首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
Genome size in Arachis duranensis: a critical study.   总被引:2,自引:0,他引:2  
E M Temsch  J Greilhuber 《Génome》2001,44(5):826-830
Arachis duranensis is a diploid wild relative of the tetraploid cultivated peanut Arachis hypogaea. The literature indicates two 2C genomic DNA mean values (genome size) for A. duranensis, 4.92 and 5.64 pg, and intraspecific variation of up to 11% negatively correlated with altitude above sea level of the collection sites has been reported. Our recent investigations of Arachis species have shown that unrecognized technical problems with peanut material may have influenced previous genome-size data and rendered them open to critical comments. In the present study, 20 accessions of A. duranensis were investigated by means of DNA flow cytometry (propidium iodide staining) and several of these also by Feulgen DNA image analysis. Pisum sativum was used as the internal standard (2C = 8.84 pg). 2C values in A. duranensis were about half those described previously and varied between 2.49 and 2.87 pg (flow cytometry). This variation was statistically significant and reproducible. There was a negative correlation of genome size with latitude and altitude above sea level of the collection sites. Such a correlation had been already found in one of the previous studies. However, the incongruences between the absolute DNA content values obtained in the present investigation and those in the literature point to the importance of carrying out methodological studies on best practice in DNA-content determinations in plants.  相似文献   

2.
Seventy-two accessions, representing 22 species from sections Arachis, Erectoides, Extranervosae, and Triseminalae of the genus Arachis, were screened for seed storage protein polymorphism. Variation was detected between sections, between genome types, between species, and in some cases between different accessions of the same species or different seeds of the same accession. Arachis duranensis and one accession of A. cardenasii were found to have identical protein patterns. The greatest dissimilarity was found between species of the section Extranervosae and species of the section Triseminalae. Those of section Erectoides showed much similarity with some species of section Arachis. Protein polymorphism was shown to distinguish the two subspecies of A. hypogaea (fastigiata and hypogaea) in 27 of 28 cases. The seed protein profile of A. monticola was a combination of seed protein profiles from the two A. hypogaea subspecies. The relatedness between the various species was calculated and those that had the greatest similarity with A. hypogaea were A. spegazzinii and A. batizocoi.  相似文献   

3.
The cultivated peanut (Arachis hypogaea L.) is an allotetraploid composed of A and B genomes. The phylogenetic relationship among the cultivated peanut, wild diploid, and tetraploid species in the section Arachis was studied based on sequence comparison of stearoyl-ACP desaturase and oleoyl-PC desaturase. The topology of the trees for both fatty acid desaturases displayed two clusters; one cluster with A genome diploid species and the other with B genome diploid species. The two homeologous genes obtained for each of the two fatty acid desaturases from the tetraploid species A. hypogaea and A. monticola were separated into the A and B genome clusters, respectively. The gene phylogenetic trees showed that A. hypogaea is more closely related to the diploid species A. duranensis and A. ipaensis than to the wild tetraploid species A. monticola, suggesting that A. monticola is not a progenitor of the cultivated peanut. In addition, for the stearoyl-ACP desaturase, the A. duranensis sequence was identical with one of the sequences of A. hypogaea and the A. ipaensis sequence was identical with the other. These results support the hypothesis that A. duranensis and A. ipaensis are the most likely diploid progenitors of the cultivated tetraploid A. hypogaea.  相似文献   

4.
Given the paucity of information about genome size in the genus Centaurea, nuclear DNA content of 15 Centaurea taxa, belonging to four subgenera and six different sections, has been investigated for the first time. The sample concerns 21 populations from the Dalmatia region of Croatia. The 2C DNA content and GC percentage were assessed by flow cytometry and chromosome number was determined using standard methods. Genome size of studied Centaurea ranged from 2C=1.67 to 3.72 pg. These results were in accordance with chromosome number and especially with ploidy level that varies throughout this group; 2C DNA values ranged from 1.67 to 3.43 pg for diploid, and from 3.19 to 3.72 for polyploid taxa. No significant intraspecific variations of DNA amount were found between two subspecies of C. visiani and C. ragusina, nor between two varieties of C. gloriosa. However, some populations of C. glaberrima and C. cuspidata showed a significant difference in DNA amount. Three different basic chromosome numbers were observed in studied species (x=9, 10, and 11). The most frequent basic number was x=9. C. rupestris, C. ragusina ssp. ragusina, and C. r. ssp. lungensis possessed x=10 and C. tuberosa x=11. The species with a basic chromosome number of x=9 had a small genome size and the smallest chromosomes (on average 0.09 to 0.12 pg/chromosome) but frequently present polyploidy. Centaurea ragusina ssp. ragusina and C. r. ssp. lungensis had a mean base composition 41.3% GC.  相似文献   

