blood fibrinolytic activity also did not influence the basic features of the rhythm. Older subjects, compared to younger ones, showed a blunted diurnal increase in fibrinolytic activity in blood. Recent studies have established that, of the known components of the fibrinolytic system, only tissue-type plasminogen activator (tPA) and its fast-acting inhibitor, plasminogen activator inhibitor- 1 (PAL l), show a marked circadian variation in plasma. In contrast, levels of plasminogen, α2-antiplasmin, urinarytype plasminogen activator, and a reversible tPA inhibitor vary little or none during the 24 h. Quenching antibodies to tPA have shown that the circadian rhythm of fibrinolytic activity in blood is due exclusively to changes in tPA activity. However, the 24-h fluctuation of plasma tPA activity is phase shifted in relation to the rhythm of immunoreactive tPA, but shows a precise phase inversion with respect to the 24-h variation of PAL 1 activity and antigen. Therefore, plasma tPA activity, as currently measured in vitro, is tightly and inversely related to the levels of PAL 1 throughout the 24-h cycle. The factors controlling the rhythmicity of plasma PAI-1 are not fully elucidated but probably involve a humoral mechanism; changes in endothelial function, circulating platelet release. products, corticosteroids, catecholamines, insulin, activated protein C, or hepatic clearance do not appear to be responsible. Shift workers on weekly shift rotations show a disrupted 24-h rhythm of plasma tPA and PAL 1. In acute and chronic diseases, the circadian rhythmicity of fibrinolytic activity may show a variety of alterations, affecting the 24-h mean, the amplitude, or the timing of the fluctuation. It is advisable, therefore, to define the 24-h pattern of plasma tPA and PAI- 1 in patient groups, before levels based on a single blood sampling time are compared to those of a control population. In normal conditions, the 24-h variation of plasma tPA and PAI- 1 is not associated with parallel circadian changes in effective fibrinolysis, assessed as plasma D-dimer concentrations, presumably because fibrin generation in the circulation is low. In diseases in which fibrin formation is increased, however, the physiological drop of fibrinolytic activity in the morning hours may favour thrombus development at this time of day, in agreement with the reported higher morning frequency of acute thrombotic events.  相似文献   

9.
The amidolytic plasmin activity of a mixture of tissue plasminogen activator (tPA) and plasminogen is enhanced by heparin at therapeutic concentrations. Heparin also increases the activity in mixtures of urokinase-type plasminogen activator (uPA) and plasminogen but has no effect on streptokinase or plasmin. Direct analyses of plasminogen activation by polyacrylamide gel electrophoresis demonstrate that heparin increases the activation of plasminogen by both tPA and uPA. Binding studies show that heparin binds to various components of the fibrinolytic system, with tight binding demonstrable with tPA, uPA, and Lys-plasminogen. The stimulation of tPA activity by fibrin, however, is diminished by heparin. The ability of heparin to promote plasmin generation is destroyed by incubation of the heparin with heparinase, whereas incubation with chondroitinase ABC or AC has no effect. Also, stimulation of plasmin formation is not observed with dextran sulfate or chondroitin sulfate A, B, or C. Analyses of heparin fractions after separation on columns of antithrombin III-Sepharose suggest that both the high-affinity and the low-affinity fractions, which have dramatically different anticoagulant activity, have similar activity toward the fibrinolytic components.  相似文献   

10.
Tissue-type plasminogen activator (tPA) regulates vascular contractility through the low-density lipoprotein-related receptor (LRP), and this effect is inhibited by plasminogen activator inhibitor type 1 (PAI-1). We now report that tPA-mediated vasocontraction also requires the integrin alphavbeta3. tPA-induced contraction of rat aortic rings is inhibited by the Arg-Gly-Asp (RGD) peptide and by monoclonal anti-alphavbeta3 antibody. tPA induces the formation of a complex between LRP and alphavbeta3 in vascular smooth muscle cells. The three proteins are internalized within 10 min, causing the cells to become refractory to the readdition of tPA. LRP and alphavbeta3 return to the cell surface by 90 min, restoring cell responsiveness to tPA. PAI-1 and the PAI-1-derived hexapeptide EEIIMD abolish the vasocontractile activity of tPA and inhibit the tPA-mediated interaction between LRP and alphavbeta3. tPA induces calcium mobilization from intracellular stores in vascular smooth muscle cells, and this effect is inhibited by PAI-1, RGD, and antibodies to both LRP and alphavbeta3. These data indicate that tPA-mediated vasocontraction involves the coordinated interaction of LRP with alphavbeta3. Delineating the mechanism underlying these interactions and the nature of the signals transduced may provide new tools to regulate vascular tone and other consequences of tPA-mediated signaling.  相似文献   

