首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of elevated atmospheric CO2 concentrations on theecophysiological responses (gas exchange, chlorophyll a fluorescence,Rubisco activity, leaf area development) as well as on the growthand biomass production of two poplar clones (i.e. Populus trichocarpax P. deltoides clone Beaupré and P. x euramericana cloneRobusta) were examined under open top chamber conditions. Theelevated CO2 treatment (ambient + 350 µmol mol-1) stimulatedabove-ground biomass of clones Robusta and Beaupré afterthe first growing season by 55 and 38%, respectively. This increasedbiomass production under elevated CO2 was associated with asignificant increase in plant height, the latter being the resultof enhanced internode elongation rather than an increased productionof leaves or internodes. Both an increased leaf area index (LAI)and a stimulated net photosynthesis per unit leaf contributedto a significantly higher stem biomass per unit leaf area, andthus to the increased above-ground biomass production underthe elevated CO2 concentrations in both clones. The larger LAIwas caused by a larger individual leaf size and leaf growthrate; the number of leaves was not altered by the elevated CO2treatment. The higher net leaf photosynthesis was the resultof an increase in the photochemical (maximal chlorophyll fluorescenceFm and photochemical efficiency Fv/Fm) as well as in the biochemical(increased Rubisco activity) process capacities. No significantdifferences were found in dark respiration rate, neither betweenclones nor between treatments, but specific leaf area significantlydecreased under elevated CO2 conditions.Copyright 1995, 1999Academic Press Biomass, chlorophyll a fluorescence, elevated CO2, growth, Populus, poplar, photosynthesis, respiration, Rubisco  相似文献   

2.
Root growth in chickpea (Cicer arietinum) has been studied fromthe early vegetative phase to the reproductive stage in orderto elucidate its growth and maintenance respiration and to quantifythe translocation of assimilates from shoot to root. A carbonbalance has been drawn for this purpose using the growth andrespiration data. The increase in the sieve tube cross-sectionalarea was also followed simultaneously. Plants growing in a nutrient culture medium were studied todetermine the relative growth rate (RGR) 5–60 d aftergermination. RGR declined from 113 to 41 mg d–1 g–1during the measurement period. Simultaneous with the RGR analysis,respiration rate was also measured using an oxygen electrode.The respiration rate declined as the plants aged and a drasticreduction was recorded following anthesis. The relationshipbetween RGR and respiration rate was used to extrapolate themaintenance respiration (m) and growth respiration (1/YEG).The respiration quotient (r.q.) of the roots was 1.2 and theQ10 in the range 20–25 °C was 2·2. A carbon balance for the roots was constructed by subtractingthe carbon lost during respiration from that gained during growth.The roots were found to respire no less than 80% of the carbontranslocated. The increase in the cross-sectional area composed of sieve tubeswas measured near the root-shoot junction as the plants grew.Chickpea has storied sieve plates which simplifies these measurements.Their cross-sectional area increased during growth mainly becauseof an increase in sieve tube number. The diameter of individualsieve tubes remained constant. Specific mass transfer (SMT) values for seive tubes into theroots have been computed during various stages of growth. SMTvalues were relatively constant before anthesis (approx. 6·5g h–1 cm–2), but decreased following anthesis. Wedid not evaluate possible retranslocation from roots: any suchretranslocation would have the effect of increasing our SMTvalues. Chickpea, Cicer arietinum, legume, root, respiration, phloem, translocation, carbon balance, specific mass transfer, sieve-tube dimensions  相似文献   

