首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag‐Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non‐SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous‐Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag‐Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high‐resolution mapping of loci in B. napus.  相似文献   

2.
Using chromosome substitution strains (CSS), we previously identified a large quantitative trait locus (QTL) for conditioned fear (CF) on mouse chromosome 10. Here, we used an F2 cross between CSS‐10 and C57BL/6J (B6) to localize that QTL to distal chromosome 10. That QTL accounted for all the difference between CSS‐10 and B6. We then produced congenic strains to fine‐map that interval. We identified two congenic strains that captured some or all the QTL. The larger congenic strain (Line 1: 122.387121–129.068 Mb; build 37) appeared to account for all the difference between CSS‐10 and B6. The smaller congenic strain (Line 2: 127.277–129.068 Mb) was intermediate between CSS‐10 and B6. We used haplotype mapping followed by quantitative polymerase chain reaction to identify one gene that was differentially expressed in both lines relative to B6 (Rnf41) and one that was differentially expressed between only Line 1 and B6 (Shmt2). These cis‐eQTLs may cause the behavioral QTLs; however, further studies are required to validate these candidate genes. More generally, our observation that a large QTL mapped using CSS and F2 crosses can be dissected into multiple smaller QTLs shows a weaknesses of two‐stage approaches that seek to use coarse mapping to identify large regions followed by fine‐mapping. Indeed, additional dissection of these congenic strains might result in further subdivision of these QTL regions. Despite these limitations, we have successfully fine‐mapped two QTLs to small regions and identified putative candidate genes, showing that the congenic approach can be effective for fine‐mapping QTLs .  相似文献   

3.
4.
Obesity develops in response to a combination of environmental effects and multiple genes of small effect. Although there has been significant progress in characterizing genes in many pathways contributing to metabolic disease, knowledge about the relationships of these genes to each other and their joint effects upon obesity lags behind. The LG,SM advanced intercross line (AIL) model of obesity has been used to characterize over 70 loci involved in fatpad weight, body weight, and organ weights. Each of these quantitative trait loci (QTLs) encompasses large regions of the genome and require fine‐mapping to isolate causative sequence changes and possible mechanisms of action as indicated by the genetic architecture. In this study we fine‐map QTLs first identified in the F2 and F2/3 populations in the combined F9/10 advanced intercross generations. We observed significantly narrowed QTL confidence regions, identified many single QTL that resolve into multiple QTL peaks, and identified new QTLs that may have been previously masked due to opposite gene effects at closely linked loci. We also present further characterization of the pleiotropic and epistatic interactions underlying these obesity‐related traits.  相似文献   

5.
6.
Miscanthus is a perennial C4 grass that has recently become an important bioenergy crop. The efficiency of breeding improved Miscanthus biomass cultivars could be greatly increased by marker‐assisted selection. Thus, a high‐density genetic map is critical to Miscanthus improvement. In this study, a mapping population of 261 F1 progeny was developed from a cross between two diploid M. sinensis cultivars, ‘Strictus’ and ‘Kaskade’. High‐density genetic maps for the two parents were produced with 3044 newly developed single nucleotide polymorphisms (SNPs) obtained from restriction site‐associated DNA sequencing, and 138 previously mapped GoldenGate SNPs. The female parent (‘Strictus’) map spanned 1599 cM, with 1989 SNPs on 19 linkage groups, and an average intermarker spacing of 0.8 cM. The length of the male parent (‘Kaskade’) map was 1612 cM, with 1821 SNPs, and an average intermarker spacing of 0.9 cM. The utility of the map was confirmed by locating quantitative trait loci (QTL) for the zebra‐striped trait, which was segregating in this population. Three QTL for zebra‐striped presence/absence (zb1, zb2 on LG 7, and zb3 on LG 10) and three for zebra‐striped intensity (zbi1, zbi2, zbi3 on LGs 7, 10, 3) were identified. Each allele that caused striping was recessive. Incomplete penetrance was observed for each zb QTL, but penetrance was greatest when two or more zb QTL were homozygous for the causative alleles. Similarly, the intensity of striping was greatest when two or more zbi QTL were homozygous for alleles that conferred the trait. Comparative mapping indicated putative correspondence between zb3 and/or zbi2 on LG 10 to previously sequenced genes conferring zebra stripe in maize and rice. These results demonstrate that the new map is useful for identifying marker–trait associations. The mapped markers will become a valuable community resource, facilitating comparisons among studies and the breeding of Miscanthus.  相似文献   

