首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
In Dictyostelium discoideum cells, extracellular cAMP induces the rapid (within 2 s) activation of guanylate cyclase, which is followed by complete desensitization after about 10 s. cAMP binding to these cells is heterogeneous, showing a subclass of fast dissociating sites coupled to adenylate cyclase (A-sites) and a subclass of slowly dissociating sites coupled to guanylate cyclase (B-sites). The kinetics of the B-sites were further investigated on a seconds time scale. Statistical analysis of the association of [3H]cAMP to the B-sites and dissociation of the complex revealed that the receptor can exist in three states which interconvert according to the following scheme. (formula; see text). cAMP binds to the BF-state (off-rate 2.5 s) which rapidly (t1/2 = 3 s) converts to the BS-state (off-rate 15 s) and subsequently (without a detectable delay) into the BSS-state (off-rate 150 s). In membranes, both the BS- and BSS-states are converted to the BF-state by GTP and GDP, suggesting the involvement of a G-protein. Densensitized cells show a 80% reduction of the formation of the BSS-state, but no reduction of the BF- or BS-state. These data are combined into a model in which the transitions of the B-sites are mediated by a G-protein; activation of the G-protein and guanylate cyclase is associated with the transition of the BS- to the BSS-state of the receptor, whereas desensitization is associated with the inhibition of this transition.  相似文献   

2.
Guinea pig caecal circular smooth muscle cells were used to determine whether brain natriuretic peptide (BNP) can inhibit the contractile response produced by cholecystokinin-octapeptide (CCK-8). In addition, we examined the effect of an inhibitor of cAMP-dependent protein kinase, an inhibitor of particulate or soluble guanylate cyclase, an atrial natriuretic peptide (ANP) antagonist (ANP 1-11), and selective receptor protection on the BNP-induced relaxation of these muscle cells. The effect of BNP on cAMP formation was also examined. BNP inhibited the contractile response produced by CCK-8 in a dose-response manner, with an IC50 value of 8.5 nM, and stimulated the production of cAMP. The inhibitor of cAMP-dependent protein kinase and the inhibitor of soluble guanylate cyclase significantly inhibited the relaxation produced by BNP. In contrast, the inhibitor of particulate guanylate cyclase did not have any significant effect on the relaxation produced by BNP. ANP 1-11 significantly but partially inhibited the relaxation produced by BNP. The muscle cells where CCK-8 and ANP binding sites were protected completely preserved the inhibitory response to ANP, but partially preserved the inhibitory response to BNP. The muscle cells where CCK-8 and BNP binding sites were protected completely preserved the inhibitory response to both ANP and BNP. This study demonstrates that BNP induces relaxation of these muscle cells via both ANP binding sites coupled to soluble guanylate cyclase and distinct BNP binding sites coupled to adenylate cyclase.  相似文献   

3.
Gonadotropin receptor sites and adenylate cyclase activity were analyzed in luteinized rat ovaries following injection of human chorionic gonadotropin (hCG). Gonadotropin binding capacity and hormonal stimulation of adenylate cyclase declined rapidly to a minimum at 6 to 12 h, remained depressed for 4 days, and returned to the control level between 5 and 7 days. Total adenylate cyclase activity measured in the presence of fluoride fell by 50% within a few hours but returned to normal by 24 h. A close correlation was observed between the number of gonadotropin receptors and the ability of adenylate cyclase to be stimulated by hormone. Assay of tissue-bound hormone showed that the initial loss of hormone sensitivity and binding capacity was associated with occupancy of luteinizing hormone receptor sites, but that the prolonged changes in these activities were not attributable to receptor occupancy. These studies have demonstrated that induction of a refractory or desensitized state in ovarian adenylate cyclase by gonadotropin results from the loss of specific hormone receptor sites.  相似文献   

