首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(1):391-399
Although oxygen toxicity of tissues can be decreased by a variety of antioxidants and some enzymes, such as SOD and catalase, their protective effect on tissue injury in various diseases are fairly small predominantly because of their unfavorable in vivo behavior. To minimize oxidative stress in various diseases. such as ischemic myocardial injury, circulatory disturbance and corneal inflammation, we synthesized three types of SOD derivatives by gene and protein engineering technique. One type of SOD (SM-SOD covalently linked with hydrophobic anions) circulates bound to albumin with a half life of 6 h and accumulates in tissues whose local pH is decreased. The other type of SOD (AC-SOD covalently linked with long chain fatty acids via the ?-amino group of lysyl residues) anchors onto membranc/lipid bilaycrs of various cells. The last type of SOD (HB-SOD synthesized by constructing a fusion gene coding human CuZn-type SOD and a C-terminal heparin-binding domain) binds to heparin-like proteoglycans on vascular cndothelial cell surface. Intravenous administration of either SM-SOD or HB-SOD markedly inhibited postischcmic reflow arrhythmias in the rat. When the left anterior descending artery was occluded permanently. about 65 % of animals died within 30 min predominantly due to irreversible ventricular fibrillation; the motality of animals decreased to 15 % by administering SM-SOD either before or after occlusion. Topically administered AC-SOD bound to the corneal epithelial cell surface and polyrnorp%onuclear leukocytes and efficiently dismutated superoxide radicals at their cell surface. Thus,' endotoxin-induced kcratitis was inhibited markedly by topical instillation of AC-SOD. Unmodified SOD itself failed to inhibit the pathologic events occurring in these disease models. Thus, these SOD derivatives permit in vivo studies on the mechanism and the site for oxygen toxicity in various diseases and provide a new strategy for targeting enzymes and bioactive peptides for medical use to appropriate site(s) of their action.  相似文献   

2.
Protection of tissues from oxygen toxicity is one of the major prerequisites to aerobic life. Since a wide variety of xenobiotics with prooxidant activity is excreted by the kidney, renal tubule cells should be protected from hazardous oxygen species. Because intravenously injected Cu/Zn-type superoxide dismutase (SOD) is rapidly excreted in the urine in its intact form, effective dismutation of superoxide radicals cannot be achieved in vivo by intravenously administered SOD. To scavenge superoxide radicals and inhibit their toxic effects in and around renal tubule cells, a hexamethylene-diamine (AH)-conjugated SOD (AH-SOD) was synthesized. When injected intravenously into the rat, (125)I-labeled AH-SOD disappeared from the circulation with a half-life of 3 min and accumulated in the kidney. After 30 min of administration, more than 80% of the radioactivity derived from AH-SOD was found to localize in the kidney without being excreted in the urine. Immunohistochemical examination revealed that, 60 min after administration, the major part of AH-SOD localized in renal proximal tubule cells. Kinetic analysis using right-side-out-oriented renal brush border vesicles revealed that AH-SOD bound to their membrane surface by some mechanism which was inhibited by AH but not by heparin and albumin. These results indicated that AH-SOD rapidly underwent renal glomerular filtration, bound to apical plasma membranes of proximal tubule cells, and localized in these cells for a fairly long time without being excreted in the urine. Thus, AH-SOD might permit studies on the role of superoxide radicals in and around renal proximal tubule cells.  相似文献   

3.
The well-studied cytosolic Cu,Zn-superoxide dismutase (SOD) protects against reperfusion injury, although its short (6 min) plasma half-life and negative charge create undesirable pharmacokinetics. We have designed, cloned, and expressed a genetic variant of SOD with altered pharmacological properties. A fusion gene consisting of the entire coding region of human SOD followed by a positively charged carboxy-terminal (C-terminal) “tail” of eight glycine and six arginine residues was constructed. The tail was modeled after the extracellular SOD (EC-SOD) C-terminal 26-amino acid basic peptide. This EC-SOD tail binds to heparin-like proteoglycans on cell surfaces and contributes to the enzyme’s very long (30 h) plasma clearance time. After expression inEscherichia coli, the mutant enzyme was purified and characterized. No differences in specific activity or UV absorption spectrum between the mutant and the native enzyme were found. The thermal stability of the fusion protein was greater than that of native SOD. Although native SOD has no affinity for heparin, the modified enzyme bound to a heparin-agarose column. A “designer” SOD able to bind to cell surfaces may aid in the prevention of superoxide-mediated endothelial damage.  相似文献   