7.
Considerable genotypic variation exists in the response of different cultivars of rapeseed (Brassica napus) to B deficiency. This raises the possibility of genetic improvement of a B nutrition trait that will make the plant more tolerant to low B stress. The results of our study showed that B-efficient backcross plants had lower B concentration and more dry matter when grown at low levels of B when compared with the recurrent parent. Accordingly, we proposed that the improved B efficiency was attributed to either a high B utilization efficiency or less demand for B. The results of the genetic analysis showed that B efficiency is a dominant trait that is controlled by a single locus, namely BnBE2. By using bulked segregant analysis (BSA) in combination with amplified fragment length polymorphism (AFLP) and sequence related amplified polymorphism (SRAP) techniques, five SRAP markers and one converted single strand conformation polymorphism (SSCP) marker were identified to be linked to BnBE2 after screening 1,800 primer combinations. The six markers together with BnBE2 were mapped in a region that covered a genetic distance of 6.9 cM on a linkage group using a BC6 population. This region was located on linkage group N14 after mapping these markers in two doubled haploid (DH) populations (TNDH and BQDH). The SRAP and AFLP markers were sequenced and found to be homologous to a BAC sequence from Brassica oleracea (CC). This finding suggested that the segment containing BnBE2 locus originated from the C genome of Brassica oleracea. Three SSR markers were identified to be linked to BnBE2 through comparative mapping. All these markers might have potential value for facilitating the pyramiding of the BnBE2 gene with other B efficient genes in order to improve the B efficiency trait and for further fine mapping of the BnBE2 gene in Brassica napus.  相似文献   

8.
Wheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.cnl-2B.1, located on wheat chromosome 2B. A comparative genetic study with the related grass species rice (Oryza sativa L.) and Brachypodium distachyon at the homologous region to the QPhs.cnl-2B.1 interval was used to identify the candidate genes for marker development and subsequent fine mapping. Expressed sequence tags and a comparative mapping were used to design 278 primer pairs, of which 22 produced polymorphic amplicons that mapped to the group 2 chromosomes. Fourteen mapped to chromosome 2B, and ten were located in the QTL interval. A comparative analysis revealed good macrocollinearity between the PHS interval and 3 million base pair (mb) region on rice chromosomes 7 and 3, and a 2.7-mb region on Brachypodium Bd1. The comparative intervals in rice were found to contain three previously identified rice seed dormancy QTL. Further analyses of the interval in rice identified genes that are known to play a role in seed dormancy, including a homologue for the putative Arabidopsis ABA receptor ABAR/GUN5. Additional candidate genes involved in calcium signaling were identified and were placed in a functional protein association network that includes additional proteins critical for ABA signaling and germination. This study provides promising candidate genes for seed dormancy in both wheat and rice as well as excellent molecular markers for further comparative and fine mapping.  相似文献   

9.
Body size is an ecologically important trait shown to be genetically variable both within and among different animal populations as revealed by quantitative genetic studies. However, few studies have looked into underlying genetic architecture of body size variability in the wild using genetic mapping methods. With the aid of quantitative trait loci (QTL) analyses based on 226 microsatellite markers, we mapped body size and growth rate traits in the nine‐spined stickleback (Pungitius pungitius) using an F2‐intercross (n = 283 offspring) between size‐divergent populations. In total, 17 QTL locations were detected. The proportion of phenotypic variation explained by individual body size‐related QTL ranged from 3% to 12% and those related to growth parameters and increments from 3% to 10%. Several of the detected QTL affected either early or late growth. These results provide a solid starting point for more in depth investigations of structure and function of genomic regions involved in determination of body size in this popular model of ecological and evolutionary research.  相似文献   

10.
Quantitative traits important to organismal function and fitness, such as brain size, are presumably controlled by many small‐effect loci. Deciphering the genetic architecture of such traits with traditional quantitative trait locus (QTL) mapping methods is challenging. Here, we investigated the genetic architecture of brain size (and the size of five different brain parts) in nine‐spined sticklebacks (Pungitius pungitius) with the aid of novel multilocus QTL‐mapping approaches based on a de‐biased LASSO method. Apart from having more statistical power to detect QTL and reduced rate of false positives than conventional QTL‐mapping approaches, the developed methods can handle large marker panels and provide estimates of genomic heritability. Single‐locus analyses of an F2 interpopulation cross with 239 individuals and 15 198, fully informative single nucleotide polymorphisms (SNPs) uncovered 79 QTL associated with variation in stickleback brain size traits. Many of these loci were in strong linkage disequilibrium (LD) with each other, and consequently, a multilocus mapping of individual SNPs, accounting for LD structure in the data, recovered only four significant QTL. However, a multilocus mapping of SNPs grouped by linkage group (LG) identified 14 LGs (1–6 depending on the trait) that influence variation in brain traits. For instance, 17.6% of the variation in relative brain size was explainable by cumulative effects of SNPs distributed over six LGs, whereas 42% of the variation was accounted for by all 21 LGs. Hence, the results suggest that variation in stickleback brain traits is influenced by many small‐effect loci. Apart from suggesting moderately heritable (h2 ≈ 0.15–0.42) multifactorial genetic architecture of brain traits, the results highlight the challenges in identifying the loci contributing to variation in quantitative traits. Nevertheless, the results demonstrate that the novel QTL‐mapping approach developed here has distinctive advantages over the traditional QTL‐mapping methods in analyses of dense marker panels.  相似文献   

