首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The lag period for activation of adenylate cyclase by choleragen was shorter in mouse neuroblastoma N18 cells than in rat glial C6 cells. N18 cells have 500-fold more toxin receptors than C6 cells. Treatment of C6 cells with ganglioside GM1 increased the number of toxin receptors and decreased the lag phase. Choleragen concentration also effected the lag phase, which increased as the toxin concentration and the amount of toxin bound decreased. The concentration, however, required for half-maximal activation of adenylate cyclase depended on the exposure time; at 1.5, 24, and 48 hr, the values were 200, 1.1., and 0.35pm, respectively. Under the latter conditions, each cell was exposed to 84 molecules of toxin.The length of the lag period was temperature-dependent. When exposed to choleragen at 37, 24, and 20 °C, C6 cells began to accumulate cyclic AMP after 50, 90, and 180 min, respectively. In GM1-treated cells, the corresponding times were 35, 60, and 120 min. Cells treated with toxin at 15 °C for up to 22 hr did not accumulate cAMP, whereas above this temperature they did. Antiserum to choleragen, when added prior to choleragen, completely blocked the activation of adenylate cyclase. When added after the toxin, the antitoxin lost its inhibitory capability in a time and temperature-dependent manner. Cells, however, could be preincubated with toxin at 15 °C, and the antitoxin was completely effective when added before the cells were warmed up. Finally, cells exposed to choleragen for >10 min at 37 °C accumulated cyclic AMP when shifted to 15 °C. Under optimum conditions at 37°C, the minimum lag period for adenylate cyclase activation in these cells was 10 min. These findings suggest that the lag period for cholerage action represents a temperature-dependent transmembrane event, during which the toxin (or its active component) gains access to adenylate cyclase.Abbreviations used: ganglioside nomenclature according to Svennerholm [32] (see Table 1 for structures) cAMP adenosine 35-monophosphate - MIX 3-isobutyl-1-methylxanthine - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - PBS phosphate-buffered saline (pH 7.4)  相似文献   

2.
In Dictyostelium discoideum cells, extracellular cAMP induces the rapid (within 2 s) activation of guanylate cyclase, which is followed by complete desensitization after about 10 s. cAMP binding to these cells is heterogeneous, showing a subclass of fast dissociating sites coupled to adenylate cyclase (A-sites) and a subclass of slowly dissociating sites coupled to guanylate cyclase (B-sites). The kinetics of the B-sites were further investigated on a seconds time scale. Statistical analysis of the association of [3H]cAMP to the B-sites and dissociation of the complex revealed that the receptor can exist in three states which interconvert according to the following scheme. (formula; see text). cAMP binds to the BF-state (off-rate 2.5 s) which rapidly (t1/2 = 3 s) converts to the BS-state (off-rate 15 s) and subsequently (without a detectable delay) into the BSS-state (off-rate 150 s). In membranes, both the BS- and BSS-states are converted to the BF-state by GTP and GDP, suggesting the involvement of a G-protein. Densensitized cells show a 80% reduction of the formation of the BSS-state, but no reduction of the BF- or BS-state. These data are combined into a model in which the transitions of the B-sites are mediated by a G-protein; activation of the G-protein and guanylate cyclase is associated with the transition of the BS- to the BSS-state of the receptor, whereas desensitization is associated with the inhibition of this transition.  相似文献   

