首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
The present study reports the results of physiological and anatomical experiments in which the purpose was to determine whether desheathing the nodose ganglion is a reliable method of vagal de-efferentation in the ferret. In physiological studies, the effects of electrically stimulating the treated and untreated vagal nerves on cardiovascular and intestinal responses were examined and compared with previously obtained data after left supranodose vagotomy. The anatomical studies illustrated the effects of desheathing the left nodose ganglion on the transport of horseradish peroxidase (HRP) within a thoracic vagal communicating branch. These data were compared to data from control animals and animals that had undergone left supranodose vagotomy. The results demonstrated that severing the fascicles overlying the left nodose ganglion and allowing the nerve fibers to degenerate, caused no reduction in labeled efferent cell bodies in the left dorsal motor nucleus of the vagus as compared to controls. However, after left supranodose vagotomy there were no efferent cell bodies labeled in the left dorsal motor nucleus of the vagus. Following degeneration of the fascicles, electrical stimulation of the peripheral cut end of this nerve did not abolish the efferent responses in 7 out of 9 animals studied, whereas supranodose vagotomy abolished the responses in all animals. These findings demonstrate that desheathing the nodose ganglion and thereby removing the nerve bundles overlying the nodose ganglion is not a guaranteed method of destroying the efferent fibers in the vagus nerve of the ferret. Supranodose vagotomy, therefore, is a more reliable method of de-efferentation in this species.  相似文献   

2.
—Rabbit vagus nerves and nodose ganglia were incubated in vitro for up to 24 h in two-compartment chambers. After the introduction of [3H]leucine or [3H]fucose to the ganglion compartments a rapid anterograde axonal transport of labelled proteins or glycoproteins occurred at rates of 330 ± 44 mm/day and 336 ± 30 mm/day respectively. Accumulation of [3H]leucine-labelled proteins proximal to a ligature on the nerve was unaffected by a delay of up to 6 h between removal of the nerve and labelling in vitro. Accumulation was prevented by inhibition of protein synthesis in the ganglion but not in the axon and was inhibited in a graded manner by colchicine.  相似文献   

3.
Proteins synthesized in the nodose ganglia of rabbits were radiolabeled with 35S-methionine and the proteins present in the vagus nerve, at various times later, were analyzed by SDS (sodium dodecyl sulfate)-polyacrylamide gel electrophoresis. Three major groups of proteins were transported as waves of radioactivity within the nerve at rates of 15-17 mm/h, 12-15 mm/day, and 25-30 mm/day. The front of the fastest wave was composed of two proteins only, of apparent molecular weights 21,000 and 24,000. These were followed after a delay by a number of proteins of higher molecular weight, traveling at the same fast rate. The 25-mm/day wave contained several proteins including a major one of molecular weight 43,000 while the 12-mm/day wave was composed entirely of two proteins of molecular weights 54,000 and 56,000. These groups of slowly transported proteins are therefore similar to those transported much more slowly in other mammalian nerves, with the exception that no proteins with molecular weight similar to the neurofilament proteins could be detected. We have confirmed the dependence of slow transport for both groups of proteins on contact between cell body and axon and suggest that it may be a general phenomenon in all mammalian nerves.  相似文献   

4.
Both rapid (415 mm/day) and slow (24 mm/day) rates of axonal transport of proteins were found in sensory fibres of rabbit vagus nerve after injection of [3H]leucine into the nodose ganglion in vivo. The slow phase of transport was dependent on contact between the cell bodies and the nerve trunk, and did not continue under in vivro conditions. The results suggest some difference between the mechanisms of fast and slow transport.  相似文献   