11.
The ultimate goal of quantitative trait locus (QTL) mapping is to identify the genes affecting complex traits. Using animal models, we recently identified QTLs on mouse Chromosomes (Chrs) 1, 4, and 11 affecting genetic predisposition to acute alcohol withdrawal. Among mice derived from the C57BL/6J (B6) and DBA/2J (D2) inbred strains, the locus identified on Chr 11 (∼20 cM) accounted for 12% of the genetic variability in withdrawal liability. Candidate genes in proximity to this QTL encode the γ2, α1, and α6 subunits of GABAA receptors. The present studies identify a polymorphism between the B6 and D2 strains in the γ2 subunit gene, Gabrg2, and expand genotypic analysis to their BXD recombinant inbred strains. This polymorphism predicts a difference in amino acid sequence (Ala-11 vs. Thr-11) within the extracellular amino-terminal region of the γ2 subunit. Analysis using BXD strain means for acute alcohol withdrawal severity suggests that the γ2 subunit polymorphism is genetically correlated with alcohol withdrawal severity. This is the first report that QTL mapping for an alcohol-related trait has successfully led to the identification of a polymorphic candidate gene product that is genetically associated with the trait. Received: 15 September 1998 / Accepted: 8 October 1998  相似文献   

12.
Atmospheric CO2 (Ca) has risen dramatically since preglacial times and is projected to double in the next century. As part of a 4‐year study, we examined leaf gas exchange and photosynthetic acclimation in C3 and C4 plants using unique chambers that maintained a continuous Ca gradient from 200 to 550 µmol mol?1 in a natural grassland. Our goals were to characterize linear, nonlinear and threshold responses to increasing Ca from past to future Ca levels. Photosynthesis (A), stomatal conductance (gs), leaf water‐use efficiency (A/gs) and leaf N content were measured in three common species: Bothriochloa ischaemum, a C4 perennial grass, Bromus japonicus, a C3 annual grass, and Solanum dimidiatum, a C3 perennial forb. Assimilation responses to internal CO2 concentrations (A/Ci curves) and photosynthetically active radiation (A/PAR curves) were also assessed, and acclimation parameters estimated from these data. Photosynthesis increased linearly with Ca in all species (P < 0.05). S. dimidiatum and B. ischaemum had greater carboxylation rates for Rubisco and PEP carboxylase, respectively, at subambient than superambient Ca (P < 0.05). To our knowledge, this is the first published evidence of A up‐regulation at subambient Ca in the field. No species showed down‐regulation at superambient Ca. Stomatal conductance generally showed curvilinear decreases with Ca in the perennial species (P < 0.05), with steeper declines over subambient Ca than superambient, suggesting that plant water relations have already changed significantly with past Ca increases. Resource‐use efficiency (A/gs and A/leaf N) in all species increased linearly with Ca. As both C3 and C4 plants had significant responses in A, gs, A/gs and A/leaf N to Ca enrichment, future Ca increases in this grassland may not favour C3 species as much as originally thought. Non‐linear responses and acclimation to low Ca should be incorporated into mechanistic models to better predict the effects of past and present rising Ca on grassland ecosystems.  相似文献   