4.
Pro-inflammatory activation of vascular endothelium is implicated in pathogenesis of severe conditions including stroke, infarction and sepsis. We have recently reported that superoxide dismutase (SOD) conjugated with antibodies (Ab/SOD) that provide targeted delivery into endothelial endosomes mitigates inflammatory endothelial activation by cytokines and agonists of Toll-like receptors (TLR). The goal of this study was to appraise potential utility and define the mechanism of this effect. Ab/SOD, but not non-targeted SOD injected in mice alleviated endotoxin-induced leukocyte adhesion in the cerebral vasculature and protected brain from ischemia-reperfusion injury. Transfection of endothelial cells with SOD, but not catalase inhibited NFκB signaling and expression of Vascular Cell Adhesion Molecule-1 induced by both cytokines and TLR agonists. These results affirmed that Ab/SOD-quenched superoxide anion produced by endothelial cells in response to proinflammatory agents mediates NFκB activation. Furthermore, Ab/SOD potentiates anti-inflammatory effect of NO donors in endothelial cells in vitro, as well as in the endotoxin-challenged mice. These results demonstrate the central role of intracellular superoxide as a mediator of pro-inflammatory activation of endothelium and support the notion of utility of targeted interception of this signaling pathway for management of acute vascular inflammation.  相似文献   

5.
Protection of organisms from oxidative stress is one of the major prerequisites for aerobic life. Since intravenously injected Cu++/Zn++-type superoxide dismutase (SOD) rapidly undergoes renal glomerular filtration and appears in urine in its intact form, its clinical use as a scavenger for superoxide radicals has been highly limited. To test whether reversible interaction of SOD with plasma albumin might decrease the rate of disappearance of the enzyme from the circulation, the lysyl residues of the human erythrocyte-type enzyme were covalently linked with poly-(styrene-co-maleic acid) butyl ester (SMA) via amide linkage. Affinity chromatographic analysis by an albumin-Sepharose column revealed that the enzyme samples labeled with SMA (SMA-SOD) tightly bound to the column, while unmodified SOD was eluted in the unbound fractions. SMA-SOD bound to the column could be eluted by the buffer solution containing 0.1% sodium dodecylsulfate. In vivo analysis revealed that intravenously administered SMA-SOD circulated bound to albumin with an extremely long half-life (6 h), while unmodified SOD rapidly underwent renal glomerular filtration with a plasma half-life of 4 min. Thus, SMA-SOD may effectively dismutase superoxide radicals in the circulation.  相似文献   

6.
Elevated level of cellular lipid peroxidation can increase the incidence of vascular disease. The mechanism by which ketosis causes accelerated cellular damage and vascular disease in diabetes is not known. This study was undertaken to test the hypothesis that elevated levels of ketone bodies increase lipid peroxidation in endothelial cells. Human umbilical venous endothelial cells (HUVEC) were cultured for 24 h at 37oC with ketone bodies (acetoacetate, β-hydroxybutyrate). Acetoacetate, but not β-hydroxybutyrate, caused an increase in lipid peroxidation and growth inhibition in cultured HUVEC. To determine whether ketone bodies generate oxygen radicals, studies using cell-free buffered solution were performed. They showed a significant superoxide dismutase (SOD) inhibitable reduction of cytochrome C by acetoacetate, but not by β-hydroxybutyrate, suggesting the generation of superoxide anion radicals by acetoacetate. Additional studies show that Fe2+ potentiates oxygen radical generation by acetoacetate. Thus, elevated levels of ketone body acetoacetate can generate oxygen radicals and cause lipid peroxidation in endothelial cells, providing a possible mechanism for the increased incidence of vascular disease in diabetes.  相似文献   