4.
A detailed comparison of the interaction of β-adrenergic receptors with adenylate cyclase stimulation and modification of this interaction by guanine nucleotides has been made in two model systems, the frog and turkey erythrocyte. Objective analysis of the data was facilitated by the development of new graphical methods which involve the use of logit-logit transformations of percent receptor occupancy versus percent enzyme stimulation plots (coupling curves). Receptor-cyclase coupling in turkey erythrocyte membranes demonstrates a proportional relationship between receptor occupancy and adenylate cyclase activation and is unaffected by exogenous guanine nucleotides. By comparison, the proportional relationship of receptor occupancy and adenylate cyclase activation observed in frog erythrocyte membranes in the absence of guanine nucleotides is modified by the addition of exogenous guanine nucleotides such that a greater fractional enzyme stimulation is elicited by low receptor occupancy. Methodological criteria crucial for valid comparison of receptor occupancy and adenylate cyclase activity are delineated. In addition, the possible molecular mechanisms of receptor-cyclase coupling which might give rise to the coupling curves observed are discussed.  相似文献   

5.
[Acetyl-His1]VIP stimulated adenylate cyclase with higher potency than VIP in membranes from human SUP-T1 lymphoblasts and was used as an efficient radioiodinated ligand with low non-specific binding to evaluate the relationship between receptor occupancy and adenylate cyclase activation and the possible interference of peptide T (an epitope derived from HIV envelope protein gp120). Various peptides inhibited [125I-acetyl-His1]VIP binding and activated the enzyme, their order of potency being: helodermin greater than [acetyl-His1]VIP greater than VIP = PHI = [Phe1]VIP greater than [D-Phe2]VIP = [D-Ala4]VIP = [D-Phe4]PHI greater than or equal to [D-Phe4]VIP greater than [D-His1]VIP giving further support for the existence of a novel subtype of helodermin/VIP receptors. [D-Ala1]peptide T and VIP-(10-28) did not recognize the binding site and did not inhibit, even at high concentration, VIP - or VIP analogue - stimulated adenylate cyclase activities.  相似文献   

6.
1. Escherichia coli heat-stable enterotoxin (ST) induces a secretory diarrhea by binding to receptors on brush borders of intestinal villus cells, activating particulate guanylate cyclase and increasing intracellular concentrations of guanosine 3',5'-cyclic monophosphate (cyclic GMP). 2. However, little is known concerning coupling of receptor-ligand interaction to enzyme activation. 3. This study compares the kinetics of toxin-receptor binding and enzyme activation to better understand this transmembrane signal cascade. 4. Toxin receptor binding was linear and saturable with 50% of maximum displacement of [125I]ST by unlabeled toxin observed at 1.1 x 10(-7) M. ST increased the maximum velocity (Vmax) of guanylate cyclase with magnesium or manganese as the cation substrate without altering the affinity of the enzyme for its substrate or its positive cooperativity. 5. The concentration of toxin yielding half-maximum stimulation of guanylate cyclase was 1.2 x 10(-6) M, 10-fold higher than the affinity of the ligand for its receptor. 6. These data are consistent with the suggestion that ST-receptor interaction is coupled to activation of particulate guanylate cyclase. 7. However, the discrepancy between the affinity of ST for its receptor and its efficacy in activating the enzyme suggests that this coupling is complex. 8. Possible mechanisms underlying this coupling are discussed.  相似文献   

7.
A detailed comparison of the interaction of beta-adrenergic receptors with adenylate cyclase stimulation and modification of this interaction by guanine nucleotides has been made in two model systems, the frog and turkey erythrocyte. Objective analysis of the data was facilitated by the development of new graphical methods which involve the use of logit-logit transformations of percent receptor occupancy versus percent enzyme stimulation plots (coupling curves). Receptor-cyclase coupling in turkey erythrocyte membranes demonstrates a proportional relationship between receptor occupancy and adenylate cyclase activation and is unaffected by exogenous guanine nucleotides. By comparison, the proportional relationship of receptor occupancy and adenylate cyclase activation observed in frog erythrocyte membranes in the absence of guanine nucleotides is modified by the addition of exogenous guanine nucleotides such that a greater fractional enzyme stimulation is elicited by low receptor occupancy. Methodological criteria crucial for valid comparison of receptor occupancy and adenylate cyclase activity are delineated. In addition, the possible molecular mechanisms of receptor-cyclase coupling which might give rise to the coupling curves observed are discussed.  相似文献   

