首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of elevated CO2 were studied on the photosyntheticgas exchange behaviour and leaf physiology of two contrastingpoplar (Populus) hybrids grown and treated in open top chambers(OTCs in Antwerp, Belgium) and in closed glasshouse cabinets(GHCs in Sussex, UK). The CO2 concentrations used in the OTCswere ambient and ambient +350 µmol mol–1 while inthe GHCs they were c. 360 µmol mol–1 versus 719µmol mol–1. Measurements of photosynthetic gas exchangewere made for euramerican and interamerican poplar hybrids incombination with measurements of dark respiration rate and Rubiscoactivity. Significant differences in the leaf anatomy and structure(leaf mass per area and chlorophyll content) were observed betweenthe leaves grown in the OTCs and those grown in the GHCs. ElevatedCO2 stimulated net photosynthesis in the poplar hybrids after1 month in the GHCs and after 4 months in the OTCs, and therewas no evidence of downward acclimation (or down-regulation)of photosynthesis when the plants in the two treatments weremeasured in their growth CO2 concentration. There was also noevidence of down-regulation of Rubisco activity and there wereeven examples of increases in Rubisco activity. Rubisco exerteda strong control over the light-saturated rate of photosynthesis,which was demonstrated by the close agreement between observednet photosynthetic rates and those that were predicted fromRubisco activities and Michaelis-Menten kinetics. After 17 monthsin elevated CO2 in the OTCs there was a significant loss ofRubisco activity for one of the hybrid clones, i.e. Beaupr,but not for clone Robusta. The effect of the CO2 measurementconcentration (i.e. the short-term treatment effect) on netphotosynthesis was always larger than the effect of the growthconcentration in both the OTCs or GHCs (i.e. the longterm growthCO2 effect), with one exception. For the interamerican hybridBeaupr dark respiration rates in the OTCs were not significantlyaffected by the elevated CO2 concentrations. The results suggestthat for rapidly growing tree species, such as poplars, thereis little evidence for downward acclimation of photosynthesiswhen plants are exposed to elevated CO2 for up to 4 months;longer term exposure reveals loss of Rubisco activity. Key words: Elevated CO2, Populus, Rubisco, photosynthesis, chlorophyll content  相似文献   

2.
The effect of rapid dehydration due to withholding of irrigationon leaf photosynthesis in coffee (Coffea arabica L.) was studiedby comparing the CO2-dependent rate of photosynthesis in intactleaves (A/Ci curve), the amounts of Chl, total soluble proteinand ribulose-l,5-bisphosphate carboxylase (Rubisco) in leaves,and the activities of photochemical reactions of isolated chloroplastsand of Rubisco under unshaded and shaded conditions. The CO2-saturatedrate of photosynthesis and the carboxylation efficiency (theinitial slope of A/Ci curve) decreased with decreasing leafwater potential (  相似文献   

3.
Using open-top chambers, four prominent species (Lolium perenne,Cynosurus cristatus, Holcus lanatusandAgrostis capillaris) ofIrish neutral grasslands were grown at ambient and elevated(700 µmol mol-1) atmospheric CO2for a period of 8 months.The effects of interspecific competition on plant responsesto CO2enrichment were investigated by growing the species ina four-species mixture. The results indicate that the speciesdiffer in their ability to respond to elevated CO2. CO2-enrichmenthad the largest effect on the biomass production ofH. lanatus,but substantial stimulations in biomass production were alsofound for the other three species. The CO2-stimulation of biomassproduction forH. lanatuswas accompanied by increased tillering.In addition, reductions in specific leaf area were found forall species. Exposure to elevated CO2increased the communitybiomass of the four-species mixture. This increase can be mainlyattributed to a significant increase in the biomass ofH. lanatusatelevated CO2. No statistically-significant changes in speciescomposition of community biomass were found. However,H. lanatusdidincrease its share of community biomass at each of the harvests,with the other three species, mainlyL. perenne, suffering lossesin their shares at elevated CO2. The results show that: (1)the species varied in their response to elevated CO2; and (2)species composition in natural plant communities is likely tochange at elevated CO2, but these changes may occur rather slowly.Much longer periods of exposure to elevated atmospheric CO2maybe required to permit detection of significant changes in speciescomposition.Copyright 1998 Annals of Botany Company Carbon dioxide (CO2) enrichment, competition, Lolium perenne,Cynosurus cristatus, Holcus lanatus, Agrostis capillaris, biomass, specific leaf area, tillering.  相似文献   