11.
The massive presence of phospholipids is demonstrated in frozen sections of human arterial thrombi. Purified platelet phospholipids and synthetic phospholipids retard in vitro tissue-type plasminogen activator (tPA)-induced fibrinolysis through effects on plasminogen activation and plasmin function. The inhibition of plasminogen activation on the surface of fibrin correlates with the fraction of anionic phospholipid. The phospholipids decrease the amount of tPA penetrating into the clot by 75% and the depth of the reactive surface layer occupied by the activator by up to 30%, whereas for plasmin both of these parameters decrease by approximately 50%. The phospholipids are not only a diffusion barrier, they also bind the components of the fibrinolytic system. Isothermal titration calorimetry shows binding characterized with dissociation constants in the range 0.35-7.64 microm for plasmin and tPA (lower values with more negative phospholipids). The interactions are endothermic and thermodynamically driven by an increase in entropy, probably caused by the rearrangements in the ordered gel structure of the phospholipids (in line with the stronger inhibition at gel phase temperatures compared with liquid crystalline phase temperatures). These findings show a phospholipid barrier, which should be overcome during lysis of arterial thrombi.  相似文献   

12.
We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis.  相似文献   

13.
Tissue plasminogen activator (tPA) is a serine protease involved in the degradation of blood clots through the activation of plasminogen to plasmin. Here we report on the identification of tPA as a specific protease able to activate platelet-derived growth factor C (PDGF-C). The newly identified PDGF-C is secreted as a latent dimeric factor (PDGF-CC) that upon proteolytic removal of the N-terminal CUB domains becomes a PDGF receptor alpha agonist. The CUB domains in PDGF-CC directly interact with tPA, and fibroblasts from tPA-deficient mice fail to activate latent PDGF-CC. We further demonstrate that growth of primary fibroblasts in culture is dependent on a tPA-mediated cleavage of latent PDGF-CC, generating a growth stimulatory loop. Immunohistochemical analysis showed similar expression patterns of PDGF-C and tPA in developing mouse embryos and in tumors, indicating both autocrine and paracrine modes of activation of PDGF receptor-mediated signaling pathways. The identification of tPA as an activator of PDGF signaling establishes a novel role for the protease in normal and pathological tissue growth and maintenance, distinct from its well-known role in plasminogen activation and fibrinolysis.  相似文献   

14.
The vampire bat salivary plasminogen activator (BatPA) is virtually inactive toward Glu-plasminogen in the absence of a fibrin-like cofactor, unlike human tissue-type plasminogen activator (tPA) (the kcat/Km values were 4 and 470 M-1 s-1, respectively). In the presence of fibrin II, tPA and BatPA activated Glu-plasminogen with comparable catalytic efficiencies (158,000 and 174,000 M-1 s-1, respectively). BatPA's cofactor requirement was partially satisfied by polymeric fibrin I (54,000 M-1 s-1), but monomeric fibrin I was virtually ineffective (970 M-1 s-1). By comparison, a variety of monomeric and polymeric fibrin-like species markedly enhanced tPA-mediated activation of Glu-plasminogen. Fragment X polymer was 2-fold better but 9-fold worse as cofactor for tPA and BatPA, respectively, relative to fibrin II. Fibrinogen, devoid of plasminogen, was a 10-fold better cofactor for tPA than fibrinogen rigorously depleted of plasminogen, Factor XIII, and fibronectin; the enhanced stimulatory effect of the less-purified fibrinogen was apparently due to the presence of Factor XIII. By contrast, the two fibrinogen preparations were equally poor cofactors of BatPA-mediated activation of Glu-plasminogen. BatPA possessed only 23 and 4% of the catalytic efficiencies of tPA and two-chain tPA, respectively, in hydrolyzing the chromogenic substrate Spectrozyme tPA. However in the presence of fibrin II, BatPA and tPA exhibited similar kcat/Km values for the hydrolysis of Spectrozyme tPA. Our data revealed that BatPA, unlike tPA, displayed a strict and fastidious requirement for polymeric fibrin I or II. Consequently, BatPA may preferentially promote plasmin generation during a narrow temporal window of fibrin formation and dissolution.  相似文献   