8.
"Spare" beta-adrenergic receptors of rat white adipocyte membranes   总被引:1,自引:0,他引:1  
The apparent equilibrium dissociation constants for the interaction of isoproterenol with beta-receptors and adenylate cyclase were determined under the same conditions in rat adipocyte membranes and were compared with the apparent dissociation constant for the interaction of isoproterenol with cyclic AMP accumulation in the adipocyte. From these determinations, it was calculated that the occupancy of less than 4% of the receptor population is required for half-maximal stimulation of adenylate cyclase in membranes and cyclic AMP accumulation in intact cells, provided that receptor-binding and adenylate cyclase assays are performed in the presence of guanine nucleotides. Since guanine nucleotides are also required for adenylate cyclase activation in intact cells, it is concluded that the beta-receptors of rat adipocytes are "spare" receptors.  相似文献   

9.
Extracellular cAMP induces excitation of adenylate and guanylate cyclase in Dictyostelium discoideum. Continuous stimulation with cAMP leads to adaptation, while cells deadapt upon removal of the cAMP stimulus. Excitation of guanylate cyclase by cAMP has a lag time of approximately 1 s; excitation of adenylate cyclase is much slower with a lag time of 30 s. Excitation of both enzyme activities is less than twofold slower at 0 degrees C than at 20 degrees C. Adaptation of guanylate cyclase is very fast (t1/2 = 2.4 s at 20 degrees C), and virtually absent at 0 degrees C. Adaptation of adenylate cyclase is much slower (t1/2 = 110 s at 20 degrees C) but not very temperature sensitive (t1/2 = 290 s at 0 degrees C). At 20 degrees C, deadaptation of adenylate cyclase is about twofold slower than deadaptation of guanylate cyclase (t1/2 = 190 and 95 s, respectively). Deadaptation of adenylate cyclase is absent at 0 degrees C, while that of guanylate cyclase proceeds slowly (t1/2 = 975 s). The results show that excitation, adaptation, and deadaptation of guanylate cyclase have different kinetics and temperature sensitivities than those of adenylate cyclase, and therefore are probably independent processes.  相似文献   

10.
Guanylate cyclase, a cell surface receptor   总被引:9,自引:0,他引:9  
Guanylate cyclase appears to represent a central member of a diverse family of proteins involved in cell signaling mechanisms including the protein kinases, a low Mr ANP receptor, and possibly adenylate cyclase (based on limited sequence identity with the yeast enzyme). A membrane form of guanylate cyclase represents a new model for cell surface receptors, although such a model was once envisioned for adenylate cyclase (79). In original models for adenylate cyclase, hormone was thought to bind with either the enzyme or with an unknown protein to enhance cyclic AMP production (79). Guanylate cyclase appears to fall into the first adenylate cyclase model where binding of a ligand to an extracellular site on the enzyme transmits a signal to an intracellular catalytic site. The production of cyclic GMP, a second messenger, and of pyrophosphate are then increased. The protein tyrosine kinase family of receptors (80) and possibly another forthcoming family of cell surface receptors containing protein tyrosine phosphatase activity (81-83) contain a single transmembrane domain like guanylate cyclase. Furthermore, the protein tyrosine kinases are activated by ligand binding to the extracellular domain. However, the activation of guanylate cyclase, unlike these cell surface receptors, results in the formation of a low molecular weight second messenger.  相似文献   