5.
The chicken carotid body receives numerous branches from the vagus nerve, especially distal (nodose) ganglion, and the recurrent laryngeal nerve. Dense networks of peptidergic nerve fibers immunoreactive for substance P, calcitonin gene-related peptide (CGRP), galanin, vasoactive intestinal peptide (VIP) and neuropeptide Y are distributed in and around the carotid body. Substance-P- and CGRP-immunoreactive fibers projecting to the chicken carotid body mainly come from the vagal ganglia. In the present study, various types of denervation experiments were performed in order to clarify the origins of VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid bodies. After nodose ganglionectomy, midcervical vagotomy or excision of the recurrent laryngeal nerve, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers were unchanged in the carotid body region. Furthermore, these peptidergic fibers remained unaffected even by removal of the nodose ganglion in conjunction with severance of the recurrent laryngeal nerve that induced a marked decrease in TuJ1-immunoreactive fibers in the carotid body region. VIP-, galanin- and neuropeptide-Y-immunoreactive fibers are densely distributed around the arteries supplying the carotid body in normal chickens. The peptidergic fibers around the arteries were also unaffected after the denervation experiments. However, after removal of the 14th cervical ganglion of the sympathetic trunk, which lies close to the vertebral artery on the root of the brachial plexus and issues prominent branches to the artery, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers almost disappeared in the carotid body region. The ganglion contained many VIP-, galanin- and neuropeptide-Y-immunoreactive neurons. Thus it is clear that VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid body region are mainly derived from the 14th cervical sympathetic ganglion via the vertebral artery.  相似文献   

6.
Attempts were made to separate and characterize cellulose-binding proteins (CBPs) from both the culture supernatant and cell lysate of Eubacterium cellulosolvens 5. Once the CBPs were bound to Avicel cellulose, they were then effectively eluted with the solution containing 3.2 or 5% sodium dodecyl sulfate (SDS), but not eluted with the solution containing various kinds of carbohydrates and reagents. Namely, CBPs in both the culture supernatant and cell lysate of the bacterium bound tightly and strongly to cellulose. The SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of the eluted CBPs indicated that the CBPs contained the two major proteins having the molecular weights of approximately 160 and 84 kilodaltons (kDa) and one sub-major protein having a molecular weight of approximately 140 kDa. Zymogram analysis after the SDS-PAGE of the eluted CBPs showed that two proteins exhibited the highest levels of carboxymethyl cellulase (CMCase) activity corresponding to the molecular weights of approximately 160 and 90 kDa. A major protein having the molecular weight of approximately 160 kDa exhibited a distinct CMCase activity and was designated as CBPE1. Western immunoblot analysis indicated that the proteins prepared from 16 representative strains of rumen bacteria did not cross-react with rabbit antiserum raised against CBPE1. Thus, CBPE1 may be a unique CBP that plays an important role in the adhesion of the bacterium to cellulose.  相似文献   

7.
The cricothyroid muscle in dogs received branches from two independent nerves, namely the external ramus of the cranial laryngeal nerve and the pharyngeal branch of the vagus. Classical spindles are infrequent in the muscle. Atypical forms of sensory endings were identified. Two end-plates were frequently met with on a single extrafusal fibre. Sectioning of the external ramus of the cranial laryngeal nerve was followed by degeneration of spindles. Intact axons detected up to 6 months after operation are probably derived from the pharyngeal branch of the vagus. Chromatolytic changes occurred in the ipsilateral dorsal vagal nucleus and the capsulated ganglion at the entry of the nerve into the muscle. Chromatolysis occurred in the intramuscular ganglion cell rows and in neurons of the ipsilateral nodose ganglion. Morphological alterations were more pronounced in the ipsilateral medial column of the nucleus ambiguus. No changes were observed in the somata of the mesencephalic nucleus.  相似文献   

8.
Lu XY  Yang GZ  Sun HC 《生理学报》2002,54(2):111-114
为探讨脂多糖(liopoplysaccharide,LPS)引起迷走传入神经活动是否可能通过白细胞介素-1(interleukin-1,IL-1)的作用,将Wistar大鼠随机分为LPS实验组和生理盐水对照组,用免疫组织化学方法检测迷走神经结状神经节c-Fos及CD14的表达以及腹腔迷走神经周围Mac-1阳性巨噬细胞(macrophage,Mφ)。用L929细胞增殖法检测LPS刺激Mφ上清IL-1的生物活性。用原位杂交的方法检测迷走神经结状神经节I型白细胞介素-1受体(IL-1R I)mRNA的表达。结果显示,LPS组迷走神经结状神经节神经元c-Fos蛋白表达为阳性,而对照组迷走神经结状神经节神经元c-Fos蛋白表达为阴性。LPS注射后1h,见腹腔迷走神经周围Mφ数量明显增多。Mφ在LPS刺激后45min、1h和2h时,IL-1生成明显增高,LPS组迷走神经结状神经节IL-1R I mRNA表达为阳性。以上结果提示,LPS引起迷走传入神经活动可能通过IL-1的作用。  相似文献   