4.
Plants of Phaseolus vulgaris were grown from seed in open-topgrowth chambers at the present (P, 350 µmol mol–1)atmospheric CO2 concentration and at an elevated (E, 700 µmolmol–1) CO2 concentration, and at low (L, without additionalnutrient solution) and high (H, with additional nutrient solution)nutrient supply for 28 d The effects of CO2 and nutrient availabilitywere examined on growth, morphological and biochemical characteristics Leaf area and dry mass were significantly increased by CO2 enrichmentand by high nutrient supply Stomatal density, stomatal indexand epidermal cell density were not affected by elevated CO2concentration or by nutrient supply Leaf thickness respondedpositively to CO2 increasing particularly in mesophyll areaas a result of cell enlargement Intercellular air spaces inthe mesophyll decreased slightly in plants grown in elevatedCO2 Leaf chlorophyll content per unit area or dry mass was significantlylower in elevated CO2 grown plants and increased significantlywith increasing nutrient availability The content of reducingcarbohydrates of leaves, stem, and roots was not affected byCO2 but was significantly increased by nutrient addition inall plant parts Starch content in leaves and stem was significantlyincreased by elevated CO2 concentration and by high nutrientsupply Phaseolus vulgaris, elevated atmospheric CO2, CO2-nutrient interaction, stomatal density, leaf anatomy, chlorophyll, carbohydrates, starch  相似文献   

5.
Effects of CO2 Enrichment on Four Poplar Clones. I. Growth and Leaf Anatomy   总被引:2,自引:0,他引:2  
The poplar clones Columbia River, Beaupre, Robusta and Raspaljehave been investigated under the present (350 µmol mol–1)and double the present (700 µmol mol–1) atmosphericCO2 concentration. Cuttings were planted in pots and were grownin open-top chambers inside a glasshouse for 92 d. The number of leaves, total length of stem, total leaf area,overall growth rate, total leaf, stem and root d. wt respondedpositively to increased CO2 but the leaf size and biomass allocationshowed no change with CO2 enrichment. Beaupre and Robusta showeda larger growth response than either Columbia River or Raspalje. The effects of CO2 enrichment were restricted to the early phaseof growth at the beginning of the growth season. Leaf cell numbers in all the clones were not affected by CO2enrichment. Leaf thickness was affected; this was mainly theresult of larger mesophyll cells and more extensive intercellularspaces. Poplar clones, CO2 enrichment, growth, leaf anatomy, leaf cell number  相似文献   

6.
Sunflower plants were grown under controlled environmental conditionswith either 0 or 10 mol m–3 phosphate (Pi). From steady-statemeasurements of gas exchange and chlorophyll fluorescence madeon intact leaves, the in vivo CO2/O2 specificity factor (invivo Ksp) of ribulose 1,5-Aisphosphate carboxylase-oxygenase(Rubisco) was determined following two methods based on modelsof C3 photosynthesis by Brooks and Farquhar (1985) and Peterson(1989). The two methods gave in vivo Ksp values for controlsunflower leaves which were similar to published values forhigher plants. Extreme Pi deficiency decreased in vivo Ksp,in sunflower leaves compared to adequate Pi. This suggests thatPi deficiency affected photorespiration less than photosynthesis.The decrease in in vivo Ksp may be due to a real change in theenzyme kinetics favouring oxygenation more than carboxylationor due to an increase in the number of CO2 molecules releasedper oxygenation; in which case the observed decrease in thein vivo Ksp determined on intact leaves will not agree numericallywith the true Ksp of Rubisco determined in vitro using purifiedenzyme from the same leaf. We discuss the implications of therelatively large photorespiration in Pi-deficient sunflowerleaves with respect to the increased dissipation of photosyntheticelectrons and photorespiratory recycling of Pi in thechloroplaststroma. Although our results on in vivo Ksp suggested a relativelylarger photorespiratory potential in Pi-deficient than controlsunflower leaves, photosynthesis was insensitive to O2 in Pi-deficientleaves; the possible reasons for this phenomenon are discussed.Under extreme Pi deficiency, O2 sensitivity of photosynthesisis not a reflection of the in vivo photorespiratory rates. Determinationof in vivo Ksp of Rubisco is a useful approach to study thephotorespiratory potential of intact leaves. Key words: Chlorophyll fluorescence, phosphate deficiency, photorespiration, photosynthesis, PSII quantum yield, Rubisco specificity factor  相似文献   