11.
Using an antiserum raised against the purified atrial natriuretic peptide (ANP) receptor that has a disulfide-linked homodimeric structure and represents one subtype of the multiple ANP receptors, we showed that the receptor is coupled to the guanylate cyclase activation; formerly, this type of ANP receptor is not considered to be coupled to the cyclase. The specificity of the antiserum was determined by immunoblot analysis and immunoprecipitation. The anti-receptor antiserum did not compete with 125I-ANP for binding to the receptor but it lowered the affinity of the receptor. When added to bovine endothelial cell cultures, the antiserum blocked the cyclic GMP response of the cells triggered by ANP. These results indicate that the subtype of the ANP receptor recognized by the antiserum is responsible for the activation of particulate guanylate cyclase as well as the double function type receptor that has been assumed to contain both the receptor domain and the catalytic domain for cGMP synthesis on the same molecule. The presence of dissociative complexes of ANP receptor and particulate guanylate cyclase was also demonstrated by radiation inactivation analysis.  相似文献   

12.
Pharmacological studies indicate that Syrian hamster melanoma (RPMI 1846) cells possess a melatonin binding site similar to that found in normal hamster cells. A high correlation was observed for a series of compounds between the Ki in hamster hypothalamic membranes vs. RPMI 1846 membranes (r = 0.94, slope = 0.93, P less than 0.01, n = 14). Scatchard analysis of saturation binding of 2-[125I]-iodomelatonin to membranes (at 0 degrees C) indicated: Kd = 0.89 +/- 0.08 nM, Bmax = 6.2 +/- 2.9 fmol/mg protein (n = 3). Melatonin did not alter basal or forskolin-stimulated adenylate cyclase activity in RPMI 1846 membranes or intact cells. Therefore, in contrast to the picomolar-affinity receptor for melatonin in the mammalian hypothalamus and pars tuberalis, the putative nanomolar-affinity receptor is not coupled to adenylate cyclase. The RPMI 1846 cell line provides a useful model system for further studies of signal transduction via the nanomolar-affinity site for melatonin.  相似文献   

13.
L E Limbird 《FASEB journal》1988,2(11):2686-2695
Many hormones and neurotransmitters attenuate cyclic AMP (cAMP) accumulation in intact cells by virtue of their ability to inhibit adenylate cyclase activity via the GTP-binding protein denoted as Gi. Nonetheless, a number of physiological findings suggest that attenuation of cAMP production is not sufficient to serve as the only signal for eliciting the diverse physiological effects provoked by these various receptor populations. Additional biochemical and electrophysiological changes are known to occur after occupancy of receptors linked to inhibition of adenylate cyclase, including acceleration of Na+/H+ exchange, activation of K+ conductances, and inhibition of voltage-sensitive Ca2+ channels. This review summarizes the current understanding of how these receptors are coupled to their multiple potential effector mechanisms and offers some speculation about the possible interplay between the biochemical and electrophysiological sequels of receptor occupancy. It is hoped that future studies will establish which constellation of possible signaling mechanisms actually brings about changes in metabolic, secretory, or contractile events in different target cells.  相似文献   

14.
The effects of propylthiouracil (PTU) treatment on renal vasopressin sensitive adenylate cyclase in young and adult rats were studied by measuring the binding of tritiated vasopressin and adenylate cyclase activation by vasopressin in kidney medulla plasma membranes. Thyroxine therapy completely corrected the effects of PTU treatment on the vasopressin-adenylate cyclase system. Thus, the abnormalities observed after a such treatment are directly related to thyroid deficiency and not to toxic effects of PTU. The inability of the kidney to normally concentrate urine in developing and adult animals with induced hypothyroidism was mainly related to the reduction of the number of binding sites without significant changes in the basal and guanylyl-imidodiphosphate (Gpp(NH)p)-stimulated adenylate cyclase activities, the apparent dissociation constant (Kbind) of labeled vasopressin from its specific receptor and the apparent activation constant (Kact) of vasopressin for adenylate cyclase. These results also show that thyroid deficiency has more effect on the ontogenesis of receptors than on their turnover, and demonstrate that a normal antidiuretic response occurs at very low receptor occupancy. Since, on the one hand, the hypothyroidism-induced abnormalities in renal medulla responsiveness to vasopressin were reversible and, on the other, only a permanent therapy consisting of two daily physiological doses of thyroxine from birth to the age of sacrifice fully restored them, the responsiveness of developing kidney to thyroid hormones appears to be fundamentally different from that of the CNS.  相似文献   