3.
Human neutrophils were incubated with granulocyte-macrophage (GM)-CSF and examined for changes in second messenger systems. Twofold increases in cGMP but not cAMP were measured after 5 to 20 min with 100 U/ml GM-CSF. Guanylate cyclase activities in membrane and cytosol fractions were increased to the same extent whether measured in the presence of Mg2+ or Mn2+, or in the cytosol with Mg2+ + N-methyl-N'-nitro-N-nitroso-guanidine. Kinetic studies of the cytosol enzyme showed no changes in the Km values for Mg2+ and Mn2+dependent guanylate cyclase activities (0.91 and 0.022 mM, respectively), whereas Vm values were increased after treating intact cells with GM-CSF. Two peaks of guanylate cyclase activity were observed, one at 10 and another at 60 min after adding 100 U/ml GM-CSF, whereas only one peak at 5 min occurred with 1 U/ml. Adenylate cyclase activity was reduced by nearly 50% after adding 100 U/ml GM-CSF for 10 to 30 min. These effects were also seen in the presence of several hormonal and nonhormonal adenylate cyclase stimulators. In contrast, small increases in adenylate cyclase activity occurred after adding 1 U/ml GM-CSF. In experiments to examine the pathway of guanylate cyclase activation by GM-CSF, we observed no changes in inositol phosphates, intracellular calcium ion, or cytosolic protein kinase C. The augmentation of chemotactic peptide-induced superoxide production by GM-CSF concentrations, may be related to the effects of the higher levels of GM-CSF to stimulate late increases in guanylate cyclase or decreases in adenylate cyclase.  相似文献   

4.
cAMP binds to surface receptors of Dictyostelium discoideum cells, transducing the signal to adenylate cyclase, guanylate cyclase and to chemotaxis. The activation of adenylate cyclase is maximal after 1 min and then declines to basal levels due to desensitization, which is composed of two components: a rapidly reversible adaptation process, and a slowly reversible down-regulation of cAMP receptors. Adaptation is correlated with receptor phosphorylation.The chemotactic response and the cAMP-induced cGMP response were not significantly altered in D. discoideum cells pretreated with pertussis toxin. The initial increase of cAMP levels was identical in control and toxin treated cells, suggesting that activation of adenylate cyclase was also not affected. However, cAMP synthesis continued in toxin treated cells, due to a strongly diminished desensitization. Pertussis toxin inhibited the adaptation of adenylate cyclase stimulation, but not the down-regulation or phosphorylation of the cAMP receptors. Adenylate cyclase in D. discoideum membranes can be stimulated or inhibited by GTP, depending on the conditions used. Pertussis toxin did not affect the stimulation of adenylate cyclase but nullified the inhibition. In membranes from desensitized control cells, stimulation of adenylate cyclase by GTP was lost, whereas inhibition was retained. Stimulation of adenylate cyclase in membranes from desensitized pertussis toxin treated cells was diminished but not absent. These results indicate that receptor phosphorylation is not sufficient for adaptation of adenylate cyclase, and that a pertussis toxin substrate, possibly Gi, is also involved in this process.Abbreviations used ATPS Adenosine 5-0-(3-Thiotriphosphate) - GTPS Guanosine 5-0-(3-thiotri-phosphate) - (Sp)-cAMPS Adenosine 3,5-monophosphorothioate-Sp-isomer - dcAMP 2-deoxyadenosine 3,5-monophosphate - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - DTT Dithiothreitol - buffer A 10 mM KH2PO4/Na2HPO4, pH 6.5 - buffer B 40 mM Hepes/NaOH, 0.5 mM EDTA, 250 mM sucrose, pH 7.7  相似文献   

5.
cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylatecyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of cAMP, and cAMP binding to surface receptors and cAMP-induced activation of adenylate cyclase were measured. cAMP could induce maximally 65% loss of binding activity and complete desensitization of cAMP-stimulated adenylate cyclase activity. Half-maximal effects for down-regulation were observed at 50 nM cAMP and for desensitization at 5 nM cAMP. Down-regulation was rapid with half-times of 4, 2.5, and 1 min at 0.1, 1, and 10 microM cAMP, respectively. Similar kinetic data have been reported for desensitization (Dinauer, M.C., Steck, T.L., and Devreotes, P.N. (1980) J. Cell Biol. 86, 554-561). Down-regulation and desensitization were not reversible at 0 degrees C. Down-regulation reversed slowly at 20 degrees C with a half-time of about 1 h. Resensitization of adenylate cyclase was biphasic showing half-times of 4 min and about 1 h, respectively; the contribution of the rapidly resensitizing component was diminished when down-regulation of receptors was enhanced. These results suggest that cAMP-induced down-regulation of receptors and desensitization of adenylate cyclase stimulation proceed by at least two steps. One step is rapidly reversible, occurs at low cAMP concentrations, and induces desensitization without down-regulation, while the second step is slowly reversible, requires higher cAMP concentrations, and also induces down-regulation.  相似文献   