7.
An in vitro model was designed to study the role of ischemia/reperfusion and oxygen free radicals on vascular prostacyclin (PGI2) synthesis and protection provided by superoxide dismutase (SOD). Cultured bovine aortic endothelial cells (BAEC) were subjected to various times of hypoxia (30 min to 5 h) followed by 30 min reoxygenation. An increase or a decrease in PGI2 synthesis capacity was then observed according to the duration of hypoxia. Inhibition of PGI2 synthesis after 5 h hypoxia/30 min reoxygenation was accompanied by a rise in lipoperoxidation products and a slight cytotoxicity. Superoxide anion could be implicated in these cellular alterations as SOD efficiently prevented these effects. Incubation of normoxic or H/R-treated BAEC with SOD led to an increase in cellular SOD activity as compared to controls. This increase, inhibited by incubation at 4 degrees C but not by addition of cycloheximide, strongly suggested endocytosis of SOD. This study emphasizes the role of endothelium as a source and target of free radicals and provides a new insight into the mechanism of protection by SOD in ischemia-related vascular pathology.  相似文献   

8.
1. Many studies have demonstrated that endothelial cells from several species can generate oxygen free radicals when subjected to anoxia and reoxygenation. However, due to the heterogeneity of the endothelium within different organs and species, the effects of superoxide dismutase (SOD), catalase, and allopurinol on reoxygenated cultured cells remain quite controversial.2. This review outlines the possible sources of oxygen free radicals within brain endothelial cells.3. We examine the aspects of the effects of SOD catalase and allopurinol on cultured human brain capillary endothelial cells upon reoxygenation.4. Also, we introduce briefly a method of culturing human brain capillary endothelial cells and present our experimental results on the effects of SOD, catalase, and allopurinol in these cultured cells following anoxia and reoxygenation.  相似文献   

9.
External surfaces of cells are normally protected by extracellular superoxide dismutase, SOD3, which binds to polyanions such as heparan sulfate. We constructed a fusion gene encoding a chimeric SOD consisting of the mature human mitochondrial SOD2 plus the COOH-terminal 26-amino acid heparin-binding "tail" from SOD3. This tail is responsible for the enzyme's affinity for endothelial surfaces. The fusion gene was expressed in Escherichia coli, and the fully active enzyme SOD2/3 was purified. Although native SOD2 has no affinity for heparin, SOD2/3 binds to a heparin-agarose column. In a rat model of acute lung injury induced by intratracheal instillation of IL-1, SOD2/3, SOD2, and denatured SOD2/3 showed 92%, 13.8%, and 0% reduction of lung leak, respectively. Only SOD2/3 prevented neutrophil accumulation. In the carrageenan-induced foot edema model in the rat, SOD2/3 reduced edema by 62% (P < 0.003) at a dose in which native SOD2 produced no significant effect. Thus SOD2/3 appears to have properties as a therapeutic anti-inflammatory agent that are greatly superior to other available forms of the enzyme.  相似文献   

10.
Although oxygen-free radicals have been postulated to play an important role in the pathogenesis of gastric mucosal injury induced by posthemorrhagic blood transfusion, direct evidence supporting this hypothesis is lacking. Superoxide dismutase (SOD) has been shown to inhibit oxygen toxicity in vitro in various types of cell injury. However, in some cases, oxidative tissue injury cannot be decreased efficiency predominantly due to its rapid elimination by renal glomerular filtration. To overcome such frustrating situations, we have synthesized a SOD derivative that circulates bound to albumin with a half-life of 6 hr. When blood was withdrawn from the rat (22 ml/kg) for 30 min followed by transfusion of the extracted blood, marked gastric mucosal lesions occurred within 30 min after transfusion. Intravenously injected SOD derivative markedly decreased gastric mucosal injury. Kinetic analysis using 125I-labeled albumin revealed that the vascular permeability of the stomach increased significantly after transfusion by a SOD derivative inhibitable mechanism. Thus, superoxide radical and/or its metabolite(s) play a critical role in the pathogenesis of posthemorrhagic transfusion-induced gastric injury.  相似文献   