15.
Subcellular fractions prepared from rat glial cells in culture (clonal line c6) were used in an attempt to characterize the adrenergic receptor involved in adenylate cyclase activation. Both [3H] norepinephrine binding and enzyme activation were measured under identical experimental conditions. Binding sites for norepinephrine could be detected; their main characteristics were: apparant Km: 4 - 10-6 M, macimal capacity: 20 pmol/mg protein.Their stereospecificity towards structually related drugs was found to be different from the stereospecificity of the receptor involved in adenylate cyclase activation. Thus, 3-methoxydopamine (a competitive inhibitor of norepinephrine for adenylate cyclase activation), phenylephrine (a partial adrennergic agonist) and the blocking agent propranolol were unable to compete with [3H] norepinephrine for binding. On the other hand, several molecules like dopa bearing a catechol group and which are unable to interact with the adenylate cyclase as agonists or competitive inhibitors strongly inhibited [3H] norepinephrine binding. As in several other systems so far studied, the presence on the glial cell's membrane of a large number of "catechol-binding sites" makes it difficult to characterize the beta-adrenergic receptor.  相似文献   

16.
In intact LLC-PK1 cells, occupancy of vasopressin receptors (Roy, C., and Ausiello, D. A. (1981) J. Biol. Chem. 256, 3415-3522) correlated with cell cAMP production. This relationship was observed as a function of hormone dose, incubation time, and changes in receptor affinity. However, the rate of cAMP production diminished with time in intact cells exposed to high hormone concentrations, even in the presence of a phosphodiesterase inhibitor. A rapid desensitization of adenylate cyclase activity was observed in minutes upon treatment of intact cells with high hormonal concentrations. Desensitization was dose- and time-dependent. Hypertonic sodium chloride, which increased hormonal binding and cell cAMP production, prevented desensitization. The acute decrease in hormone-stimulated adenylate cyclase activity correlated with increased occupancy of low affinity binding sites. EDTA-suspended cells, which have a homogeneous population of binding sites, did not demonstrate desensitization. A proposal is made as to the consequences of this phenomenon at physiological concentrations of vasopressin.  相似文献   

17.
Abstract

The binding of the nonselective muscarinic antagonist, [3H]N-methylscopolamine (NMS) to a mouse neuroblastoma cell line (Neuro-2A) and its coupling to the inhibition of adenylate cyclase were characterized. Specific [3H]NMS binding to membrane preparations was rapid, saturable, and of high affinity. Saturation experiments revealed a single class of binding sites for the radioligand. Competition experiments with the muscarinic drugs pirenzepine, AF DX 116, dicyclomine and atropine revealed that the muscarinic receptors present on these cells are predominantly of a single class, subtype B (M2). In addition, agonist binding demonstrated existence of a GTP-sensitive high affinity binding state of the receptors. Coupling of these muscarinic receptors to the adenylate cyclase system was investigated using the muscarinic agonist carbachol which was able to inhibit the prostaglandin (PGE1)-stimulated activation of adenylate cyclase. The agonist carbachol did not stimulate the formation of IP3 above basal levels, which indicated that the receptors are not coupled to phosphatidylinositol metabolism. In conclusion, we show that possessing predominantly one subtype of muscarinic receptor, the Neuro-2A cells provide a useful model for the investigation of the heterogeneity of muscarinic receptors and the relationship of subtype to the coupling of different effectors.  相似文献   