9.
Neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) occur in nerve fibers around blood vessels and between follicles in the thyroid gland of the mouse and rat. VIP-immunoreactive fibers are numerous, while NPY-immunoreactive fibers are fewer. Most of the latter fibers contain noradrenaline (NA) as well as NPY, while a subpopulation was found to contain VIP instead of NA. We have determined the origins of rat thyroid nerve fibers containing NPY, VIP or NPY/VIP by investigating 3 conceivable sources, i.e. the superior cervical ganglion, the nodose ganglion and the thyroid ganglion. Chemical sympathectomy or removal of the superior cervical ganglion did not affect the frequency of VIP-immunoreactive fibers but eliminated most of the NPY-immunoreactive fibers as well as all NA-containing nerve fibers (recognized by antibodies to dopamine-beta-hydroxylase). The NPY-immunoreactive fibers that remained after sympathectomy occurred around blood vessels and between follicles and contained VIP. Cervical vagotomy (removal of the nodose ganglion including the adjacent vagus) did not overtly affect the frequency of NPY/VIP-, VIP-, or NPY/NA-containing fibers in the thyroid. In contrast, extirpation of the thyroid ganglion, which is situated immediately outside the thyroid capsule, greatly reduced the number of VIP- and NPY/VIP-containing fibers in the rat thyroid. On the whole, the results of radioimmunoassay of NPY and VIP agreed well with the immunocytochemical findings. High performance liquid chromatography confirmed the identity of NPY and VIP. The present findings suggest the existence in the rat thyroid of one NPY-containing nerve fiber population that harbours NA and emanates from the superior cervical ganglion; one NPY-containing fiber population that is non-adrenergic, harbours VIP and originates in the thyroid ganglion; and a second VIP-containing fiber population that is devoid of NPY and appears to derive from the thyroid ganglion.  相似文献   

10.
Immunohistochemistry for several neurochemical substances, the transient receptor potential cation channel subfamily V member 1 (TRPV1) and 2 (TRPV2), P2X3 receptor, and parvalbumin (PV), was performed on the nodose ganglion, pharynx, and epiglottis in human cadavers. The nodose ganglion was situated beneath the jugular foramen, and had a spindle shape with the long rostrocaudal axis. The pharyngeal branch (PB) issued from a rostral quarter of the nodose ganglion, whereas the superior laryngeal nerve (SLN) usually originated from a caudal half of the ganglion. In the nodose ganglion, sensory neurons were mostly immunoreactive for TRPV1 (89 %) or P2X3 (93.9 %). About 30 % of nodose neurons contained TRPV2 (35.7 %)—or PV (29.9 %)—immunoreactivity (-IR). These neurons mainly had small to medium-sized cell bodies, and were distributed throughout the ganglion. Neurodegenerative profiles such as shrinkage or pyknosis could not be detected in the examined ganglion. Occasionally, TRPV2-IR nerve fibers surrounded blood vessels in the epiglottis as well as in the nasal and oral parts of the pharynx. Isolated TRPV2-IR nerve fibers were also located beneath the epithelium. TRPV1-, P2X3-, or PV-IR nerve endings could not be detected in the pharynx or epiglottis. In the PB and SLN, however, numerous nerve fibers contained TRPV1-, TRPV2-, P2X3-, and PV-IR. The present study suggests that TRPV1-, TRPV2-, P2X3-, and PV-IR neurons in the human nodose ganglion innervate the pharynx and epiglottis through the PB and SLN. These neurons may respond to chemical, thermal, and mechanical stimuli during respiration and swallowing.  相似文献   