15.
A fibrinolytic agent consisting of a tissue-type plasminogen activator (tPA) coupled to the surface of red blood cells (RBCs) can dissolve nascent clots from within the clot, in a Trojan horse-like strategy, while having minimal effects on preexisting hemostatic clots or extravascular tissue. After intravenous injection, the fibrinolytic activity of RBC-tPA persisted in the bloodstream at least tenfold longer than did that of free tPA. In a model of venous thrombosis induced by intravenously injected fibrin microemboli aggregating in pulmonary vasculature, soluble tPA lysed pulmonary clots lodged before but not after tPA injection, whereas the converse was true for RBC-tPA. Free tPA failed to lyse occlusive carotid thrombosis whether injected before or after vascular trauma, whereas RBC-tPA circulating before, but not injected after, thrombus formation restored blood flow. This RBC-based drug delivery strategy alters the fibrinolytic profile of tPA, permitting prophylactic fibrinolysis.  相似文献   

16.
Circadian variation of fibrinolytic activity in blood.   总被引:9,自引:0,他引:9  
Approximately 35 years ago, it was discovered that spontaneous fibrinolytic activity in blood showed a sinusoidal variation with a period of 24 h; it increased severalfold during the day, reaching a peak at 6:00 p.m. and then dropped to trough levels at 3:00-4:00 a.m. The range of the fluctuation and the 24-h mean levels were highly reproducible within an individual; moreover, the timing of the oscillation was remarkably consistent among individuals, with a fixed phase relationship to external clock time. The biorhythm could not be accounted for simply by variations in physical activity, body posture, or sleep/wake schedule. Gender, ethnic origin, meals, or resting levels of blood fibrinolytic activity also did not influence the basic features of the rhythm. Older subjects, compared to younger ones, showed a blunted diurnal increase in fibrinolytic activity in blood. Recent studies have established that, of the known components of the fibrinolytic system, only tissue-type plasminogen activator (tPA) and its fast-acting inhibitor, plasminogen activator inhibitor-1 (PAI-1), show a marked circadian variation in plasma. In contrast, levels of plasminogen, alpha 2-antiplasmin, urinary-type plasminogen activator, and a reversible tPA inhibitor vary little or none during the 24 h. Quenching antibodies to tPA have shown that the circadian rhythm of fibrinolytic activity in blood is due exclusively to changes in tPA activity. However, the 24-h fluctuation of plasma tPA activity is phase shifted in relation to the rhythm of immunoreactive tPA, but shows a precise phase inversion with respect to the 24-h variation of PAI-1 activity and antigen. Therefore, plasma tPA activity, as currently measured in vitro, is tightly and inversely related to the levels of PAI-1 throughout the 24-h cycle. The factors controlling the rhythmicity of plasma PAI-1 are not fully elucidated but probably involve a humoral mechanism; changes in endothelial function, circulating platelet release products, corticosteroids, catecholamines, insulin, activated protein C, or hepatic clearance do not appear to be responsible. Shift workers on weekly shift rotations show a disrupted 24-h rhythm of plasma tPA and PAI-1. In acute and chronic diseases, the circadian rhythmicity of fibrinolytic activity may show a variety of alterations, affecting the 24-h mean, the amplitude, or the timing of the fluctuation. It is advisable, therefore to define the 24-h pattern of plasma tPA and PAI-1 in patient groups, before levels based on a single blood sampling time are compared to those of a control population.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.  相似文献   