3.
Photosynthetic acclimation was examined by exposing third trifoliolateleaves of soybeans to air temperatures of 20 to 30°C andphotosynthetic photon flux densities (PPFD) of 150 to 950µmolphotons m–2 s–1 for the last 3 d before they reachedmaximum area. In some cases the environment of the third leafwas controlled separately from that of the rest of the plant.Photosynthesis, respiration and dry mass accumulation were determinedunder the treatment conditions, and photosynthetic capacity,and dry mass and protein content were determined at full expansion.Photosynthetic capacity, the light-saturated rate of net carbondioxide exchange at 25°C and 34 Pa external partial pressureof carbon dioxide, could be modified between 21 and 35 µmolCO2 m–2 s–1 by environmental changes after leaveshad become exporters of photosynthate. Protein per unit leafmass did not differ between treatments, and photosynthetic capacityincreased with leaf mass per unit area. Photosynthetic capacityof third leaves was affected by the PPFD incident on those leaves,but not by the PPFD on other leaves on the plant. Photosyntheticcapacity of third leaves was affected by the temperature ofthe rest of the plant, but not by the temperature of the thirdleaves. Photosynthetic capacity was linearly related to carbondioxide exchange rate in the growth regimes, but not to daytimePPFD. At high PPFD, and at 25 and 30°C, mass accumulationwas about 28% of the mass of photosynthate produced. At lowerPPFD, and at 20°C, larger percentages of the photosynthateproduced accumulated as dry mass. The results suggest that photosynthatesupply is an important factor controlling leaf structural growthand, consequently, photosynthetic acclimation to light and temperature. Key words: Glycine max (L.) Merr., photosynthesis, temperature acclimation, light acclimation, photosynthate partitioning  相似文献   

4.
ROBSON  M. J. 《Annals of botany》1973,37(3):501-518
The rates of net photosynthesis (Pn,c) in the light (85 W m–2visible), and respiration in the dark, of a simulated swardof S24 ryegrass were measured for 12 weeks during its developmentfrom a collection of two-leaved seedlings to a closed canopywith an LAI of 23 (15 of green leaf laminae). By the sixth week light interception was complete (LAI = 10.6)and Pn,c had risen to 24 mg CO2 dm–2 h–1, similarto rates recorded in the field. Photosynthetic functions (lightresponse curves) showed that the swards remained unsaturatedup to energy receipts of almost 400 W m–2, whereas singleleaves were light saturated at about 130 W m–2. Earlyin the development of the sward LAI had a greater effect onPn,c than radiation receipt, later the reverse was true. Thegrowth habit of the sward ranged from moderately erect (an Svalue of 0.72) to moderately prostrate (‘S’ = 0.37),while the ability of the two youngest fully expanded leaveson a tiller to make use of light in photosynthesis declinedas the sward increased in density from values of A max of 20to 5 mg CO2 dm–2 h–1. By varying the values of Sand A max fed into a model of canopy photosynthesis, withinthe above limits, it was demonstrated that, in practice, A maxis a greater determinant of canopy photosynthesis than S, exceptat low LAI where a prostrate sward has a marked advantage overan erect one. The rate of dark respiration rose as the swards increased inweight, although not in proportion to it, until the ninth weekwhen a ceiling yield of live plant tissue was reached. Respiratorylosses from the sward came almost equally from a component associatedwith maintenance (Rm) and one associated with growth (Rg). Therate of Rm was estimated to be about 0.014 g day–1 pergram of plant tissue, and that of Ra about 0.25 g per gram ofnew tissue produced—both close to theoretical values.The measured dry matter production curve of the swards was comparedwith that estimated from the gas analysis data. Similarly therates of gross photosynthesis estimated from the gas analysisdata were compared with the predictions of the mathematicalmodel. In both cases the fit was reasonably good. A balancesheet was drawn up; of every 100 units of carbon fixed, 45 werelost in respiration and 16 as dead leaf, 5 ended up in the rootand 6 in the stubble; only 28 remained as harvestable live leaftissue.  相似文献   

5.
Measurements of the growth of sainfoin and lucerne were madein the field after cutting on 31 May 1977. Sainfoin reacheda total above-ground dry weight of 408 g m–2 over thegrowing period of 48 days compared with 598 g m–2 in lucerne.Final leaf area indices (LAIs) were 2.8 in sainfoin and 6.1in lucerne. The specific leaf areas (SLAs) for sainfoin wereapproximately half those of lucerne throughout the regrowthperiod. The maximum rates of leaf appearance were 0.12 leavesper day in sainfoin and 0.85 leaves per day in lucerne. Themaximum mean rate of plant extension growth for lucerne of 2.12mm h–1 occurred during the night, whereas, in sainfointhe maximum rate of 1.72 mm h–1 occurred during the day. Measurements of extinction coefficients for PAR ranged from0.45 to 0.89 in sainfoin and from 0 42 to 0.57 in lucerne. Asthe lucerne crop increased in size leaf water potentials andsolute potentials became more negative. In sainfoin leaf waterpotentials remained remarkably high throughout the growth period,solute potentials decreased and turgor potentials increased.The stomatal conductances of the two species were similar. The photosynthetic capacities and rates of dark respirationper unit leaf area in both species were similar. The rate ofcanopy ‘gross’ photosynthesis at 295 W m–2was always greater in lucerne than in sainfoin. This was largelya matter of differences between the species in LAI, althoughat higher LAIs the more erect structure of lucerne leads toa better utilization of photosynthetically active radiation. Onobrychis vicifolia Scop, sainfoin, Medicago sativa L., lucerne, photosynthesis, water relations, temperature, canopy structure  相似文献   