7.
To examine the effects of a doubled atmospheric CO2 concentrationand other aspects of global climate change on a common CAM speciesnative to the Sonoran Desert, Agave deserti was grown under370 and 750 µmol CO2 mol–1 air and gas exchangewas measured under various environmental conditions. Doublingthe CO2 concentration increased daily net CO2 uptake by 49%throughout the 17 months and decreased daily transpiration by24%, leading to a 110% increase in water-use efficiency. Underthe doubled CO2 concentration, the activity of ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco) was 11% lower, phosphoenolpyruvatecarboxylase was 34% lower, and the activated:total ratio forRubisco was 25% greater than under the current CO2 concentration.Less leaf epicuticular wax occurred on plants under the doubledCO2 concentration, which decreased the reflectance of photosyntheticphoton flux (PPF); the chlorophyll content per unit leaf areawas also less. The enhancement of daily net CO2 uptake by doublingthe CO2 concentration increased when the PPF was decreased below25 mol m–2 d–1 when water was withheld, and whenday/night temperatures were below 17/12 C. More leaves, eachwith a greater surface area, were produced per plant under thedoubled CO2 concentration. The combination of increased totalleaf surface area and increased daily net CO2 uptake led toan 88% stimulation of dry mass accumulation under the doubledCO2 concentration. A rising atmospheric CO2 concentration, togetherwith accompanying changes in temperature, precipitation, andPPF, should increase growth and productivity of native populationsof A. deserti. Key words: Crassulacean acid metabolism, gas exchange, global climate change, Sonoran Desert  相似文献   

8.
Single, seed-grown plants of ryegrass (Lolium perenne L. cv.Melle) were grown for 49 d from the early seedling stage ingrowth cabinets at a day/night temperature of 20/15 C, witha 12 h photoperiod, and a CO2 concentration of either 340 or680µI 1–1 CO2. Following complete acclimation tothe environmental regimes, leaf and whole plant CO2 effluxesand influxes were measured using infra-red gas analysis techniques.Elevated CO2 increased rates of photosynthesis of young, fullyexpanded leaves by 35–46% and of whole plants by morethan 50%. For both leaves and whole plants acclimation to 680µI–1 CO2 reduced rates of photosynthesis in bothCO2 regimes, compared with plants acclimated to 340µll–1. There was no significant effect of CO2 regime onrespiration rates of either leaves or whole plants, althoughleaves developed in elevated CO2 exhibited generally lower ratesthan those developed in 340µI I–1 CO2. Initially the seedling plants in elevated CO2 grew faster thantheir counterparts in 340µI I–1 CO2, but this effectquickly petered out and final plant weights differed by onlyc. 10%. Since the total area of expanded and unexpanded laminaewas unaffected by CO2 regime, specific leaf area was persistently13–40% lower in elevated CO2 while, similarly, root/shootratio was also reduced throughout the experiment. Elevated CO2reduced tissue nitrogen contents of expanded leaves, but hadno effect on the nitrogen contents of unexpanded leaves, sheathsor roots. The lack of a pronounced effect of elevated CO2 on plant growthwas primarily due to the fact that CO2 concentration did notinfluence tiller (branch) numbers. In the absence of an effecton tiller numbers, any possible weight increment was restrictedto the c. 2.5 leaves of each tiller. The reason for the lackof an effect on tillering is not known. Key words: Lolium perenne, ryegrass, elevated CO2, photosynthesis, respiration, growth, development  相似文献   