13.
Yin Z  Meng F  Song H  Wang X  Chao M  Zhang G  Xu X  Deng D  Yu D 《Planta》2011,234(4):815-827
Filamentation temperature-sensitive H (FtsH) is an ATP-dependent zinc metalloprotease involved in diverse biological functions. There are 12 FtsH proteins in Arabidopsis, among which AtFtsH2 plays an important role in regulating the turnover of photosystem II (PSII) reaction center D1 protein and the development of the photosynthetic apparatus. Here, we have identified 11 FtsH genes in the soybean genome by a bioinformatics approach. These soybean FtsH genes corresponded to seven Arabidopsis FtsH genes, suggesting that the main characteristics of soybean FtsH genes were formed before the evolutionary split of soybean and Arabidopsis. Phylogenetic analyses allowed us to clone a soybean AtFtsH2-like gene designated as GmFtsH9. The predicted protein of GmFtsH9 consists of 690 amino acids and contains three typical FtsH proteins conserved domains. The expression level of GmFtsH9 was determined in a soybean recombinant inbred line population under a pot experiment conducted for measuring chlorophyll a fluorescence transient parameters, photosynthetic CO2 fixation rate (P N), and seed yield. Expression quantitative trait loci (eQTL) mapping revealed two trans-acting eQTLs for GmFtsH9. The significant correlation of gene expression level with chlorophyll a fluorescence transient parameters and the presence of overlapping eQTL (QTL) between gene expression level and chlorophyll a fluorescence transient parameters indicated that GmFtsH9 could be involved in regulating PSII function. These results further lead to the understanding of the mechanism underlying FtsH gene expression, and contribute to the development of marker-assisted selection breeding programs for modulating soybean FtsH gene expression.  相似文献   

14.
The inheritance of yield-related traits in rapeseed (Brassica napus) is poorly understood, and the investigations on mapping of quantitative trait loci (QTL) for such traits are only few. QTL related to six traits were mapped which include plant height (PH), height of lowest primary effective branch (HPB), length of main inflorescence (LMI), silique length (SL), number of primary branches (FB) and silique density (SD). A set of 258 doubled haploid (DH) lines derivatives of a cross between a canola variety Quantum and a resynthesized B. napus line No.2127-17, and a fixed immortalized F2 (designated as IF2) population generated by randomly permutated intermating of these DHs were investigated. A genetic linkage map was constructed using 208 SSR and 189 SRAP markers for the DH population. Phenotypic data were collected from three environments for the two populations. Using composite interval mapping analyses, 30 and 22 significant QTL were repeatedly detected across environments for the six traits in the DH and IF2 populations, respectively. Twenty-nine QTL were common between the two populations. The directions of parental contribution for all common QTL were the same, showing a great potential for marker-assisted selection in improving these traits. Some chromosomal regions harbor QTL for multiple traits, which were consistent with significant phenotypic correlations observed among traits. The results provided a better understanding of the genetic factors controlling yield-related traits in rapeseed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Switchgrass (Panicum virgatum L.), a native warm‐season perennial grass, is being considered as a feedstock for biofuel production in the United States. To expedite its genetic improvement and enhance genetic gain per selection cycle, application of marker‐assisted selection is indispensable. A high‐density linkage map was constructed in a pseudo‐F1 testcross mapping population of AP13×VS16, consisting of 349 progenies. A total of 8,757 single nucleotide polymorphism (SNP) markers generated through genotype‐by‐sequencing (GBS) were used to construct the linkage map. The total map length spans up to 2,540.2 cM with the marker density of one marker in every 0.25–0.34 cM. Spring green‐up (SG), days to flowering (FL), and the vegetative growth period (VP) data were analyzed and used for quantitative trait loci (QTL) mapping. The population showed significant variations and exhibited transgressive segregation for SG, FL, and VP. QTL analyses were performed using trait mean of each year and location along with BLUP (best linear unbiased prediction) values of the traits. A total of 35, 37, and 34 QTL for SG, FL, and VP, respectively, were identified. Phenotypic variability explained by each QTL ranged from 11.29% to 27.85%. The additive genetic effects of individual QTL ranged from ?1.81 to 2.40, ?6.12 to 7.58, and ?16.01 to 6.38 for SG, FL, and VP, respectively. Comparing major QTL regions in the switchgrass genome, 20 candidate genes were identified which were reported to be involved in growth‐, development‐, and flowering‐related traits in switchgrass.  相似文献   

16.
17.
Objectives: To investigate possible obesity candidate genes in regions of porcine quantitative trait loci (QTL) for fat deposition and obesity‐related phenotypes. Research Methods and Procedures: Chromosome mapping and QTL analyses of obesity candidate genes were performed using DNA panels from a reference pig family. Statistical association analyses of these genes were performed for fat deposition phenotypes in several other commercial pig populations. Results: Eight candidate genes were mapped to QTL regions of pig chromosomes in this study. These candidate genes also served as anchor loci to determine homologous human chromosomal locations of pig fat deposition QTL. Preliminary analyses of relationships among polymorphisms of individual candidate genes and a variety of phenotypic measurements in a large number of pigs were performed. On the basis of available data, gene‐gene interactions were also studied. Discussion: Comparative analysis of obesity‐related genes in the pig is not only important for development of marker‐assisted selection on growth and fat deposition traits in the pig but also provides for an understanding of their genetic roles in the development of human obesity.  相似文献   