5.
Abstract: Twenty-one random and 29 SSR primers were used to assess genetic variation and interrelationships among subspecies and botanical varieties of cultivated peanut, Arachis hypogaea (2n = 4x = 40), and phylogenetic relationships among cultivated peanut and wild species of the genus Arachis. In contrast with the previous generalization that peanut accessions lack genetic variation, both random and SSR primers revealed 42.7 and 54.4% polymorphism, respectively, among 220 and 124 genetic loci amplified from 13 accessions. Moreover, the dendrograms based on RAPD, ISSR, and RAPD + ISSR data precisely organized the five botanical varieties of the two subspecies into five clusters. One SSR primer was identified that could distinguish all the accessions analysed within a variety. Although the polymorphic index content varied from 0.1 to 0.5 for both ISSR and RAPD markers, primer index values were substantially higher for RAPD primers (0.35-4.65) than for SSR primers (0.35-1.73). It was possible to identify accessions, particularly those of divergent origins, by RAPD and (or) ISSR fingerprints. Based on these results, marker-based genetic improvement in A. hypogaea appears possible. None of the 486 RAPD and 330 ISSR amplification products were found to be commonly shared among 13 species of section Arachis and one species each of sections Heteranthae, Rhizomatosae, and Procumbentes. Dendrograms constructed from RAPD, ISSR, and RAPD + ISSR data showed overall similar topologies. They could be resolved into four groups corresponding to the species grouped in four taxonomic sections. The present results strongly support the view that Arachis monticola (2n = 4x = 40) and A. hypogaea are very closely related, and indicate that A. villosa and A. ipaensis are the diploid wild progenitors of these tetraploid species.  相似文献   

6.
Cultivated peanut, Arachis hypogaea L., is a tetraploid (2n = 4x = 40) species thought to be of allopolyploid origin. Its closest relatives are the diploid (2n = 2x = 20) annual and perennial species included with it in Arachis sect. Arachis. Species in section Arachis represent an important source of novel alleles for improvement of cultivated peanut. A better understanding of the level of speciation and taxonomic relationships between taxa within section Arachis is a prerequisite to the effective use of this secondary gene pool in peanut breeding programs. The AFLP technique was used to determine intra- and interspecific relationships among and within 108 accessions of 26 species of this section. A total of 1328 fragments were generated with 8 primer combinations. From those, 239 bands ranging in size from 65 to 760 bp were scored as binary data. Genetic distances among accessions ranged from 0 to 0.50. Average distances among diploid species (0.30) were much higher than that detected between tetraploid species (0.05). Cluster analysis using different methods and principal component analysis were performed. The resulting grouping of accessions and species supports previous taxonomic classifications and genome designations. Based on genetic distances and cluster analysis, A-genome accessions KG 30029 (Arachis helodes) and KSSc 36009 (Arachis simpsonii) and B-genome accession KGBSPSc 30076 (A. ipaensis) were the most closely related to both Arachis hypogaea and Arachis monticola. This finding suggests their involvement in the evolution of the tetraploid peanut species.  相似文献   

7.
8.
E M Temsch  J Greilhuber 《Génome》2000,43(3):449-451
Genome size variation within species is a frequently reported, but still a controversial problem. In the present study, we re-evaluated recently published Feulgen densitometric data on genome size and its infraspecific variation in Arachis hypogaea, and also conducted measurements in one accession of its wild relative A. monticola. The methods applied were propidium iodide flow cytometry and Feulgen densitometry using Pisum sativum as an internal standard. The 2C DNA contents previously published cannot be confirmed, but values obtained in this study are about half as large. Additionally, we could not reproduce the previously reported 1.15-fold variation within A. hypogaea; our data indicate genome size stability between respective accessions of this species. Based on 8.84 pg (2C) for Pisum sativum the DNA amounts (2C) were: 5.914 pg in A. hypogaea, and 5.979 pg in A. monticola.  相似文献   