11.
Basic fibroblast growth factor (bFGF) is a known mitogen for vascular smooth muscle cells and has been implicated as having a role in a number of proliferative vascular disorders. Binding of bFGF to heparin or heparan sulfate has been demonstrated to both stimulate and inhibit growth factor activity. The activity, towards bFGF, of heparan sulfate proteoglycans present within the vascular system is likely related to the chemical characteristics of the glycosaminoglycan as well as the structure and pericellular location of the intact proteoglycans. We have previously shown that endothelial conditioned medium inhibits both bFGF binding to vascular smooth muscle cells and bFGF stimulated cell proliferation in vitro. In the present study, we have isolated proteoglycans from endothelial cell conditioned medium and demonstrated that they are responsible for the bFGF inhibitory activity. We further separated endothelial secreted proteoglycans into two fractions, PG-A and PG-B. The larger sized fraction (PG-A) had greater inhibitory activity than did PG-B for both bFGF binding and bFGF stimulation of vascular smooth muscle cell proliferation. The increased relative activity of PG-A was attributed, in part, to larger heparan sulfate chains which were more potent inhibitors of bFGF binding than the smaller heparan sulfate chains on PG-B. Both proteoglycan fractions contained perlecan-like core proteins; however, PG-A contained an additional core protein (approximately 190 kDa) that was not observed in PG-B. Both proteoglycan fractions bound bFGF directly, and PG-A bound a significantly greater relative amount of bFGF than did PG-B. Thus the ability of endothelial heparan sulfate proteoglycans to bind bFGF and prevent its association with vascular smooth muscle cells appears essential for inhibition of bFGF-induced mitogenesis. The production of potent bFGF inhibitory heparan sulfate proteoglycans by endothelial cells might contribute to the maintenance of vascular homeostasis. J. Cell. Physiol. 172:209–220, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Extracellular superoxide dismutase (EC SOD) is generally the least abundant SOD isozyme in tissues, while the intracellular Cu,Zn SOD is usually the most abundant isozyme. The biological significance of EC SOD is unknown. Immunolocalization studies show that EC SOD is in the connective tissue surrounding smooth muscle in vessels and airways within the lung. Endothelium derived relaxing factor, thought to be a nitric oxide (NO·) species, is a primary mediator of vascular relaxation. During NO·′ diffusion between the endothelium and smooth muscle, extracellular superoxide would be the most efficient scavenger of NO·. High levels of extracellualar superoxide dismutase in vessels could, therefore, be essential to enable NO' to modulate vascular tone. To evaluate the hypothesis that vessel walls are functionally rich in extracellular superoxide scavenging capacity, this study quantitates the EC SOD levels in pulmonary and systemic vessels and in airways. Both pulmonary and systemic arteries in humans and baboons were found to contain high activities of EC SOD. The level of EC SOD in all human and baboon arteries examined is greater than or equal to the level of intracellular Cu,Zn SOD, and EC SOD accounted for over 70% of the total SOD activity in some vessels examined. Immunolocalization of EC SOD in human and baboon vessels show similar distributions of this enzyme in pulmonary and systemic vessels. EC SOD is located beneath the endothelium, surrounding smooth muscle cells, and throughout the adventitia of vessels. The high level of EC SOD in vessels, and its localization between endothelial and smooth muscle cells, suggest that regulation of superoxide may be particularly important in this region, possibly in regulating vascular tone.  相似文献   

13.
Superoxide has been implicated in the regulation of endothelial cell adhesion molecule expression and the subsequent initiation of leukocyte-endothelial cell adhesion in different experimental models of inflammation. The objective of this study was to assess the contribution of oxygen radicals to P-selectin expression in a murine model of whole body ischemia-reperfusion, i.e., hemorrhage-resuscitation (H/R), with the use of different strategies that interfere with either the production (allopurinol, CD11/CD18-deficient or p47(phox)-/- mice) or accumulation [intravenous superoxide dismutase (SOD), mutant mice that overexpress SOD] of oxygen radicals. P-selectin expression was quantified in different regional vascular beds by use of the dual-radiolabeled monoclonal antibody technique. H/R elicited a significant increase in P-selectin expression in all vascular beds. This response was blunted in SOD transgenic mice and in wild-type mice receiving either intravenous SOD or the xanthine oxidase inhibitor allopurinol. Mice genetically deficient in either a subunit of NADPH oxidase or the leukocyte adhesion molecule CD11/CD18 also exhibited a reduced P-selectin expression. These results implicate superoxide, derived from both xanthine oxidase and NADPH oxidase, as mediators of the increased P-selectin expression observed in different regional vascular beds exposed to hemorrhage and retransfusion.  相似文献   