9.
Stands of spring wheat grown in open-top chambers (OTCs) wereused to assess the individual and interactive effects of season-longexposure to elevated atmospheric carbon dioxide (CO2 and ozone(O3) on the photosynthetic and gas exchange properties of leavesof differing age and position within the canopy. The observedeffects were related to estimated ozone fluxes to individualleaves. Foliar chlorophyll content was unaffected by elevatedCO2 but photosynthesis under saturating irradiances was increasedby up to 100% at 680 µmol mol–1 CO2 relative tothe ambient CO2 control; instantaneous water use efficiencywas improved by a combination of increased photosynthesis andreduced transpiration. Exposure to a seasonal mean O3 concentration(7 h d–1) of 84 nmol mol–1 under ambient CO2 acceleratedleaf senescence following full expansion, at which time chlorophyllcontent was unaffected. Stomatal regulation of pollutant uptakewas limited since estimated O3 fluxes to individual leaves werenot reduced by elevated atmospheric CO2, A common feature ofO3-treated leaves under ambient CO2 was an initial stimulationof photosynthesis and stomatal conductance for up to 4 d and10 d, respectively, after full leaf expansion, but thereafterboth variables declined rapidly. The O3-induced decline in chlorophyllcontent was less rapid under elevated CO2 and photosynthesiswas increased relative to the ambient CO2 treatment. A/Ci analysessuggested that an increase in the amount of in vivo active RuBisCOmay be involved in mitigating O3-induced damage to leaves. Theresults obtained suggest that elevated atmospheric CO2 has animportant role in restricting the damaging effects of O3 onphotosynthetic activity during the vegetative growth of springwheat, and that additional direct effects on reproductive developmentwere responsible for the substantial reductions in grain yieldobtained at final harvest, against which elevated CO2 providedlittle or no protection. Key words: Elevated CO2 and O3, gas exchange, O3 flux, stomata, chlorophyll, Triticum aestivum  相似文献   

10.
准噶尔荒漠分布的早春短命植物不仅具有十分独特的生物学特点,而且在荒漠植物群落演替、物种多样性维持及土壤改良与防治水土流失等方面具有重要的生态学价值。该文运用Li-6400开放式气体交换光合作用测定系统,对分布于准噶尔荒漠的16种早春短命植物生长盛期的净光合速率(Pn)、蒸腾速率(Tr)、水分利用效率(WUE)等特征进行了测定,并对其中7种植物与生长相关的生物量分配特征进行了分析。结果表明:1)16种植物的最大Pn、 最大TrWUE分别为8.07~35.96 μmol CO2·m-2·s-1、3.16~29.64 mmol H2O·m-2·s-1、0.54~4.26 μmol CO2·mmol-1H2O;种间最大Pn与最大气孔导度(Stomatal conductance, Gs)之间存在正相关关系,其相关系数为0.77(p<0.05),线性回归斜率为26.36 μmol·mmol-1;从光合速率对胞间CO2浓度及光量子通量密度的响应曲线来看,这类植物的表观CO2补偿点均在4~5 Pa之间(28~30 ℃),表观羧化效率为0.64~1.86 μmol CO2·m-2·s-1·Pa-1,表观量子效率为0.05~0.06。2)从生物量分配来看,所测植物的个体生物量为0.05~0.39 g;单株总叶面积为 3.24~51.40 cm2;单位叶面积干重为0.40~0.77 g·m-2,根在总生物量中所占比例为5.72%~19.43%,单株叶面积比在2.92~9.00 m2·kg-1之间。种间根所占生物量的比与对应的WUE之间的比较分析结果表明,二者之间存在显著的正相关关系,其相关系数r为0.93(p<0.01)。这些结果表明,所观测的早春短命植物具有典型的C3植物特征,相比其它类型的荒漠植物具有较高的单位叶面积Pn、高Tr及低WUE,并且在生长发育过程中表现出很低的根/地上生物量比、较高的叶面积比和单位叶面积干重,说明它们具有相对高的生长速率,这与其生长发育节律相一致,反映了它们与准噶尔荒漠环境相适应的特点。  相似文献   