6.
Preincubation (50 min, 0 degree C) with nitroprusside increases 12-fold the activity of human platelet guanylate cyclase. The stimulating effect of nitroprusside is enhanced two-fold by dithiothreitol (2 mM) and by 60% by hemoglobin (20 micrograms/ml). Storage of guanylate cyclase preparations (105000 g supernatant) for 2-3 days at 4 degrees C causes a progressive increase of the enzyme activity and diminishes the stimulating effect of nitroprusside. After storage of guanylate cyclase preparations for 3 days, hemoglobin (20 micrograms/ml) augments the stimulating effect of nitroprusside by 130%. It is concluded that the degree of activation of guanylate cyclase by nitroprusside reflects the functional state of the enzyme.  相似文献   

7.
Enzymes in particulate fractions from sea urchin sperm and in soluble fractions from rat lung were shown to catalyze the formation of inosine 3',5'-monophosphate (cyclic IMP) and of 2'-deoxyguanosine 3',5'-monophosphate (cyclic dGMP) from ITP and dGTP, respectively. With sea urchin sperm particulate fractions, Mn2+ was an essential metal cofactor for inosinate, deoxyguanylate, guanylate and adenylate cyclase activities. Heat-inactivation studies differentiated inosinate and deoxyguanylate cyclase activities from adenylate cyclase, but indicated an association of these activities with guanylate cyclase. Preincubation of sea urchin sperm particulate fractions with trypsin altered in a very similar manner guanylate, inosinate, and deoxyguanylate cyclase activities, and various metals and metal-nucleotide combinations protected the three cyclase activities to comparable degrees against trypsin. The relative guanylate, deoxyguanylate and inosinate cyclase activities at 0.1 mM nucleoside triphosphate were 1.0, 0.5 and 0.08, respectively. With these three cyclase activities, plots of reciprocal velocities against reciprocal Mn2+-nucleoside triphosphate concentrations were concave upward, suggesting positive homotropic effects. With rat lung soluble preparations, relative guanylate, deoxyguanylate, inosinate and adenylate cyclase activities at 0.09 mM nucleoside triphosphate were 1.0, 1.7, 0.1 and 0, respectively. MnGTP was a competitive inhibitor of deoxyguanylate cyclase activity (Ki equals 12.2 muM) and MndGTP was a competitive inhibitor of guanylate cyclase activity (Ki equals 16.2 muM). Inhibition studies using ITP were not conducted. When soluble fractions from rat lung were applied to Bio-Gel A 1.5 m columns, elution profiles of guanylate, deoxyguanylate and inosinate cyclase activities were similar. These results suggest that deoxyguanylate, guanylate and inosinate cyclase activities reside within the same protein molecule.  相似文献   

8.
The stability of dopamine-sensitive adenylate cyclase, guanylate cyclase, ATPase, and GTPase was measured in homogenates of rat striatal tissue frozen from 0 to 24 h postmortem. ATPase, GTPase, and Mg2+-dependent guanylate cyclase activities showed no significant change over this period. Mn2+-dependent guanylate cyclase activity was stable for 10 h postmortem. Basal and dopamine-stimulated adenylate cyclase activity decreased markedly during the first 5 h. However, when measured in washed membrane preparations, these adenylate cyclase activities remained stable for at least 10 h. Therefore, the postmortem loss of a soluble activator, such as GTP, may decrease the adenylate cyclase activity in homogenates. These results are not consistent with an earlier suggestion that there is a postmortem degradation of the enzyme itself. Other kinetic parameters of dopamine-sensitive adenylate cyclase can also be measured independently of postmortem changes. Thus, it is possible to investigate kinetic parameters of dopamine-sensitive adenylate cyclase, guanylate cyclase, ATPase, and GTPase in human brain obtained postmortem.  相似文献   