18.
Drought stress was imposed on two sets of Arabidopsis thaliana genotypes grown in sand under short‐day conditions and analysed for several shoot and root growth traits. The response to drought was assessed for quantitative trait locus (QTL) mapping in a genetically diverse set of Arabidopsis accessions using genome‐wide association (GWA) mapping, and conventional linkage analysis of a recombinant inbred line (RIL) population. Results showed significant genotype by environment interaction (G×E) for all traits in response to different watering regimes. For the RIL population, the observed G×E was reflected in 17 QTL by environment interactions (Q×E), while 17 additional QTLs were mapped not showing Q×E. GWA mapping identified 58 single nucleotide polymorphism (SNPs) associated with loci displaying Q×E and an additional 16 SNPs associated with loci not showing Q×E. Many candidate genes potentially underlying these loci were suggested. The genes for RPS3C and YLS7 were found to contain conserved amino acid differences when comparing Arabidopsis accessions with strongly contrasting drought response phenotypes, further supporting their candidacy. One of these candidate genes co‐located with a QTL mapped in the RIL population.  相似文献   

19.
The IGF‐1 signaling pathway plays an important role in regulating longevity. To identify the genetic loci and genes that regulate plasma IGF‐1 levels, we intercrossed MRL/MpJ and SM/J, inbred mouse strains that differ in IGF‐1 levels. Quantitative trait loci (QTL) analysis of IGF‐1 levels of these F2 mice detected four QTL on chromosomes (Chrs) 9 (48 Mb), 10 (86 Mb), 15 (18 Mb), and 17 (85 Mb). Haplotype association mapping of IGF‐1 levels in 28 domesticated inbred strains identified three suggestive loci in females on Chrs 2 (13 Mb), 10 (88 Mb), and 17 (28 Mb) and in four males on Chrs 1 (159 Mb), 3 (52 and 58 Mb), and 16 (74 Mb). Except for the QTL on Chr 9 and 16, all loci co‐localized with IGF‐1 QTL previously identified in other mouse crosses. The most significant locus was the QTL on Chr 10, which contains the Igf1 gene and which had a LOD score of 31.8. Haplotype analysis among 28 domesticated inbred strains revealed a major QTL on Chr 10 overlapping with the QTL identified in the F2 mice. This locus showed three major haplotypes; strains with haplotype 1 had significantly lower plasma IGF‐1 and extended longevity (P < 0.05) than strains with haplotype 2 or 3. Bioinformatic analysis, combined with sequencing and expression studies, showed that Igf1 is the most likely QTL gene, but that other genes may also play a role in this strong QTL.  相似文献   

20.
Previously we identified a major quantitative trait locus (QTL) qTaLRO‐B1 for primary root length (PRL) in wheat. Here we compare proteomics in the roots of the qTaLRO‐B1 QTL isolines 178A, with short PRL and small meristem size, and 178B, with long PRL and large meristem size. A total of 16 differentially expressed proteins were identified: one, transforming growth factor (TGF)‐beta receptor‐interacting protein‐1 (TaTRIP1), was enriched in 178A, while various peroxidases (PODs) were more abundantly expressed in 178B. The 178A roots showed higher TaTRIP1 expression and lower levels of the unphosphorylated form of the brassinosteroid (BR) signaling component BZR1, lower expression of POD genes and reduced POD activity and accumulation of the superoxide anion O2? in the root elongation zone compared with the 178B roots. Low levels of 24‐epibrassinolide increased POD gene expression and root meristem size, and rescued the short PRL phenotype of 178A. TaTRIP1 directly interacted with the BR receptor TaBRI1 of wheat. Moreover, overexpressing TaTRIP1 in Arabidopsis reduced the abundance of unphosphorylated BZR1 protein, altered the expression of BR‐responsive genes, inhibited POD activity and accumulation of the O2? in the root tip and inhibited root meristem size. Our data suggested that TaTRIP1 is involved in BR signaling and inhibited root meristem size, possibly by reducing POD activity and accumulation of O2? in the root tip. We further demonstrated a negative correlation between the level of TaTRIP1 mRNA and PRL of landraces and modern wheat varieties, providing a valuable insight for better understanding of the molecular mechanism underlying the genotypic differences in root morphology of wheat in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号