11.
Photosynthesis by developing embryos of oilseed rape (Brassica napus L.)   总被引:1,自引:0,他引:1  
The aim of this study was to assess the photosynthetic potentialof developing seeds of oilseed rape (Brassica napus L.) andto compare photosynthetic properties of embryo plastids withthose of leaf chloroplasts from the same species. Measurementsof CO2-dependent O2 evolution show that developing seeds ofB. napus are photosynthetically active in vitro. Essentially,all of the photosynthetic activity of the developing seed isaccounted for by the embryo. The rate of photosynthesis by developingembryos increased until the onset of desiccation, after whichit declined, so that by maturity embryos were no longer photosyntheticallyactive. Photosynthetic activity was positively correlated withchlorophyll content throughout development. Comparison of thephotosynthetic characteristics of leaf and embryo chloroplastsrevealed that rates of uncoupled electron transport were 2.5-foldgreater in those from the embryo. Light-saturated rates of CO2-dependentO2 evolution, per unit chlorophyll, and CO2 saturation pointswere similar for chloroplasts from both tissues. However, light-saturationpoints and chlorophyll a/b ratios were lower for embryo thanfor leaf choroplasts. Embryos and embryo chloroplasts also containedconsiderably less ribulose 1,5-bisphosphate carboxylase/oxygenaseprotein per unit total protein, than leaves. Although excisedembryos were capable of high rates of CO2-dependent O2 evolution(90–100 mol mg–1 chlorophyll h–1) under asaturating photosynthetic photon flux density (PPFD), low transmittanceof light through the silique wall (30%), together with the highPPFD required to achieve light compensation points in developingseeds (500 mol m–2 s–1), suggests that photosynthesisin vivo is unlikely to make a net contribution to carbon economyunder normal environmental conditions. Key words: Embryo, development, photosynthesis, chloroplast, Brassica napus L.  相似文献   

12.
Rates of net photosynthesis of the flag leaves of 15 genotypesof wheat and related species were measured throughout theirlife, using intact leaves on plants grown in the field. At thestage when rates were maximal, they were in general highestfor the diploid species, intermediate for the tetraploidspeciesand lowest for Triticum aestivum (means of 38, 32 and 28 mgCO2 dm–2 h–1 respectively). Rates were stronglynegatively correlated with leaf area, leaf width and the meanplan area per mesophyll cell and positvely correlated with stomatalfrequency and number of veins per mm of leaf width. The differencesamong species in these attributes were mainly related to ploidylevel. It was not possible to determine the relative importanceof each anatomical feature, though the changes in stomatal frequencyhad only slight effects on stomatal conductance and the observeddifferences in rates of photosynthesis were much greater thanwould be expected from those in stomatal conductance alone. There was genetic variation in rates of light dependent oxygenevolution of isolated protoplasts and intact chloroplasts butno difference attributable to ploidy. The mean rate, 91 µmolO2 mg–1 chlorophyll h–1, equivalent to 3.9 mg CO2mg-1chlorophyll h-1 was considerably less than the rate of photosynthesisin comparable intact leaves, which was 7.2 mg CO2 mg–1chlorophyll h–1. The total above-ground dry matter yields were least for thewild diploids T. urartu and T. thauodar and the wild tetraploidT. dicoccoides, but the other wild diploids produced as muchdry matter as the hexaploids. The prospects of exploiting differences in photosynthetic ratein the breeding of higher yielding varieties are discussed. Triticum aestivum L., wheat, Aegilops spp, photosynthesis, stomatal conductance, stomatal frequency, polyploidy  相似文献   