9.
In the yeast Saccharomyces cerevisiae, the addition of glucose to derepressed cells and intracellular acidification trigger a rapid increase in the cAMP level within 1 min. We have identified a mutation in the genetic background of several related 'wild-type' laboratory yeast strains (e.g. ENY.cat80-7A, CEN.PK2-1C) that largely prevents both cAMP responses, and we have called it lcr1 (for lack of cAMP responses). Subsequent analysis showed that lcr1 was allelic to CYR1/CDC35, encoding adenylate cyclase, and that it contained an A to T substitution at position 5627. This corresponds to a K1876M substitution near the end of the catalytic domain in adenylate cyclase. Introduction of the A5627T mutation into the CYR1 gene of a W303-1A wild-type strain largely eliminated glucose- and acidification-induced cAMP signalling and also the transient cAMP increase that occurs in the lag phase of growth. Hence, lysine1876 of adenylate cyclase is essential for cAMP responses in vivo. Lysine1876 is conserved in Schizosaccharomyces pombe adenylate cyclase. Mn2+-dependent adenylate cyclase activity in isolated plasma membranes of the cyr1met1876 (lcr1) strain was similar to that in the isogenic wild-type strain, but GTP/Mg2+-dependent activity was strongly reduced, consistent with the absence of signalling through adenylate cyclase in vivo. Glucose-induced activation of trehalase was reduced and mobilization of trehalose and glycogen and loss of stress resistance were delayed in the cyr1met1876 (lcr1) mutant. During exponential growth on glucose, there was little effect on these protein kinase A (PKA) targets, indicating that the importance of glucose-induced cAMP signalling is restricted to the transition from gluconeogenic/respiratory to fermentative growth. Inhibition of growth by weak acids was reduced, consistent with prevention of the intracellular acidification effect on cAMP by the cyr1met1876 (lcr1) mutation. The mutation partially suppressed the effect of RAS2val19 and GPA2val132 on several PKA targets. These results demonstrate the usefulness of the cyr1met1876 (lcr1) mutation for epistasis studies on the signalling function of the cAMP pathway.  相似文献   

10.
W J Thomsen  R R Neubig 《Biochemistry》1989,28(22):8778-8786
Activation and inhibition of adenylate cyclase in the presence of GTP, the natural guanine nucleotide regulator, are too fast to study by standard biochemical methods. In order to identify the rate-limiting steps in adenylate cyclase regulation, we measured the kinetics of stimulation and inhibition of the enzyme on a subsecond to second time scale using a novel rapid-mix quench technique. Even using our rapid-mix quench method, activation by PGE1 and forskolin was instantaneous (cAMP accumulation was linear between 0.5 and 30 s). In contrast, we found a lag period of 1.2-10 s for epinephrine-mediated inhibition. The length of the lag depended on the concentration of GTP and monovalent cations present. In the absence of NaCl, the rate constant for the onset of inhibition (kinh) increased only slightly with GTP concentration saturating at a value of 0.16 s-1 (t1/2 4.3 s) at 1 microM GTP. In the presence of 100 mM NaCl, kinh was strongly dependent on GTP concentration, reaching a maximum value of 0.57 s-1 (t1/2 1.2 s) at 100 microM GTP. Thus, activation of both Gi and Gs in intact platelet membranes is much faster (t1/2 less than 5 s) than previously reported for reconstituted systems. Also, the strong dependence of the rate of adenylate cyclase inhibition on GTP concentration implies that the rate-limiting step in inhibition is distal to GTP binding. The effect of NaCl to increase the maximal rate of inhibition is specific for sodium since KCl has no effect on kinh.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
P J Van Haastert 《Biochemistry》1987,26(23):7518-7523
Extracellular cAMP induces the rapid activation of guanylate cyclase, which adapts within 10 s to constant cAMP concentrations. A new response can be induced either by a higher cAMP concentration or by the same cAMP concentration at some time (t1/2 = 90 s) after removal of the previous stimulus. Stimulation of guanylate cyclase is supposed to be mediated by a subpopulation of cell surface cAMP receptors (B-sites). These sites can exist in three states, BF, BS, and BSS, which interconvert in a cAMP and guanine nucleotide dependent manner. It has been proposed that the transition of BS to BSS represents the activation of a guanine nucleotide regulatory protein [Van Haastert, P.J.M., De Wit, R.J.W., Janssens, P.M.W., Kesbeke, F., & DeGoede, J. (1986) J. Biol. Chem. 261, 9604-9611]. Binding of [3H]cAMP to these sites was measured after a short preincubation with an identical concentration of nonradioactive cAMP. [3H]cAMP could still bind to BF and BS, but not to BSS, indicating that the transition of BS to BSS is blocked by the preincubation with cAMP. This blockade was rapid and showed first-order kinetics with t1/2 = 4 s. A half-maximal blockade was induced by 0.7 nM cAMP; at this concentration only 5% of the B-sites are occupied with cAMP. The blockade of the transition of BS to BSS was released by two conditions: (i) When the concentration of cAMP was increased, the blockade was released within a few seconds. (ii) When cAMP was removed, the blockade was released slowly with t1/2 = 90 s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Long-term primary adult rat hepatocyte cultures show growth-state-dependent changes in adenylate cyclase and cAMP phosphodiesterase activities. Cellular adenylate cyclase activity decreases to undetectable levels within 1 day postplating, reappears on Days 4-5, and becomes maximal on Day 9. Membrane adenylate cyclase and cellular cAMP formation are insensitive to glucagon during log phase (Days 4-8) but not during lag (Day 1) or stationary phase (Day 12). Cyclic AMP phosphodiesterase activities (soluble and particulate) fall approximately equal to 70% by Day 2 but recover as proliferation begins. By contrast, the particulate phosphodiesterase assayed at 100 microM cAMP, decreased during Days 0-2. These observations simulate changes seen during liver proliferative transitions in vivo and, therefore, further support the use of these cultures as a developmental model.  相似文献   