6.
LAST  F. T. 《Annals of botany》1963,27(4):685-690
Inoculating Proctor barley leaves with Erysiphe graminis decreasedrates of photosynthesis, after an initial lag period, and increasedrespiration. Increasing the area inoculated progressively decreased ratesof photosynthesis, but the effects cannot be attributed to asimple loss of leaf area. When less than 30 per cent of a leafwas inoculated, decreases were equivalent to area losses greaterthan those inoculated; when more than 30 per cent was inoculatedthe photo-synthetic losses were equivalent to area losses lessthan those inoculated. Although the relative effects of E. graminis on photosynthesisand respiration were of the same order, the absolute effectson photosynthesis were greater than those on respiration. Inoculating30 per cent of a leaf decreased photosynthesis by 5–6mg CO2/dm2/hr from 12.9 in the uninoculated controls to 7.3.Respiration increased by 0.6 mg CO2/dm/hr, from 1.7 to 2.3-  相似文献   

7.
In three experiments measurements of photosynthesis were madeon single leaves of white clover (Trifolium repens L.) on threecultivars grown in a controlled environment. Plants which had grown under an irradiance of 30 J m–2s–1, or in shade within a simulated mixed sward, producedleaves with photosynthetic capacities some 30 per cent lowerthan did plants grown at 120 J m–2 s–1 without shade.There were no differences between treatments either in photosynthesismeasured at 30 J m–2 s–1, or in respiration ratesper unit leaf dry weight. Respiration per unit leaf area washigher in the plants grown at 120 J m–2 s–1, reflectingthe lower specific leaf area of these leaves. There were nodifferences between the three cultivars examined. Leaves which were removed from the shade of a simulated swardshortly after becoming half expanded achieved photosyntheticcapacities as high as those which were in full light throughouttheir development. It is suggested that it is this characteristicwhich enables clover plants growing in an increasingly densemixed sward to produce a succession of leaves of high photosyntheticcapacity, even though each lamina only reaches the top of thesward at a relatively late stage in its development. Trifolium repens L., white clover, photosynthesis, leaf expansion, shade, specific leaf area, stomatal conductance  相似文献   

8.
Simulated mixed swards of perennial ryegrass (Lolium perenneL. cv. S23) and white clover (Trifolium repens L. cv. S100)were grown from seed under a constant 10°C day/8°C nighttemperature regime and their growth, and carbon and nitrogeneconomies examined. The swards received a nutrient solution,every second day, which contained either high (220 µgg–1) or low (40 µg g–1) nitrate N. The High-N swards had rates of canopy photosynthesis and drymatter production (over the linear phase of growth) similarto those previously shown by mixed swards at high temperature.The Low-N swards grew more slowly; canopy photosynthesis, ata given LAI, was similar to that at High-N but lower LAI's weresustained. Clover increased its contribution to total carbonuptake and total dry weight throughout the period in the Low-Ntreatment and, despite the fact that grass took up most of theavailable nitrate, clover maintained a consistently higher Ncontent by virtue of N2-fixation. At High-N, grass dominated throughout the measurement period.Earlier, when plants grew as spaced individuals, clover grewless well than grass, but once the canopy was closed it hada similar relative growth rate and thus maintained a steadyproportion of total sward dry weight. It is proposed that earlyin the development of the crop, leaf area production is thelimiting factor for growth, and that in this respect cloveris adversely affected by low temperature relative to grass.Later, as the LAI of the crop builds up, and the canopy becomesfully light intercepting, net canopy photosynthesis plays amore dominant role and here the higher photosynthetic rate perunit leaf area of the clover is crucial. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, low temperature, nitrogen, photosynthesis  相似文献   