18.
Although 3,4-dihydroxyphenylethylamine (dopamine, DA) and vasoactive intestinal peptide (VIP) have been reported to stimulate adenylate cyclase activity in the rabbit retina, possible interactions between VIP-sensitive and DA-sensitive adenylate cyclase systems have not been previously investigated. To elucidate the interactions between these two putative transmitter-stimulated cyclase systems, the effects of VIP, DA, and VIP + DA on the conversion of [alpha-32P]ATP to [32P]cyclic AMP in rabbit retinal homogenates were measured. VIP stimulated adenylate cyclase activity in a biphasic manner, suggesting that two classes of VIP receptors may be involved in the induction of cyclic AMP formation. DA was less potent than VIP, and stimulated cyclase activity with a monophasic dose-response curve. When assayed together, these stimulations were partially nonadditive, implying the existence of a common adenylate cyclase pool that may be stimulated by both putative neurotransmitters. The dopaminergic antagonist (+)-butaclamol completely blocked dopaminergic stimulation, but had no significant effect on VIP-induced stimulation, indicating that VIP interacts with specific VIP receptor sites, which are distinct from the dopaminergic receptor sites. Furthermore, the specific D-2 dopaminergic receptor agonist LY141865 demonstrated no inhibitory effect on adenylate cyclase activity, suggesting that the interaction between the VIP- and DA-sensitive adenylate cyclase systems does not result from a D-2 receptor-mediated cyclase inhibition in the rabbit retina. Finally, at maximally effective concentrations, DA and VIP were less potent than fluoride or forskolin in the stimulation of cyclic AMP formation, suggesting that adenylate cyclase pools that are not sensitive to DA and VIP may also be present in this retina.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In Dictyostelium discoideum cells the enzyme adenylate cyclase is functionally coupled to cell surface receptors for cAMP. Coupling is known to involve one or more G-proteins. Receptor-mediated activation of adenylate cyclase is subject to adaptation. In this study we employ an electropermeabilized cell system to investigate regulation of D. discoideum adenylate cyclase. Conditions for selective permeabilization of the plasma membrane have been described by C.D. Schoen, J. C. Arents, T. Bruin, and R. Van Driel (1989, Exp. Cell Res. 181, 51-62). Only small pores are created in the membrane, allowing exchange of exclusively low molecular weight substances like nucleotides, and preventing the loss of macromolecules. Under these conditions functional protein-protein interactions are likely to remain intact. Adenylate cyclase in permeabilized cells was activated by the cAMP receptor agonist 2'-deoxy cAMP and by the nonhydrolyzable GTP-analogue GTP gamma S, which activates G-proteins. The time course of the adenylate cyclase reaction in permeabilized cells was similar to that of intact cells. Maximal adenylate cyclase activity was observed if cAMP receptor agonist or GTP-analogue was added just before cell permeabilization. If these activators were added after permeabilization adenylate cyclase was stimulated in a suboptimal way. The sensitivity of adenylate cyclase activity for receptor occupation was found to decay more rapidly than that for G-protein activation. Importantly, the adenylate cyclase reaction in permeabilized cells was subject to an adaptation-like process that was characterized by a time course similar to adaptation in vivo. In vitro adaptation was not affected by cAMP receptor agonists or by G-protein activation. Evidently electropermeabilized cells constitute an excellent system for investigating the positive and negative regulation of D. discoideum adenylate cyclase.  相似文献   

20.
Isolated adrenocortical carcinoma cells of rat contain alpha 2- and beta-adrenergic receptors. When these cells are incubated with alpha 2-adrenergic agonists, there is a concentration-dependent increase of cyclic GMP that is blocked by the alpha 2-adrenergic antagonist yohimbine but not by the beta-antagonist propranolol. Concomitantly, both p-aminoclonidine (20 microM) and clonidine (100 microM), the alpha 2-adrenergic agonists, stimulate membrane guanylate cyclase activity. In calcium free medium there is no alpha 2-agonist-dependent increase in cyclic GMP. Isoproterenol, a beta-agonist, and forskolin cause an increase in cyclic AMP but not cyclic GMP. The cyclic AMP increase induced by isoproterenol is blocked by propranolol but not by yohimbine. Isoproterenol- and forskolin-dependent increases in cyclic AMP are inhibited by p-aminoclonidine and the inhibition is relieved by yohimbine. These results indicate a dual regulation of guanylate cyclase and adenylate cyclase by the alpha 2-receptor signal: guanylate cyclase is coupled to the receptor in a positive fashion, whereas adenylate cyclase is coupled in a negative fashion. Calcium is obligatory in the cyclic GMP-mediated response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号