13.
We have recently shown that atrial natriuretic factor (ANF) inhibits adenylate cyclase activity in rat platelets where only one population of ANF receptors (ANF-R2) is present, indicating that ANF-R2 receptors may be coupled to the adenylate cyclase/cAMP system. In the present studies, we have used ring-deleted peptides which have been reported to interact with ANF-R2 receptors also called clearance receptors (C-ANF) without affecting the guanylate cyclase/cGMP system, to examine if these peptides can also inhibit the adenylate cyclase/cAMP system. Ring-deleted analog C-ANF4-23 like ANF99-126 inhibited the adenylate cyclase activity in a concentration-dependent manner in rat aorta, brain striatum, anterior pituitary, and adrenal cortical membranes. The maximal inhibition was about 50-60% with an apparent Ki between 0.1 and 1 nM. In addition, C-ANF4-23 also decreased the cAMP levels in vascular smooth muscle cells in a concentration-dependent manner without affecting the cGMP levels. The maximal decrease observed was about 60% with an apparent Ki of about 1 nM. Furthermore, C-ANF4-23 was also able to inhibit cAMP levels and progesterone secretion stimulated by luteinizing hormone in MA-10 cell line. Other smaller fragments of ANF with ring deletions were also able to inhibit the adenylate cyclase activity as well as cAMP levels. Furthermore, the stimulatory effects of various agonists such as 5'-(N-ethyl)carboxamidoadenosine, dopamine, and forskolin on adenylate cyclase activity and cAMP levels were also significantly inhibited by C-ANF4-23. The inhibitory effect of C-ANF4-23 on adenylate cyclase was dependent on the presence of GTP and was attenuated by pertussis toxin treatment. These results indicate that ANF-R2 receptors or so-called C-ANF receptors are coupled to the adenylate cyclase/cAMP signal transduction system through inhibitory guanine nucleotide regulatory protein.  相似文献   