13.
Trends in several photosynthetic parameters and their responseto changed growth light were followed for 15 d in leaves ofyoung birch saplings using a rapid-response gas exchange measuringequipment. These in vivo measurements were compared to biochemicalassays that were made from the same leaves after the gas exchangestudies. The measurements were made on leaves that were selectedprior to the study and were at that time of similar age. Forthe first 7 d the photosynthetic parameters were followed fromthe growth conditions of moderate light (200 µmol m–2s–1; referred to as controls later in the text). On day7 some of the saplings were transferred to grow either underhigh (450 µmol m–2 s–1; referred to as highlight plants) or low (75 µmol m–2 s–1; referredto as low light plants) light and the capability of the preselectedleaves for acclimation was followed for 6 d. For comparison,at the end of the experiment the measurements were made on bothcontrols and on young leaves that had developed under high andlow light. Generally the in vivo measured rate of CO2 uptake (gross photosynthesis)both at 310 ppm CO2 and 2000 ppm CO2 corresponded very wellto the biochemically determined CO2 fixation capacity in vitroafter rapid extraction (measured as the initial and total activityof Rubisco, respectively). However, if the flux of CO2 intothe chloroplasts was limited by the closure of the stomata,as was the case of the high light plants, then the in vitromeasured Rubisco activity was greater than the in vivo measuredCO2 uptake. Vmax, calculated from the mesophyll conductanceat 1% O2, exceeded the initial activity of Rubisco (assayedat saturating RuBP and CO2) constantly by 60%. The catalyticactivity of Rubisco in birch leaves was overall very low, evenwhen calculated from the total activity of Rubisco (Kcat 0.63–1.18 s–1), when compared to herbaceous C3 species. Signs of light acclimation were not observed in most of thephotosynthetic parameters and in chloroplast structure whenmature birch leaves were subjected to changes in growth lightfor 6 d. However, the change of the growth light either to highor low light caused day-to-day fluctuations in most of the measuredphotosynthetic parameters and in the case of the high lightplants signs of photoinhibition and photodestruction were alsoobserved (decrease in the amount of chlorophyll and increasein chlorophyll a/b ratio). As a result of these fluctuationsthese plants achieved a new and lower steady-state conditionbetween the light and dark reactions, as judged from the molarratio of RuBP to Rubisco binding site. Key words: Acclimation, photosynthesis, light, Rubisco, birch  相似文献   

14.
Effects of Nitrogen Nutrition on Photosynthesis in Cd-treated Sunflower Plants   总被引:10,自引:0,他引:10  
Increased nitrogen supply stimulates plant growth and photosynthesis.Since it was shown that heavy metals may cause deficienciesof essential nutrients in plants the potential reversal of cadmiumtoxicity by increased N nutrition was investigated. The effectson photosynthesis of low Cd (0, 0.5, 2 or 5 mmol m-3) combinedwith three N treatments (2, 7.5 or 10 mol m-3) were examinedin young sunflower plants. Chlorophyll fluorescence quenchingparameters were determined at ambient CO2and at 100 or 800 µmolquanta m-2 s-1. The vitality index (Rfd) decreased approx. three-timesin response to 5 mmol m-3Cd, at 2 and 10 mol m-3N. The maximumphotochemical efficiency of PSII reaction centres (Fv/ Fm) wasnot influenced by Cd or N treatment. The highest Cd concentrationdecreased quantum efficiency of PSII electron transport (II)by 30%, at 2 and 10 mol m-3N, mostly due to increased closureof PSII reaction centres (qP). Photosynthetic oxygen evolutionrates at saturating CO2were decreased in plants treated with5 mmol m-3Cd, at all N concentrations. The results indicatethat Cd treatment affected the ribulose-1,5-bisphosphate (RuBP)regeneration capacity of the Calvin cycle more than other processes.At the same time, the amounts of soluble and ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco) protein increased with Cd treatment.Decreased photosynthesis, but substantially increased Rubiscocontent, in sunflower leaves under Cd stress indicate that asignificant amount of Rubisco protein is not active in photosynthesisand could have another function. It is shown that optimal nitrogennutrition decreases the inhibitory effects of Cd in young sunflowerplants. Copyright 2000 Annals of Botany Company Helianthus annuus L., cadmium, nitrogen, photosynthesis, Rubisco, sunflower  相似文献   