9.
Arachis hypogaea is a natural, well-established allotetraploid (AABB) with 2n = 40. However, researchers disagree on the diploid genome donor species and on whether peanut originated by a single or multiple events of polyploidization. Here we provide evidence on the genetic origin of peanut and on the involved wild relatives using double GISH (genomic in situ hybridization). Seven wild diploid species (2n = 20), harboring either the A or B genome, were tested. Of all genomic DNA probe combinations assayed, A. duranensis (A genome) and A. ipaensis (B genome) appeared to be the best candidates for the genome donors because they yielded the most intense and uniform hybridization pattern when tested against the corresponding chromosome subsets of A. hypogaea. A similar GISH pattern was observed for all varieties of the cultigen and also for A. monticola. These results suggest that all presently known subspecies and varieties of A. hypogaea have arisen from a unique allotetraploid plant population, or alternatively, from different allotetraploid populations that originated from the same two diploid species. Furthermore, the bulk of the data demonstrated a close genomic relationship between both tetraploids and strongly supports the hypothesis that A. monticola is the immediate wild antecessor of A. hypogaea.  相似文献   

10.
Nuclear DNA content and genomic distributions of 5S and 45S rDNA were examined in nineteen diploid accessions of the genus Musa representing its four sections Eumusa, Rhodochlamys, Callimusa and Australimusa, and in Ensete gilletii, which was the outgroup in this study. In the Eumusa (x = 11), 2C DNA content ranged from 1.130 to 1.377 pg, M. balbisiana having the lowest DNA content of all sections. M. beccarii (x = 9), a representative of Callimusa, had the highest 2C nuclear DNA content (1.561 pg). Species belonging to Rhodochlamys (x = 11) and Australimusa (x = 10) had 2C DNA contents ranging from 1.191 to 1.299 pg and from 1.435 to 1.547 pg, respectively. E. gilletii (x = 9) had 2C DNA content of 1.210 pg. The number of 5S rDNA loci in Musa varied from 4 to 8 per diploid cell. While different numbers of 5S rDNA loci were observed within Eumusa and Rhodochlamys, four 5S rDNA loci were observed in all accessions of Australimusa. M. beccarii (Callimusa) and E. gilletii contained 5S rRNA gene clusters on five and six chromosomes, respectively. The number of 45S rDNA loci was conserved within individual sections. Hierarchical cluster analysis of genome size, number of chromosomes and 45S rDNA sites suggested a close relationship between Rhodochlamys and Eumusa; Australimusa was clearly separated as were M. beccarii and E. gilletii. Within the Eumusa-Rhodochlamys group, M. balbisiana, M. schizocarpa and M. ornata formed distinct subgroups, clearly separated from the accessions of M. acuminata, M. mannii, M. laterita and M. velutina, which formed a tight subgroup. The results expand the knowledge of genome size and genomic distribution of ribosomal DNA in Musa and Ensete. They aid in clarification of the taxonomical classification of Musa and show a need to supplement the analyses on the DNA sequence level with cytogenetic studies.  相似文献   

11.
The 5S and the 18S-25S rRNA genes were physically mapped by fluorescent in situ hybridization (FISH) in all botanical varieties of cultivated peanut Arachis hypogaea (2n = 4x = 40), in the wild tetraploid A. monticola, and in seven wild diploid species considered as putative ancestors of the tetraploids. A detailed karyotype analysis including the FISH signals and the heterochromatic bands was carried out. Molecular cytogenetic landmarks are provided for the construction of a FISH-based karyotype in Arachis species. The size, number, and chromosome position of FISH signals and heterochromatic bands are similar in all A. hypogaea varieties and A. monticola, but vary among the diploid species. Genome constitution of the species is discussed and several chromosome homeologies are established. The bulk of the chromosome markers mapped, together with data on geographical distribution of the taxa, suggest that peanut originated upon domestication of A. monticola and evidence that the diploids A. duranensis and A. ipaensis are the most probable ancestors of both tetraploid species. Allopolyploidy could have arisen by a single event or, if by multiple events, always from the same diploid species.  相似文献   

12.
Chromosome pairing, pollen and pod fertility in hybrids between cultivated tetraploidArachis hypogaea and 15 synthetic amphidiploids from 8 diploid species (7 of the A genome and 1 of the B genome) of sect.Arachis have been utilized for the identification of putative genome donors in the evolution of cultivatedA. hypogaea. These results, in conjunction with evidence from morphological similarities, phytogeographical distribution and some phytochemical features, confirm the segmental amphidiploid origin ofA. hypogaea. A. batizocoi andA. duranensis are suggested as the donors of the B genome and the A genome respectively.  相似文献   