9.
The dependence of photosynthetic capacity on imported and locally-assimilatedsupplies of carbon during leaf development under different irradianceswas investigated in Glycine max. The potential export of carbonto the developing, mainstem trifoliate leaf (source-potential)was restricted non-destructively by shading all lower, sourceleaves (source-shading), while local photosynthesis was modifiedconcurrently by exposing the young leaf to different light levelsduring development. When source-shading was applied below the2nd mainstem trifoliate leaf at the bud stage of development,photosynthetic capacity was unaffected in leaves which had developedunder moderate and low irradiances (500 and 250 µmol PARm –2 s–1 respectively), but was reduced significantlyin leaves developed under a high irradiance (900 µmolPAR m –2 s–1). If source-shading was applied beneaththe 2nd leaf at unfolding, the reduction of photosynthetic capacityunder the high irradiance was relatively minor. The photosyntheticcapacity attained by the 2nd leaf during development under differentirradiances was influenced by the previous light environmentof the whole plant. In contrast to the 2nd leaf, the photosyntheticcapacities of the 1st and 4th mainstem leaves were relativelyunaffected by source-shading, even under the highest light regime.While photosynthetic capacity showed a widespread insensitivityto the light level of the lower region of the canopy, source-shadingreduced final leaf size irrespective of node position or localirradiance during leaf development. These effects were not relatedto differences in daily photosynthesis by the expanding leaf,and are discussed in terms of the source/sink balance of thedeveloping leaf. Key words: Glycine max, source-shading, photosynthetic capacity  相似文献   

10.
江西千烟洲人工针叶林下狗脊蕨群落生物量   总被引:1,自引:0,他引:1       下载免费PDF全文
 根据野外调查和实验分析研究了江西省千烟洲人工针叶林下狗脊蕨(Woodwardia japonica)群落的生物量、细根生物量、净初级生产力(Net primary productivity, NPP)、 比叶面积(Specific leaf area, SLA) 和叶面积指数(Leaf area index, LAI)等。通过叶片参数和地上生 物量的相关关系建立了狗脊蕨单株地上生物量估算模型,分别 为W1=0.021H1.545(R2=0.790)和W1=2.518(D2H)0 .616(R2=0.894;H为株高 ,D为地径)。人工针叶林下灌草层地上生物量为367.8 g&;#8226;m-2(52~932 g&;#8226;m-2),凋落物为1 631 g&;#8226;m-2(672~2 763 g&;#8226;m-2),分别占 乔木层地上生物量的4.7%(1.55%~13.2%)和20.7%(7.6%~32.1%)。狗脊蕨群落地上生物量和NPP分别为266.6 g&;#8226;m-2和88.67 g&;#8226;m-2&;#8226;a -1 ,其中狗脊蕨种群占73.7%;地下生物量为212.6 g&;#8226;m-2。狗脊蕨的SLA和叶干物质含量(Leaves day mutter content, LDMC)分别为144.0 cm2&;#8226;g-1和31.99%,二者之间呈显著负相关;最佳叶面积估算模型为S=21.922 6-0.152L2+0.000 9L3(9.0≤L(叶片长度)≤23.5;1.4≤W ( 叶片宽度)≤5.9)。狗脊蕨种群的LAI为1.8。土壤含水量对狗脊蕨生物量有显著影响。群落生物量与土壤有机质和全氮含量正相关  相似文献   

11.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and their growth and carbon economyexamined. The swards received a nutrient solution daily, whichcontained either High (220 mg l1) or Low (10 mg l–1)nitrate N. Rates of canopy photosynthesis and respiration, and final drymatter yields were similar in the two treatments although theproportions of grass and clover differed greatly. The Low-Nswards were made up largely of clover. The grass plants in theseswards had high root: shoot ratios and low relative photosyntheticrates – both signs of N deficiency – and were clearlyunable to compete with the vigorously growing Low-N clover plants.These had higher relative growth rates and dry matter yieldsthan their High-N counterparts. In the High-N swards clovercontributed around 50 per cent to the sward dry weight throughoutthe measurement period despite having a smaller proportion ofits dry weight in photosynthetic tissue (laminae) than grassover much of it. The latter was compensated for, initially bya higher specific leaf area than grass, and later by a higherphotosynthetic rate per unit leaf weight. The results are discussedin relation to observed declines in the clover content of swardsafter the addition of nitrogen fertilizer in the field. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, nitrogen, photosynthesis, carbon balance  相似文献   