11.
Protein synthesis in the nerve sheath of injured as well as intact mature and developing sciatic nerves from rat and rabbit was investigated by incubating segments of nerve with [35S]methionine in vitro. The composition of labeled proteins under the different conditions of nerve growth was analyzed by two-dimensional gel electrophoresis and fluorography. The expression of six secreted proteins in rat sciatic nerve with the apparent molecular weights of 70,000 (70 kD), 54,000 (54 kD), 51,000 (51 kD), 39,000 (39 kD), 37,000 (37 kD), and 30,000 (30 kD) was of particular interest because of the correlation of their synthesis and secretion with aspects of nerve growth and regeneration. The synthesis of the 37-kD protein was significantly stimulated during both sciatic nerve development as well as regeneration but not in the intact mature nerve. The expression of this protein appears to be regulated by signal(s) from the axon but not the target. The 70-kD protein was exclusively synthesized in response to axotomy, thus confining its role to some aspect(s) of nerve repair. In contrast, the 54- and 51-kD proteins were expressed in the intact mature nerve sheath. Their synthesis and release was rapidly inhibited upon axotomy but returned to normal or higher levels towards the end of sciatic nerve regeneration, suggesting a role in the maintenance of the integrity of the mature (nongrowing) rat nerve. The 39- and 30-kD proteins were only transiently synthesized within the first week after axotomy. Two proteins with the apparent molecular masses of 70 and 37 kD were synthesized in denervated rabbit sciatic nerve. The similar molecular weights, net charges, and time-courses of induction suggest a homology between these proteins in rabbit and rat, indicating common molecular responses of peripheral nerve sheath cells to axon injury in both mammalian species.  相似文献   

12.
The effect of lactate on synthesis of new proteins in isolated spermatids and spermatocytes of rats was examined. Lactate stimulated[35S]methionine ([35S]met) incorporation into both spermatids and spermatocytes. The rate of protein synthesis was positively correlated with the intracellular level of ATP. The [35S]met-labeled proteins in the two types of cells were compared by one and two dimensional polyacrylamide gel electrophoresis (1D and 2D-PAGE) and autoradiography. The syntheses of several stagespecific and non-specific proteins were observed. When spermatids and spermatocytes were cultured in medium without lactate, two major proteins of molecular weight (Mr) 43 kD and 55 kD were detected in the water-soluble fraction (105,000 g supernatant), and one major protein of Mr 24 kD was observed in the membrane-rich fraction. Addition of lactate to the incubation medium dramatically increased the synthesis of six proteins (Mr 14 kD, 16 kD, 43 kD, 55 kD, 84 kD and 135 kD) in the water-soluble fractions of spermatids and spermatocytes, but did not stimulate the synthesis of the Mr 24 kD protein in the membrane-rich fraction. In addition, after 1D and 2D-PAGE and electrophoretic transfer to nitrocellulose, two proteins of Mr 43 kD and 55 kD were identified as actin and tubulin, respectively, on the basis of their reactivities with specific antisera. Tubulin was also produced by in vitro translation using a spermatid lysate. These results suggest that lactate may play an important role in changing the cell structure and shape during spermatogenesis by regulating the syntheses of actin and tubulin.  相似文献   

13.
Afferent signaling via the vagus nerve transmits important general visceral information to the central nervous system from many diverse receptors located in the organs of the abdomen and thorax. The vagus nerve communicates information from stimuli such as heart rate, blood pressure, bronchopulmonary irritation, and gastrointestinal distension to the nucleus of solitary tract of the medulla. The cell bodies of the vagus nerve are located in the nodose and petrosal ganglia, of which the majority are located in the former. The nodose ganglia contain a wealth of receptors for amino acids, monoamines, neuropeptides, and other neurochemicals that can modify afferent vagus nerve activity. Modifying vagal afferents through systemic peripheral drug treatments targeted at the receptors on nodose ganglia has the potential of treating diseases such as sleep apnea, gastroesophageal reflux disease, or chronic cough. The protocol here describes a method of injection neurochemicals directly into the nodose ganglion. Injecting neurochemicals directly into the nodose ganglia allows study of effects solely on cell bodies that modulate afferent nerve activity, and prevents the complication of involving the central nervous system as seen in systemic neurochemical treatment. Using readily available and inexpensive equipment, intranodose ganglia injections are easily done in anesthetized Sprague-Dawley rats.  相似文献   