15.
CO2 uptake and diffusion conductance of Valencia orange fruits(Citrus sinensis L. Osbeck) were measured in the field duringthe growing season of 1977/78 to ascertain if, as in the leaf,stomata control photosynthesis and transpiration under changingenvironmental conditions. Measurements were made on 15 yearold trees grown in a sandy loam soil and receiving either adry or a wet treatment. Fruit diffusive conductance was measuredwith a modified water vapour diffusion conductance meter andgross photosynthesis was measured with a 14CO2 uptake meter.Photosynthetically active radiation (PAR) was measured witha quantum sensor. Fruits exposed to light assimilated CO2 ata rate which was 25–50% of that assimilated by leaves.The uptake was dependent on fruit size, PAR, chlorophyll content,and on diffusive conductance of the fruit epidermis. Epidermalconductance showed a diurnal trend which was similar in shapeto that of the leaf except in the late afternoon. Cuticularconductance of the fruit was calculated and ranged between 0.22and 0.30 mm s–1. It was speculated that the CO2 uptakeby the fruit could support the growth of flavedo cell layerswhen exposed to light. Dry soil caused an increase in the 14CO2uptake by fruit possibly caused by the increased potential areaof the stomatal opening per unit of fruit surface area.  相似文献   

16.
Photosynthetic rates of outdoor-grown soybean (Glycine max L.Merr. cv. Bragg) canopies increased with increasing CO2 concentrationduring growth, before and after canopy closure (complete lightinterception), when measured over a wide range of solar irradiancevalues. Total canopy leaf area was greater as the CO2 concentrationduring growth was increased from 160 to 990 mm3 dm–3.Photosynthetic rates of canopies grown at 330 and 660 mm3 CO2dm–3 were similar when measured at the same CO2 concentrationsand high irradiance. There was no difference in ribulose bisphosphatecarboxylase/oxygenase (rubisco) activity or ribulose 1,5-bisphosphate(RuBP) concentration between plants grown at the two CO2 concentrations.However, photosynthetic rates averaged 87% greater for the canopiesgrown and measured at 660 mm3 CO2 dm–3. A 10°C differencein air temperature during growth resulted in only a 4°Cleaf temperature difference, which was insufficient to changethe photosynthetic rate or rubisco activity in canopies grownand measured at either 330 or 660 mm3 CO2 dm–3. RuBP concentrationsdecreased as air temperature during growth was increased atboth CO2 concentrations. These data indicate that the increasedphotosynthetic rates of soybean canopies at elevated CO2 aredue to several factors, including: more rapid development ofthe leaf area index; a reduction in substrate CO2 limitation;and no downward acclimation in photosynthetic capacity, as occurin some other species. Key words: CO2 concentration, soybean, canopy photosynthesis  相似文献   

17.
The effects of growth at elevated CO2 on the response to hightemperatures in terms of carbon assimilation (net photosynthesis,stomatal conductance, amount and activity of Rubisco, and concentrationsof total soluble sugars and starch) and of photochemistry (forexample, the efficiency of excitation energy captured by openphotosystem II reaction centres) were studied in cork oak (Quercussuber L.). Plants grown in elevated CO2 (700 ppm) showed a down-regulationof photosynthesis and had lower amounts and activity of Rubiscothan plants grown at ambient CO2 (350 ppm), after 14 monthsin the greenhouse. At that time plants were subjected to a heat-shocktreatment (4 h at 45C in a chamber with 80% relative humidityand 800–1000 mol m–2 s–1 photon flux density).Growth in a CO2-enriched atmosphere seems to protect cork oakleaves from the short-term effects of high temperature. ElevatedCO2 plants had positive net carbon uptake rates during the heatshock treatment whereas plants grown at ambient CO2 showed negativerates. Moreover, recovery was faster in high CO2-grown plantswhich, after 30 min at 25C, exhibited higher net carbon uptakerates and lower decreases in photosynthetic capacity (Amax aswell as in the efficiency of excitation energy captured by openphotosystem II reaction centres (FvJFm than plants grown atambient CO2. The stomata of elevated CO2 plants were also lessresponsive when exposed to high temperature. Key words: Elevated CO2, temperature, acclimation, photosynthesis, Quercus suber L.  相似文献   