12.
Spring wheat plants growing in pots in controlled environmentrooms were given extra nitrogen after flag leaf emergence. Theeffect of nitrogen on growth, yield, the activity of ribulose1,5–bisphosphate carboxy–lase/oxygenase and thedistribution of14C in photorespiratory intermediates and indifferent parts of the plants was determined. Extra nitrogenincreased the movement of 14C to the ear and increased grainyield by 29 per cent, mainly because of an increase in grainnumber. Though extra nitrogen delayed senescence of the leaves,the growth of the ear in the later stages was not increasedin proportion to the extra green area. The relative inefficiencyof leaf area with extra nitrogen, which has also been foundin the field, was not due to a reduction in photosynthesis perunit leaf area. Nor was there evidence of an increase in photorespirationas reflected by a greater flow of carbon into the photorcspiratorymetabolites glycine and serine, or an increase in the activityof ribulose 1,5–bisphosphate oxygenase relative to thecarboxylase. We suggest that there may be an increase in theloss of carbon in dark respiration. Triticum aesttvum, nitrogen, growth, yield, photorespiration  相似文献   

13.
NILWIK  H. J. M. 《Annals of botany》1981,48(2):137-146
A growth analysis was carried out with sweet pepper plants grownin a phytotron. Irradiance conditions were: 0.84 or 3.25 MJm–2 in 8 h, 1.67 MJ m–2 in 16 h and 2.51 MJ m–2in 24 h. Temperatures applied were 25 or 21 °C during thephotoperiod in combination with 25, 21 and 17 or 21, 17 and13 °C respectively during the nyctoperiod. Highest values for leaf area and total dry weight were foundwhen applying 1.67 MJ m–2 in 16 h, followed by 3.25 MJm–2 in 8 h, irrespective of the temperature regime. Continuousirradiance ultimately resulted in leaf drop. A reduction inthe day temperature decreased leaf area and total dry weight.At a day temperature of 25 °C the dry weight increased withdecreasing night temperature when applying 3.25 MJ m–2in 8 h. At a day temperature of 21 °C leaf area and dryweight were reduced when 17 or 13 °C were applied duringa 16 h nyctoperiod. Values for relative growth rate, net assimilation rate, leafarea ratio and leaf weight ratio strongly decreased with advancingplant age. The effects of irradiance treatment on RGR and NARwere analogous to those on total dry weight while the reversepattern was observed for the LAR. A decrease in day temperaturedecreased the RGR. The effects of night temperature exhibitedstrong interactions with day temperature and photoperiod. Theinfluence of temperature on RGR was largely mediated throughchanges in the LAR. The latter parameter was highly correlatedwith the specific leaf weight. Capsicum annuum L., sweet pepper, growth analysis, irradiance, temperature, plant age  相似文献   

14.
Elevated CO2 enhances carbon uptake of a plant stand, but the magnitude of the increase varies among growth stages. We studied the relative contribution of structural and physiological factors to the CO2 effect on the carbon balance during stand development. Stands of an annual herb Chenopodium album were established in open-top chambers at ambient and elevated CO2 concentrations (370 and 700 μmol mol−1). Plant biomass growth, canopy structural traits (leaf area, leaf nitrogen distribution, and light gradient in the canopy), and physiological characteristics (leaf photosynthesis and respiration of organs) were studied through the growing season. CO2 exchange of the stand was estimated with a canopy photosynthesis model. Rates of light-saturated photosynthesis and dark respiration of leaves as related with nitrogen content per unit leaf area and time-dependent reduction in specific respiration rates of stems and roots were incorporated into the model. Daily canopy carbon balance, calculated as an integration of leaf photosynthesis minus stem and root respiration, well explained biomass growth determined by harvests (r 2 = 0.98). The increase of canopy photosynthesis with elevated CO2 was 80% at an early stage and decreased to 55% at flowering. Sensitivity analyses suggested that an alteration in leaf photosynthetic traits enhanced canopy photosynthesis by 40–60% throughout the experiment period, whereas altered canopy structure contributed to the increase at the early stage only. Thus, both physiological and structural factors are involved in the increase of carbon balance and growth rate of C. album stands at elevated CO2. However, their contributions were not constant, but changed with stand development.  相似文献   