14.
Although the possible involvement of superoxide radical and its metabolite(s) in the pathogenesis of various types of edema have been suggested, direct evidence supporting this concept is lacking. Since intravenously administered Cu2+Zn2(+)-type superoxide dismutase (SOD) rapidly disappeared from the circulation with a half-life of 4 min, the enzyme could not be used to test whether superoxide radicals played a critical role in the modulation of vascular permeability. We previously synthesized a SOD derivative (SM-SOD) by linking poly(styrene co-maleic acid butyl ester) (SM) to the enzyme (Ogino, T., Inoue, M., Ando, Y., Awai, M., Maeda, H. and Morino Y. (1988) Int. J. Pept. Protein Res. 32, 1583-1588); SM-SOD circulates bound to albumin with a half-life of 6 h. To test whether superoxide radicals play an important role in the regulation of vascular permeability, the effect of SM-SOD on experimental paw edema was studied in the rat. Subcutaneous injections of carrageenin to the paw rapidly induced local edema by increasing vascular permeability. Intravenous administration of SM-SOD markedly inhibited the carrageenin-induced increase in vascular permeability and suppressed the development of paw edema. In contrast, the same dose of SOD showed no such inhibitory effect. These results suggest that superoxide radical and/or its metabolite(s) might play a critical role in the pathogenesis of carrageenin-induced vasogenic edema.  相似文献   

15.
Lipoprotein lipase (LPL) hydrolyzes triglyceride in plasma lipoprotein primarily while bound to vascular endothelial cells. LPL metabolism by cultured endothelial cells was studied. Purified radioiodinated bovine LPL bound to porcine aortic endothelial cells at 4 degrees C with an association constant of 0.18 x 10(7) m-1. Analysis of the time course of LPL dissociation from endothelial cells at 4 degrees C yielded a dissociation rate constant of 3.9 x 10(-6)s-1. After 1 h at 37 degrees C, 28% of the LPL initially bound to the cell surface was no longer releasable by heparin or trypsin treatments, suggesting that LPL was internalized by the cells. Addition of heparin to the medium or pretreatment of the cells with heparinase markedly reduced the amount of LPL internalized, establishing a requirement for cell surface heparan sulfate proteoglycans in the process. When cells containing internalized LPL were incubated at 37 degrees C, a time-dependent increase in the amount of LPL in the medium and a corresponding decrease in LPL associated with the cells was found. This suggested that internalized LPL was released back into the medium. The catalytic activity, molecular size, and heparin-binding characteristics of the released LPL was similar to native LPL. Addition of either heparin, heparinase, or excess unlabeled LPL to prevent the rebinding of released 125I-LPL to the cell surface increased the amount of 125I-LPL present in the medium, suggesting that there is a process of recycling of 125I-LPL bound to the cell surface. Studies examining the effect of pH on dissociation of LPL from its binding site showed less dissociation of cell surface bound LPL at pH 5.5 compared with pH 7.4 and 8.5. These results suggest that even at acidic pH as in endocytotic vesicles, LPL remains bound to proteoglycans and this may facilitate the recycling of internalized LPL molecules.  相似文献   

16.
Yamamoto M  Hara H  Adachi T 《FEBS letters》2001,505(2):296-300
Extracellular-superoxide dismutase (EC-SOD) is bound to the vascular endothelial cell surface with an affinity for heparan sulfate proteoglycan. The binding of EC-SOD to the human umbilical vein endothelial cell (HUVEC) and bovine aortic endothelial cell surface proteoglycans was significantly decreased by the incubation with S-nitroso-N-acetyl-DL-penicillamine (SNAP) and +/- -N-[(E)-4-ethyl-2-[(Z)-hydroxyimino]-5-nitro-3-hexene-1-yl]-3-pyridine carboxamide (NOR4), potent nitric oxide (NO) donors. NO derived from lipopolysaccharide-stimulated J774 A-1 cells also decreased the binding of EC-SOD to HUVEC, and this decrease was blocked by N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor. SNAP and NOR4 also decreased the binding of EC-SOD to immobilized heparin. Furthermore, the decomposed derivatives of NO donors and sodium nitrite decreased the binding of EC-SOD. These observations suggest that excess NO produced in the inflammatory conditions decreases the binding of EC-SOD to the vascular endothelial cell surface, which results in a loss of the ability to protect the endothelial cell surface from oxidative stress.  相似文献   