18.
M S Runge  C Bode  G R Matsueda  E Haber 《Biochemistry》1988,27(4):1153-1157
Tissue plasminogen activator (tPA) was covalently linked by disulfide bonds to a monoclonal antibody specific for the amino terminus of the beta chain of fibrin (antibody 59D8). The activity of the tPA-59D8 conjugate was compared with that of tPA, urokinase (UK), and a UK-59D8 conjugate. For lysis of fibrin monomer, tPA was 10 times as potent as UK, whereas both UK-59D8 and tPA-59D8 conjugates were 100 times as potent as UK and 10 times as potent as tPA. Conjugation of tPA or UK to antibody 59D8 produced a 3.2-4.5-fold enhancement in clot lysis in human plasma over that of the respective unconjugated plasminogen activator. However, the UK-59D8 conjugate was only as potent as tPA alone. Antibody-conjugated tPA or UK consumed less fibrinogen, alpha 2-antiplasmin, and plasminogen than did the unconjugated activators, at equipotent fibrinolytic concentrations. Antibody targeting thus appears to increase the concentration of tPA in the vicinity of a fibrin deposit, which thereby leads to enhanced fibrinolysis.  相似文献   

19.
In order to elucidate the relationship between homocysteine and the fibrinolytic system, we examined the effect of homocysteine on plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (tPA) gene expression and protein secretion in cultured human vascular endothelial and smooth muscle cells in vitro. PAI-1 mRNA and secreted protein levels were both enhanced by homocysteine in a dose dependent manner, with significant stimulation of PAI-1 secretion observed at concentrations greater than 0.5 mM homocysteine. In contrast, secretion and mRNA expression of tPA were not significantly altered by homocysteine stimulation. Secretion of TGFbeta (transforming growth factor beta) and TNFalpha (tumor necrosis factor alpha), possible regulators of PAI-1 expression and secretion, were not stimulated by treatment with 1.0 mM homocysteine. These results suggests that hyperhomocysteinemia-induced atherosclerosis and/or thrombosis may be caused by homocysteine-induced stimulation of PAI-1 gene expression and secretion in the vasculatures by a mechanism independent from paracrine-autocrine activity of TGFbeta and TNFalpha.  相似文献   

20.
Clinical disorders of fibrinolysis: a critical review   总被引:1,自引:0,他引:1  
R B Francis 《Blut》1989,59(1):1-14
Much progress has recently been made in understanding the biochemistry and physiology of endogenous fibrinolysis. As a result, a better understanding of the mechanisms and clinical consequences of disordered fibrinolysis has emerged. Increased fibrinolytic activity is an uncommon but important cause of hemorrhagic disease. Congenital disorders of fibrinolysis which cause bleeding include increased plasma plasminogen activator activity and deficiency of alpha-2 antiplasmin. Acquired disorders associated with increased fibrinolytic activity and bleeding include liver cirrhosis, amyloidosis, acute promyelocytic leukemia, some solid tumors, and certain snake envenomation syndromes. Increased fibrinolysis is important to recognize because epsilon-aminocaproic acid (EACA) may be required to prevent or control bleeding. Diminished fibrinolytic activity has been associated with a variety of thrombotic disorders, but a direct cause-and-effect relationship has yet to be established. Congenital abnormalities of fibrinolysis associated with thrombosis include plasminogen deficiency, decreased endothelial generation of plasminogen activator activity, and certain abnormal fibrinogens. Thrombosis in these disorders is effectively managed with warfarin. Diminished fibrinolysis has also been reported in "idiopathic" venous thrombosis, oral contraceptive-induced and post-operative venous thrombosis, coronary artery disease, cerebrovascular disease, systemic lupus erythematosus, and thrombotic thrombocytopenic purpura, but the significance of abnormal fibrinolysis in these disorders is uncertain. Large, prospective studies of fibrinolytic variables as risk factors for vascular and thrombotic disease are needed to determine whether pharmacologic augmentation of impaired fibrinolysis could be useful in the prevention or treatment of these disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号