18.
Rumex obtusifolius plants were grown for several months in daylitenvironment chambers (Solardomes) force-ventilated with aircontaining 350 or 600 µ;mol mol–1 C02. ElevatedCO2 was found to accelerate the natural ontogenic decline inphotosynthesis, but did not reduce leaf duration. In both CO2treatments photosynthetic rates declined progressively withincreasing leaf age, the decline being greater for plants grownin elevated C02 such that rates became lower than in ambientCO2. The degree of CO2-induced photosynthetic down-regulationas determined by A/C1 analysis was found to be dependent onleaf age. The major contribution to the decline in photosynthesiswas likely to be a reduction in Rubisco activity as changesin stomataland mesophyll limitations were small. Instantaneouswater use efficiency (WUE1) was greater for plants in elevatedCO2, but these values declined rapidly with leaf age, whereasin ambient CO2 values were always lower, but were maintainedfor longer. Growth analysis indicated an increased root:-shootratio for plants grown in elevated CO2, this occurring almostentirely as a result of increased root growth. Greater rootproliferation and increased WUE1, are characteristics whichshould give this persistent and troublesome weed an increasedcompetitive advantage under projected conditions of climatechange Key words: tusifoliu, elevated CO2, gas exchange, leaf age, senescence  相似文献   

19.
Scots pine (Pinus sylvestris L.) seedlings were grown for 3years in the ground in open top chambers and exposed to twoconcentrations of atmospheric CO2(ambient or ambient + 400 µmol mol-1) without addition of nutrients and water. Biomassproduction (above-ground and below-ground) and allocation, aswell as canopy structure and tissue nitrogen concentrationsand contents, were examined by destructive harvest after 3 years.Elevated CO2increased total biomass production by 55%, reducedneedle area and needle mass as indicated, respectively, by lowerleaf area ratio and leaf mass ratio. A relatively smaller totalneedle area was produced in relation to fine roots under elevatedCO2. The proportion of dry matter in roots was increased byelevated CO2, as indicated by increased root-to-shoot ratioand root mass ratio. Within the root system, there was a significantshift in the allocation towards fine roots. Root litter constituteda much higher fraction of fine roots in trees grown in the elevatedCO2than in those grown in ambient CO2. Growth at elevated CO2causeda significant decline in nitrogen concentration only in theneedles, while nitrogen content significantly increased in branchesand fine roots (with diameter less than 1 mm). There were nochanges in crown structure (branch number and needle area distribution).Based upon measurements of growth made throughout the 3 years,the greatest increase in biomass under elevated CO2took placemainly at the beginning of the experiment, when trees grownin elevated CO2had higher relative growth rates than those grownunder ambient CO2; these differences disappeared with time.Symptoms of acclimation of trees to growth in the elevated CO2treatmentwere observed and are discussed. Copyright 2000 Annals of BotanyCompany Elevated CO2, Pinus sylvestris, biomass production, allocation, fine roots, root litter, crown structure, nitrogen, C/N ratio  相似文献   

20.
 研究了CO2加富对丹尼斯凤梨(Guzmania`Denise’)和吉利凤梨(Guzmania `Cherry’)叶片光合速率、植株生长、开花和光合相关酶活性的 影响。结果表明,处理30 d期间,处理(600±40)、(900±40) μmol CO2&;#8226;mol-1的净光合速率分别比同期对照增加了6.24%~31.91%和11.92%~ 41.48%;CO2加富下促进了叶片中可溶性糖和淀粉的积累, 蒸腾速率和气孔导度下降,Rubisco活性增加,乙醇酸氧化酶活性则明显下降。(600 ±40)μmol CO2&;#8226;mol-1处理下的株高、叶面积分别比同期对照下增加了6.94%~14.63%和1.66%~7. 06%,而处理(900±40) μmol CO2&;#8226;mol-1下 分别增加了9.71%~20.85%和2.87%~11.62%;CO2加富下促进了干重和鲜重的积累。此外,CO2加富提前了吉利凤梨的花期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号