13.
One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.  相似文献   

14.
The present communication deals with 2C nuclear genome size variation in a fairly small genus Guizotia. Twenty-four accessions belonging to six species, out of seven known, were analysed in order to elucidate the extent of DNA variation both at an intra—as well as interspecific level. At the intraspecific level none of the species exhibited significant differences in their genome size. Between the species, the 2C DNA amounts ranged from 3.61 pg in G. reptans to 11.37 pg in G. zavattarii; over three-fold DNA variation is evident. Apparently these interspecific DNA differences have been achieved independent of the numerical chromosomal change(s), as all the Guizotias share a common chromosome number 2n=2x=30. The cultivated oilseed crop, G. abyssinica (7.57 pg), has accommodated nearly 78% extra DNA in its chromosome complement during the evolutionary time scale of its origin and domestication from the wild progenitor G. schimperi (4.25 pg). The extent of genomic DNA difference(s) between the species has been discussed in the light of their interrelationships and diversity.  相似文献   

15.
The taxonomy of all species of Narcissus (Amaryllidaceae), an important horticultural crop, has not been investigated recently. As a new approach, genome size was determined by flow cytometry with propidium iodide from 375 accessions. The somatic nuclear DNA contents (2C) were shown to range from 14 to 38 pg for the diploids. Narcissus assoanus and N. gaditanus are, based on their nuclear DNA content, removed from section Apodanthi and placed in a new section Juncifolii. The different ploidy levels and species involved were entangled for N . “fernandesii” s.l. and a new allotetraploid form is named here. Section Pseudonarcissus was much more heterogeneous in nuclear DNA content than expected. Sixty-five accessions of N. pseudonarcissus possessed, with 23.7 pg, similar amounts of DNA. However, several species from this section were clearly distinctive in nuclear DNA content. It runs from the diploid N. primigenius with 21.7 pg to the also diploid N. nevadensis with 38.2 pg. Also N. abscissus and N. moleroi are with about 26 pg clearly different from N. pseudonarcissus. For the first time, in 11 accessions, hexaploidy was found in N. pseudonarcissus ssp. bicolor. A new section Nevadensis with 30–39 pg of nuclear DNA was split off from the section Pseudonarcissus with now 21–27 pg. A nonoploid N. dubius with 96.3 pg has by far the highest amount of nuclear DNA and can be calculated to have the highest ploidy ever reported in Narcisssus. The total number of Narcissus species was determined as 36, nine more than in Flora Europaea and they were divided up in two subgenera and 11 sections. Flow cytometry is shown to produce easily obtainable and original systematic data that lead to new insights. Genome size or C-value turns out to be one of the most salient features to define the status of the species in the genus Narcissus.  相似文献   

16.
BACKGROUND AND AIMS: Nuclear DNA amounts of 12 diploid and one tetraploid taxa and 12 natural interspecific hybrids of Cirsium from 102 populations in the Czech Republic, Austria, Slovakia and Hungary were estimated. METHODS: DAPI and PI flow cytometry were used. KEY RESULTS: 2C-values of diploid (2n = 34) species varied from 2.14 pg in C. heterophyllum to 3.60 pg in C. eriophorum (1.68-fold difference); the 2C value for the tetraploid C. vulgare was estimated at 5.54 pg. The DNA contents of hybrids were located between the values of their putative parents, although usually closer to the species with the smaller genome. Biennial species of Cirsium possessed larger nuclear DNA amounts than their perennial relatives. Genome size was negatively correlated with Ellenberg's indicator values for continentality and moisture and with eastern limits of distribution. A negative relationship was also detected between the genome size and the tendency to form natural interspecific hybrids. On the contrary, C-values positively corresponded with the spinyness (degree of spinosity). AT frequency ranged from 48.38 % in C. eriophorum to 51.75 % in C. arvense. Significant intraspecific DNA content variation in DAPI sessions was detected in C. acaule (probably due to the presence of B-chromosomes), and in tetraploid C. vulgare. Only the diploid level was confirmed for the Pannonian C. brachycephalum, generally considered to be tetraploid. In addition, triploidy was discovered for the first time in C. rivulare. CONCLUSIONS: Considerable differences in nuclear DNA content exist among Central European species of Cirsium on the diploid level. Perennial soft spiny Cirsium species of wet habitats and continental distributions generally have smaller genomes. The hybrids of diploid species remain diploid, and their DNA content is smaller than the mean of the parents. Species with smaller genomes produce interspecific hybrids more frequently.  相似文献   