17.
Y Ando  M Inoue  T Utsumi  Y Morino  S Araki 《FEBS letters》1988,240(1-2):216-220
Involvement of oxygen radicals in the pathogenesis of various inflammatory diseases has been the focus of recent attention. Since lipid peroxidation of cell membranes is postulated to be one of the major reasons for radical-induced tissue injury, inhibition of oxygen toxicity at or near plasma membranes is important. To metabolize extracellular superoxide radicals effectively at or near cell membranes, we synthesized amphipathic superoxide dismutase (SOD) derivatives (AC-SOD) by covalently linking hydrophobic fatty acids with different chain lengths, such as caprylic acid, capric acid, lauric acid and myristic acid, to the lysyl amino groups of the enzyme. When incubated with erythrocytes or polymorphonuclear leukocytes (PMNs), AC-SOD, but not SOD, bound to plasma membranes of these cells. When topically instilled to the eye, AC-SOD also bound to corneal epithelial cell surface. Upon activation by phorbolmyristyl acetate, extracellular cytochrome c was rapidly reduced by PMNs which were pretreated with SOD. In contrast, PMNs preincubated with AC-SOD failed to catalyze the reduction of cytochrome c under the same experimental conditions. These results suggested that AC-SOD bound to cell membranes and effectively dismutated superoxide radicals at or on the outer surface of plasma membranes.  相似文献   

18.
Accelerated atherosclerosis is one of the major vascular complications of diabetes. Factors including hyperglycemia and hyperinsulinemia may contribute to accelerated vascular disease. Among the several mechanisms proposed to explain the link between hyperglycemia and vascular dysfunction is the hexosamine pathway, where glucose is converted to glucosamine. Although some animal experiments suggest that glucosamine may mediate insulin resistance, it is not clear whether glucosamine is the mediator of vascular complications associated with hyperglycemia. Several processes may contribute to diabetic atherosclerosis including decreased vascular heparin sulfate proteoglycans (HSPG), increased endothelial permeability and increased smooth muscle cell (SMC) proliferation. In this study, we determined the effects of glucose and glucosamine on endothelial cells and SMCs in vitro and on atherosclerosis in apoE null mice. Incubation of endothelial cells with glucosamine, but not glucose, significantly increased matrix HSPG (perlecan) containing heparin-like sequences. Increased HSPG in endothelial cells was associated with decreased protein transport across endothelial cell monolayers and decreased monocyte binding to subendothelial matrix. Glucose increased SMC proliferation, whereas glucosamine significantly inhibited SMC growth. The antiproliferative effect of glucosamine was mediated via induction of perlecan HSPG. We tested if glucosamine affects atherosclerosis development in apoE-null mice. Glucosamine significantly reduced the atherosclerotic lesion in aortic root. (P < 0.05) These data suggest that macrovascular disease associated with hyperglycemia is unlikely due to glucosamine. In fact, glucosamine by increasing HSPG showed atheroprotective effects.  相似文献   

19.
The purpose of this study was to examine the role of superoxide anions in modulating the vascular tone. The effects of unmodified and lecithinized superoxide dismutase (SOD) on vascular tone were determined in aortic ring preparations of mice. In lecithinized SOD, 4 molecules of a phosphatidylcholine derivative were covalently bound to each dimer of recombinant human copper-zinc SOD to facilitate tissue accumulation. Unmodified SOD did not change vascular tone. However, lecithinized SOD induced dose-dependent vasodilation of aortic ring preparations. The pretreatment with NG-nitro-L-arginine methylester (L-NAME) 10(-4) mol/L abolished the vasodilation induced by lecithinized SOD. The results of this study indicate that superoxide anions play a prominent role in modulating the vascular tone by enhancing the breakdown of nitric oxide.  相似文献   

20.
We recently reported the synthesis of a cationic superoxide dismutase (SOD) derivative (AH-SOD) that rapidly and selectively accumulates in and around proximal tubule cells and effectively dismutes superoxide radicals in situ. The present study revealed that administration of cis-diamminedichloroplatinum(II)-elicited oxidative stress in renal mitochondria, decreased the renal expression of Bcl-x, released cytochrome c from mitochondria to cytosol, and induced apoptosis and renal dysfunction by a mechanism that was inhibited by AH-SOD. These results suggest that targeting SOD to proximal tubule cells protects renal function and permits the administration of fairly high doses of nephrotoxic anticancer agents, such as cisplatin, without causing renal injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号