14.
Sodium nitroprusside, a potent activator of soluble guanylate cyclase, potentiated mixed disulfide formation between cystine, a potent inhibitor of the cyclase, and enzyme purified from rat lung. Incubation of soluble guanylate cyclase with nitroprusside and [35S]cystine resulted in a twofold increase in protein-bound radioactivity compared to incubations in the absence of nitroprusside. Purified enzyme preincubated with nitroprusside and then gel filtered (activated enzyme) was activated 10- to 20-fold compared to guanylate cyclase preincubated in the absence of nitroprusside and similarly processed (nonactivated enzyme). This activation was completely reversed by subsequent incubation at 37 degrees C (activation-reversed enzyme). Incorporation of [35S]cystine into guanylate cyclase was increased twofold with activated enzyme, while no difference was observed with activation-reversed enzyme, compared to nonactivated enzyme. Cystine decreased the activity of nonactivated and activation-reversed enzyme about 40% while it completely inhibited activated guanylate cyclase. Mg+2- or Mn+2-GTP inhibited the incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. Also, diamide, a potent thiol oxidant that converts juxtaposed sulfhydryls to disulfides, completely blocked incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. These data indicate that activation of soluble guanylate cyclase by nitroprusside results in an increased availability of protein sulfhydryl groups for mixed disulfide formation with cystine. Protection against mixed disulfide formation with diamide or substrate suggests that these groups exist as two or more juxtaposed sulfhydryl groups at the active site or a site on the enzyme that regulates catalytic activity. Differential inhibition by mixed disulfide formation of nonactivated and activated enzyme suggests a mechanism for amplification of the on-off signal for soluble guanylate cyclase within cells.  相似文献   

15.
The effects of oxytocin and methacholine on cyclic nucleotide levels in estrogen-primed rabbit myometrium were studied in the presence and absence of 1-methyl-3-isobutyl xanthine (MIX), a phosphodiesterase inhibitor. In the absence of MIX, methacholine increased guanosine 3',5'-cyclic monophosphate (cGMP) levels at a time when contraction was decreasing, but had no influence on adenosine 3',5'-cyclic monophosphate (cAMP) levels. In contrast, oxytocin did not elevate cGMP, but rapidly decreased cAMP levels. MIX (1 mM) increased both cAMP and cGMP levels. Oxytocin or methacholine further increased cGMP, indicating activation of guanylate cyclase. Oxytocin- but not methacholine-induced stimulation of guanylate cyclase was abolished in Ca2+-free solution. Oxytocin increased cAMP over the levels produced by MIX alone, whereas methacholine decreased cAMP below the MIX control values; these effects were insensitive to indomethacin. Tissue levels of cGMP and cAMP did not directly correlate with isometric tension. The results also indicate that both oxytocin and methacholine stimulate guanylate cyclase but have opposing effects on adenylate cyclase of rabbit myometrium.  相似文献   

16.
Responsiveness of Dictyostelium discoideum amoebae to cAMP, a chemotactic mediator, was investigated in a strain defective in cAMP-phosphodiesterase production. Cells were subjected to a high cAMP signal (10(-6) M) in the presence or absence of exogenous phosphodiesterase, and the changes of intracellular cAMP and cGMP concentrations and of adenylate cyclase activity were measured. In the presence of cAMP hydrolysis, both adenylate and guanylate cyclases are transiently activated. In the absence of hydrolysis, the high and constant extracellular cAMP concentration is sufficient to elicit a re-activation of adenylate cyclase a few minutes after the first transient response. In contrast, levels of cGMP remain basal for at least 20 min after termination of the initial response to the cAMP addition.  相似文献   

17.
Summary Rates of synthesis of cyclic 3,5-adenosine monophosphate (cAMP) were measured in cultures of Escherichia coli aerating without a carbon source. This technique provides a representative measure of adenylate cyclase activity in the absence of inhibition caused by transport of the carbon source. Adenylate cyclase activity was found to vary more than 20-fold depending on the carbon source that had been available during growth. Synthesis of cAMP in cells aerating in the absence of the carbon source was highest when cells had been grown with glucose or fructose which inhibit adenylate cyclase activity severely. Synthesis of cAMP was much lower when cells had been grown with glycerol or succinate which cause only minimal inhibition of the activity.The variation in cAMP synthesis due to different carbon sources requires a functional cAMP receptor protein (CRP). Crp- mutants synthesize cAMP at comparable rates regardless of the carbon source that afforded growth. A novel mutant of E. coli having a CRP no longer dependent on cAMP has been isolated and characterized. Adenylate cyclase activity in this mutant no longer responds normally to variations in the carbon source.  相似文献   