14.
M Fujiwara  K Kurahashi 《Life sciences》1976,19(8):1175-1180
The superior cervical ganglion was reinnervated by vagal afferent fibers following heterologous cross anastomosis between the superior cervical preganglionic trunk and the vagal trunk at the level of the supranodose ganglion in cats. The contractions of the nictitating membrane and the postganglionic action potentials from the external carotid sinus nerve in response to electrical stimulation of the vagal artificial preganglionic trunk in these operated cats were inhibited by treatment with tetraethylammonium and atropine. The choline acetyltransferase activities were measured by the radiometric method. The activities in cross anastomosed superior cervical ganglion were lower than those of normal superior cervical ganglion, but higher than those of chronically decentralized superior cervical ganglion. The activities in cross anastomosed nodose ganglion were lower than those of normal nodose ganglion, but higher than those of chronically decentralized superior cervical ganglion. These results further support the view that the primary afferent vagus artificially synapsed in the superior cervical ganglion is cholinergic.  相似文献   

15.
S R Sampson  R A Jaffe 《Life sciences》1974,15(12):2157-2165
5-hydroxytryptamine (5-HT), phenyl diguanide (PDG) and veratridine, injected into the common carotid artery in doses of 5–10 μg, caused action potentials to be generated in small bundles dissected from the infranodose vagus nerve of cat. These excitatory effects persisted following transection of the supranodose vagus nerve. 5-HT and PDG also produced action potentials in fibers dissected from the supranodose vagus, before and after transection of the cervical vagus nerve; veratridine was not tested on these fibers. Not all infranodose or supranodose fibers were excited by these drugs in the doses used. Susceptibility of the fibers to 5-HT, PDG or veratridine did not appear to be related to the type of sensory modality transmitted by the fibers, as fibers subserving different modalities were excited. Pentobarbital, 1–4 mg/kg injected intravenously, depressed responses to 5-HT (responses that the reflexes produced by 5-HT, PDG and veratridine through an action on the nodose ganglion probably result from direct excitatory effects of these drugs on sensory ganglion cells.  相似文献   

16.
芹菜韧皮部中的微管蛋白和类动蛋白   总被引:1,自引:0,他引:1  
用免疫荧光标记和免疫印迹技术,证明芹菜韧皮部中存在微管蛋白和类动蛋白(kinesin-likenrotein)。微管蛋白分子量约为55kD,以微管状态沿筛管长度排列;类动蛋白重链分子量为100kD,主要存在于筛管中的无定型颗粒(或聚合物)上。芹菜韧皮部中的类动蛋白,很可能象动物神经细胞中的动蛋白(kinesin)一样,是作为分子马达在物质运输中起作用。  相似文献   

17.
A combination of neuroanatomic techniques was used to examine the origin and neuropeptide content of nerve fibers in the airway epithelium of adult cats. By the use of immunocytochemical methods, the peptides substance P (SP) and calcitonin gene-related peptide (CGRP) were colocalized in airway epithelial nerve fibers. Two days after wheat germ agglutinin (WGA) was injected into the nodose ganglion, fibers containing WGA immunoreactivity (IR) were detected in the airway epithelium. SP-like immunoreactivity (LI) and CGRP-LI were demonstrated separately in the WGA-IR fibers, establishing their origin from nerve cell bodies of nodose ganglion. Vagal transection inferior to the nodose ganglion reduced the number of SP- and CGRP-IR fibers by greater than 90% in ipsilateral airways. In contralateral airways, SP-IR fibers were substantially reduced, whereas the effect on CGRP-IR fibers was not statistically significant. Vagotomy superior to the nodose ganglion did not alter the density of peptide-IR fibers. The results prove that SP- and CGRP-IR nerve fibers of cat airway epithelium originate from nerve cell bodies in the nodose ganglion and that SP- and CGRP-like peptides may be stored together in some nerve fibers of the airway epithelium.  相似文献   