15.
ROBSON  M. J. 《Annals of botany》1982,49(3):321-329
Simulated swards of each of two selection lines of Lolium perennecv. S23 with ‘fast’ and ‘slow’ ratesof ‘mature tissue’ respiration were establishedin growth rooms at 20/15 °C day/night temperatures and studiedover four successive regrowth periods of 46, 30, 26 and 53 daysduration. The ‘slow’ line outyielded the ‘fast’,both in harvestable shoot (above a 5 cm cut) and in root andstubble. Its advantage increased over successive regrowth periodsto 23 per cent (total biomass). Gas analysis measurements onthe entire communities (including roots), during the final regrowthperiod, showed that the ‘slow’ line had a 22–34per cent lower rate of dark respiration per unit dry weight.This enabled it to maintain its greater mass of tissue for thesame cost in terms of CO2 efflux per unit ground area. Halfthe extra dry weight produced by the ‘slow’ line,relative to the ‘fast’, could be attributed to itsmore economic use of carbon. The rest could be traced to a 25per cent greater tiller number which enabled the ‘slow’line to expand leaf area faster (though not at a greater rateper tiller), intercept more light and fix more carbon, earlyin the regrowth period. Lolium perenne L., ryegrass, respiration, maintenance respiration, tiller production, simulated swards, canopy photosynthesis, carbon economy  相似文献   

16.
SHEEHY  J. E. 《Annals of botany》1977,41(3):593-604
The rates of canopy and individual leaf photosynthesis and 14Cdistribution for three temperate forage grasses Lolium perennecv. S24, L. perenne cv. Reveille and Festuc'a arundinacea cv.SI70 were determined in the field during a summer growth period.Canopy photosynthesis declined as the growth period progressed,reflecting a decline in the photosynthetic capacity of successiveyoungest fully expanded leaves. The decline in the maximum photosyntheticcapacity of the canopies was correlated with a decline in theirquantum efficiencies at low irradiance. Changes in canopy structureresulted in changes in canopy net photosynthesis and dark respiration.No clear relationships between changes in the environment andchanges in canopy net photosynthesis and dark respiration wereestablished. The relative distributions of 14C in the shootsof the varieties gave a good indication of the amount of drymatter per ground area in the varieties.  相似文献   

17.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

18.
Osone Y  Tateno M 《Annals of botany》2005,95(7):1211-1220
BACKGROUND AND AIMS: The practical applicability of optimal biomass allocation models is not clear. Plants may have constraints in the plasticity of their root : leaf ratio that prevent them from regulating their root : leaf ratio in the optimal manner predicted by the models. The aim of this study was to examine the applicability and limitations of optimal biomass allocation models and to test the assumption that regulation of the root : leaf ratio enables maximization of the relative growth rate (RGR). METHODS: Polygonum cuspidatum from an infertile habitat and Chenopodium album from a fertile habitat were grown under a range of nitrogen availabilities. The biomass allocation, leaf nitrogen concentration (LNC), RGR, net assimilation rate (NAR), and leaf area ratio (LAR) of each species were compared with optimal values determined using an optimal biomass allocation model. KEY RESULTS: The root : leaf ratio of C. album was smaller than the optimal ratio in the low-nitrogen treatment, while it was almost optimal in the high-nitrogen treatment. In contrast, the root : leaf ratio of P. cuspidatum was close to the optimum under both high- and low-nitrogen conditions. Owing to the optimal regulation of the root : leaf ratio, C. album in the high-nitrogen treatment and P. cuspidatum in both treatments had LNC and RGR (with its two components, NAR and LAR) close to their optima. However, in the low-nitrogen treatment, the suboptimal root : leaf ratio of C. album led to a smaller LNC than the optimum, which in turn resulted in a smaller NAR than the optimum and RGR than the theoretical maximum RGR. CONCLUSIONS: The applicability of optimal biomass allocation models is fairly high, although constraints in the plasticity of biomass allocation could prevent optimal regulation of the root : leaf ratio in some species. The assumption that regulation of the root : leaf ratio enables maximization of RGR was supported.  相似文献   