18.
Extracellular cAMP induces the activation of adenylate cyclase in Dictyostelium discoideum cells. Conditions for both stimulation and inhibition of adenylate cyclase by guanine nucleotides in membranes are reported. Stimulation and inhibition were induced by GTP and non-hydrolysable guanosine triphosphates. GDP and non-hydrolysable guanosine diphosphates were antagonists. Stimulation was maximally twofold, required a cytosolic factor and was observed only at temperatures below 10 degrees C. An agonist of the cAMP-receptor-activated basal and GTP-stimulated adenylate cyclase 1.3-fold. Adenylate cyclase in mutant N7 could not be activated by cAMP in vivo; in vitro adenylate cyclase was activated by guanine nucleotides in the presence of the cytosolic factor of wild-type but of not mutant cells. Preincubation of membranes under phosphorylation conditions has been shown to alter the interaction between cAMP receptor and G protein [Van Haastert (1986) J. Biol. Chem. in the press]. These phosphorylation conditions converted stimulation to inhibition of adenylate cyclase by guanine nucleotides. Inhibition was maximally 30% and was not affected by the cytosolic factor involved in stimulation. In membranes obtained from cells that were treated with pertussis toxin, adenylate cyclase stimulation by guanine nucleotides was as in control cells, whereas inhibition by guanine nucleotides was lost. When cells were desensitized by exposure to cAMP agonists for 15 min, and adenylate cyclase was measured in isolated membranes, stimulation by guanine nucleotides was lost while inhibition was retained. These results suggest that Dictyostelium discoideum adenylate cyclase may be regulated by Gs-like and Gi-like activities, and that the action of Gs but not Gi is lost during desensitization in vivo and by phosphorylation conditions in vitro.  相似文献   

19.
The existence of an invasive adenylate cyclase in dialyzed urea extracts of the bacterium Bordetella pertussis has been suggested recently. Gel filtration of B. pertussis dialyzed urea extract shows that the invasive enzyme constitutes only a small portion of the total adenylate cyclase activity found in the extract. Its size is different than the size of the two peaks of adenylate cyclase activity identified in the extract. Ca2+ is absolutely required for the penetration of the invasive enzyme, it also controls the rate of intracellular cAMP accumulation in human lymphocytes exposed to dialyzed extract. These characteristics may be attributed to the increase in the size of the invasive enzyme as found by gel filtration chromatography of the extract in the absence of Ca2+. Removal of nonpenetrating adenylate cyclase that adheres to lymphocytes permits a direct assay of the intracellular enzyme. The time course of intracellular accumulation of adenylate cyclase activity is similar to the time course of intracellular accumulation of cAMP, suggesting that the invasive enzyme is rapidly deactivated, but not degraded, since it can be detected upon cell disruption. No appreciable amount of the enzyme is introduced when cells are incubated with extract at 4 degrees C for 120 min, then washed and incubated further at 37 degrees C. Concanavalin A inhibits cAMP accumulation irrespective of the time of its addition, and EGTA prevents penetration of the invasive enzyme even if added 20 min after addition of extract. These findings are different from those observed in other bacterial toxins thought to be internalized by receptor-mediated endocytosis. However, the cellular penetration of B. pertussis adenylate cyclase is cell-selective. It does not occur in human erythrocytes. In addition to human lymphocytes, S49 cyc- murine lymphoma, turkey erythrocytes, and rat oocytes accumulate cAMP in response to B. pertussis extract.  相似文献   

20.
A particulate adenylate cyclase was identified in the excitable ciliary membrane from Paramecium tetraurelia. MnATP was preferentially used as substrate, the Km was 67 μM, Vmax was 1 nmol cAMP.min?1.mg?1, a marked temperature optimum of 37°C was observed. Adenylate cyclase was not inhibited by 100 μM EGTA or 100 μM La3+, whereas under these conditions guanylate cyclase activity was abolished. Fractionation of ciliary membrane vesicles by a Percoll density gradient yielded two vesicle populations with adenylate cyclase activity. In contrast, calmodulin/Ca-dependent guanylate cyclase was associated with vesicles of high buoyant density only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号