17.
The 2C amounts of DNA for 12 taxa of the section Arachis nom. nud. of the genus Arachis L. were determined using cytophotometric techniques. The diploid taxa ranged from 4.92 to 5.98 pg of DNA per cell. The species of the diploid series Annuae Krap. & Greg. nom. nud. averaged ca. 1 pg less DNA per cell than the taxa of the diploid series Perennes Krap. & Greg. nom. nud. No significant differences were found between taxa within these two series. The tetraploid taxa ranged from 10.36 to 11.35 pg of DNA per cell. Within the tetraploid series Amphiploides Krap. & Greg. nom. nud. differences were found between A. monticola Krap. & Rig. and A. hypogaea L. The two subspecies of A. hypogaea, ssp. hypogaea and ssp. fastigiata Waldron, were found to differ significantly in their 2C amounts of DNA. The implications of the cytophotometric data on the chromosomal evolution of this section are discussed.  相似文献   

18.
Summary Seed protein profiles of nine diploid species (2n = 20), ten tetraploid accessions, two synthetic amphidiploids and two autotetraploids (2n = 40) were studied using SDS-polyacrylamide gel electrophoresis. While the general profiles suggested considerable homology among these taxa in spite of speciation and ploidy differences, appreciable genetic differences were present to support the existing genomic divisions and sub-divisions in the section Arachis. A high degree of relationship was indicated between the two diploid species (A. duranensis containing the A genome and A. batizocoi (ICG 8210) containing the B genome) and tetraploids A. monticola/ A. hypogaea (2n = 40) containing AABB genome. Similar relationships were recorded between the AABB synthetic amphidiploid and the profile obtained from the mixture of protein of A. duranensis and A. batizocoi, suggesting that these two diploid species were the donors of the A and B genome, respectively, to tetraploid A. monticola/A. hypogaea.Submitted as Journal Article No. 1114 by International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

19.
The subgenus Ceratochloa of the genus Bromus includes a number of closely related allopolyploid forms or species that present a difficult taxonomic problem. The present work combines data concerning chromosome length, heterochromatin distribution and nuclear genome size of different 6x, 8x and 12x accessions in this subgenus. Special attention is paid to the karyotype structure and genomic constitution of duodecaploid plants recently found in South America. Hexaploid lineages possess six almost indistinguishable genomes and a nuclear DNA content between 12.72 pg and 15.10 pg (mean 1Cx value = 2.32 pg), whereas octoploid lineages contain the same six genomes (AABBCC) plus two that are characterized by longer chromosomes and a greater DNA content (1Cx = 4.47 pg). Two duodecaploid accessions found in South America resemble each other and apparently differ from the North American duodecaploid B. arizonicus as regards chromosome size and nuclear DNA content (40.00 and 40.50 pg vs. 27.59 pg). These observations suggest that the South American duodecaploids represent a separate evolutionary lineage of the B. subgenus Ceratochloa, unrecognized heretofore.  相似文献   

20.
Benor S  Fuchs J  Blattner FR 《Génome》2011,54(7):575-585
In this study, we report genome size variations in Corchorus olitorius L. (Malvaceae s.l.), a crop species known for its morphological plasticity and broad geographical distribution, and Corchorus capsularis L., the second widely cultivated species in the genus. Flow cytometric analyses were conducted with several tissues and nuclei isolation buffers using 69 accessions of C. olitorius and 4 accessions of C. capsularis, representing different habitats and geographical origins. The mean 2C nuclear DNA content (± SD) of C. olitorius was estimated to be 0.918 ± 0.011 pg, with a minimum of 0.882 ± 0.004 pg, and a maximum of 0.942 ± 0.004 pg. All studied plant materials were found to be diploid with 2n = 14. The genome size is negatively correlated with days to flowering (r = -0.29, p < 0.05) and positively with seed surface area (r = 0.38, p < 0.05). Moreover, a statistically significant positive correlation was detected between genome size and growing elevation (r = 0.59, p < 0.001) in wild populations. The mean 2C nuclear DNA content of C. capsularis was estimated to be 0.802 ± 0.008 pg. In comparison to other economically important crop species, the genome sizes of C. olitorius and C. capsularis are much smaller, and therewith closer to that of rice. The relatively small genome sizes will be of general advantage for any efforts into genomics or sequencing approaches of these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号