18.
H W Detrich  L Wilson 《Biochemistry》1983,22(10):2453-2462
Tubulin was purified from unfertilized eggs of the sea urchin Strongylocentrotus purpuratus by chromatography of an egg supernatant fraction on DEAE-Sephacel or DEAE-cellulose followed by cycles of temperature-dependent microtubule assembly and disassembly in vitro. After two assembly cycles, the microtubule protein consisted of the alpha- and beta-tubulins (greater than 98% of the protein) and trace quantities of seven proteins with molecular weights less than 55 000; no associated proteins with molecular weights greater than tubulin were observed. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis on urea-polyacrylamide gradient gels, the alpha- and beta-tubulins did not precisely comigrate with their counterparts from bovine brain. Two-dimensional electrophoresis revealed that urchin egg tubulin contained two major alpha-tubulins and a single major beta species. No oligomeric structures were observed in tubulin preparations maintained at 0 degrees C. Purified egg tubulin assembled efficiently into microtubules when warmed to 37 degrees C in a glycerol-free polymerization buffer containing guanosine 5'-triphosphate. The critical concentration for assembly of once- or twice-cycled egg tubulin was 0.12-0.15 mg/mL. Morphologically normal microtubules were observed by electron microscopy, and these microtubules were depolymerized by exposure to low temperature or to podophyllotoxin. Chromatography of a twice-cycled egg tubulin preparation on phosphocellulose did not alter its protein composition and did not affect its subsequent assembly into microtubules. At concentrations above 0.5-0.6 mg/mL, a concentration-dependent "overshoot" in turbidity was observed during the assembly reaction. These results suggest that egg tubulin assembles into microtubules in the absence of the ring-shaped oligomers and microtubule-associated proteins that characterize microtubule protein from vertebrate brain.  相似文献   

19.
Localization, amount, form of the bodies and maximal diameter of horseradish peroxidase (HP)-labelled neurons in the right stellate ganglion (SG) in the cat spinal cord have been investigated. HP application has been performed on the central parts of the SG connective branch with vagus nerve, or with the caudal cardiac nerve. In the neurons HP has been revealed after Straus or Mesulam method. In the SG, regardless the HP application place, the labelled neurons arrange in the zone, adjoining the place, where the caudal cardiac nerve and the connective branch get to the vagus nerve. In the spinal cord, when HP is applied on the connective branch, the labelled neurons are revealed in the lateral horns of the TI-TVI segments. The amount of the labelled neurons decreases in the rostro-caudal direction. Their greatest amount is revealed in the TI-TIII segments. When HP is applied on the central part of the caudal cardiac nerve, a small amount of the labelled neurons has been found in TI-TIII segments of the spinal cord only in one experiment. Thus, in the connective branch of the SG with the vagus nerve much more amount of the preganglionar fibers run than in the caudal cardiac nerve.  相似文献   

20.
Mineyama R 《Microbios》2001,106(Z2):143-154
Antigenic surface proteins of Actinobacillus actinomycetemcomitans (three strains), which can be recognized by antibodies in human serum, were examined using the Western blot method. By comparing the immunoblotting profiles between protease-treated cells and untreated cells, IgG-antigenic and IgM-antigenic surface proteins were found. The IgG-antigenic proteins revealed the following molecular weights: strain ATCC 29522, 52 and 49 kD; strain ATCC 29523, 45, 49, 52 and 70 kD; strain Y4, 36, 38, 44, 53 and 58 kD. Molecular weights of the IgM-antigenic proteins ranged from 50 to 92 kD: strain ATCC 29522, 68, 80, 90 and 92 kD; strain ATCC 29523, 62, 68 and 80 kD; strain Y4, 50, 64, 73, 81 and 86 kD. The IgG-antigenic proteins were very sensitive to trypsin and Bacillus licheniformis protease, but were resistant to V8 protease, while the IgM-antigenic proteins were sensitive to various proteases. These results suggested that IgG-antigenic and IgM-antigenic components were different from the serotype-specific antigen or species-specific antigen associated with polysaccharides or lipopolysaccharides with respect to molecular weights and that they were proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号