19.
Estimation of the Annual Cost of Kiwifruit Vine Growth and Maintenance   总被引:2,自引:0,他引:2  
Elemental analysis (for carbon, hydrogen, nitrogen and sulphur)and ash data for kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A. R. Ferguson var. deliciosa cv. Hayward] stems,leaves and fine roots were used to calculate the specific costs(kg carbohydrate kg-1 dry matter) of organ synthesis with ammoniacalnitrogen supply. Those costs ranged between 1·19 and1·35 for stems and 1·19 and 1·27 for leaves.The mean annual specific cost for fine roots was 1·17.Seasonal vine growth costs were calculated by multiplying thespecific costs by biomass data for a typical vine. Total costof synthesis was 57·2 kg carbohydrate per vine year-1,taking fine root turnover as three times per season. Nitratenitrogen supply increased that cost by 6·6% to 61·0kg carbohydrate per vine year-1. Fruit growth accounted forthe largest proportion of synthetic costs. Vine growth respiration(expressed in terms of carbohydrate equivalents) accounted forapproximately 11·5% of the total cost of synthesis. Maintenancerespiration was estimated to be 5·28, 8·44, 1·90,8·62 and 13·3 kg carbohydrate per organ year-1for stems, leaves, fruit, above-ground perennial componentsand roots, respectively. Total annual cost of growth and maintenancefor a mature vine was 94·7 and 98·5 kg carbohydrateper vine year-1 with ammoniacal and nitrate nitrogen supply,respectively. Both values are similar to an estimate of vinephotosynthesis. Maintenance respiration accounted for approximately40% of the total annual cost of vine growth, regardless of theform of nitrogen supplied. Peak carbohydrate demand was duringthe period from 60 to 160 d after budbreak.Copyright 1995, 1999Academic Press Actinidia deliciosa, kiwifruit, carbon economy, growth respiration, maintenance respiration  相似文献   

20.
Net photosynthesis rate (Pn), stomatal conductance to CO2 andresidual conductance to CO2 were measured in the last six leaves(the sixth or flag leaf and the preceding five leaves) of Triticumaestivum L. cv. Kolibri plants grown in Mediterranean conditions.Recently fully expanded leaves of well-watered plants were alwaysused. Measurements were made at saturating photosynthetic photonflux density, and at ambient CO2 and O2 levels. The specificleaf area, total organic nitrogen content, some anatomical characteristics,and other parameters, were measured on the same leaves usedfor gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure wasobserved with increasing leaf insertion levels. Furthermore,mesophyll cell volume per unit leaf area (Vmes/A) decreasedby 52·6% from the first leaf to the flag leaf. Mesophyllcell area per unit leaf area also decreased, but only by 24·5%.However, nitrogen content per unit mesophyll cell volume increasedby 50·6% from the first leaf to the flag leaf. This increasecould be associated to an observed higher number of chloroplastcross-sections per mm2 of mesophyll cell cross-sectional areain the flag leaf: values of 23000 in the first leaf and 48000in the flag leaf were obtained. Pn per unit leaf area remainedfairly constant at the different insertion levels: values of33·83±0·93 mg dm–2 h–1 and32·32±1·61 mg dm–2 h–1 wereobtained for the first leaf and the flag leaf, respectively.Residual conductance, however, decreased by 18·2% fromthe first leaf to the flag leaf. Stomatal conductance increasedby 41·7%. The steadiness in Pn per unit leaf area across the leaf insertionlevels could be mainly accounted for by an opposing effect betweena decrease in Vmes/A and a more closely packed arrangement ofphotosynthetic apparatus. Adaptative significance of structuralchanges with increasing leaf insertion levels and the steadinessin Pn per unit leaf area was studied. Key words: Photosynthesis, structure, wheat  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号