首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In metazoans, nuclear export of bulk mRNA is mediated by Tap‐p15, a conserved heterodimeric export receptor that cooperates with adaptor RNA‐binding proteins. In this article, we show that Thoc5, a subunit of the mammalian TREX complex, binds to a distinct surface on the middle (Ntf2‐like) domain of Tap. Notably, adaptor protein Aly and Thoc5 can simultaneously bind to non‐overlapping binding sites on Tap‐p15. In vivo, Thoc5 was not required for bulk mRNA export. However, nuclear export of HSP70 mRNA depends on both Thoc5 and Aly. Consistent with a function as a specific export adaptor, Thoc5 exhibits in vitro RNA‐binding activity and is associated with HSP70 mRNPs in vivo as a component of the stable THO complex. Thus, through the combinatorial use of an adaptor (e.g., Aly) and co‐adapter (e.g., Thoc5), Tap‐p15 could function as an export receptor for different classes of mRNAs.  相似文献   

4.
5.
6.
7.
The TREX complex couples nuclear pre‐mRNA processing with mRNA export and contains multiple protein components, including Uap56, Alyref, Cip29 and the multi‐subunit THO complex. Here, we have identified Chtop as a novel TREX component. We show that both Chtop and Alyref activate the ATPase and RNA helicase activities of Uap56 and that Uap56 functions to recruit both Alyref and Chtop onto mRNA. As observed with the THO complex subunit Thoc5, Chtop binds to the NTF2‐like domain of Nxf1, and this interaction requires arginine methylation of Chtop. Using RNAi, we show that co‐knockdown of Alyref and Chtop results in a potent mRNA export block. Chtop binds to Uap56 in a mutually exclusive manner with Alyref, and Chtop binds to Nxf1 in a mutually exclusive manner with Thoc5. However, Chtop, Thoc5 and Nxf1 exist in a single complex in vivo. Together, our data indicate that TREX and Nxf1 undergo dynamic remodelling, driven by the ATPase cycle of Uap56 and post‐translational modifications of Chtop.  相似文献   

8.
The mRNA export complex TREX (TREX) is known to contain Aly, UAP56, Tex1 and the THO complex, among which UAP56 is required for TREX assembly. Here, we systematically investigated the role of each human TREX component in TREX assembly and its association with the mRNA. We found that Tex1 is essentially a subunit of the THO complex. Aly, THO and UAP56 are all required for assembly of TREX, in which Aly directly interacts with THO subunits Thoc2 and Thoc5. Both Aly and THO function in linking UAP56 to the cap-binding protein CBP80. Interestingly, association of UAP56 with the spliced mRNA, but not with the pre-mRNA, requires Aly and THO. Unexpectedly, we found that Aly and THO require each other to associate with the spliced mRNA. Consistent with these biochemical results, similar to Aly and UAP56, THO plays critical roles in mRNA export. Together, we propose that Aly, THO and UAP56 form a highly integrated unit to associate with the spliced mRNA and function in mRNA export.  相似文献   

9.
10.
11.
R A Padgett  S M Mount  J A Steitz  P A Sharp 《Cell》1983,35(1):101-107
A mouse monoclonal antibody and human autoimmune sera directed against various classes of small ribonucleoprotein particles have been tested for inhibition of mRNA splicing in a soluble in vitro system. The splicing of the first and second leader exons of adenovirus late RNA was inhibited only by those sera that reacted with U1 RNP. Both U1 RNP-specific human autoimmune serum and sera directed against the Sm class of small nuclear RNPs, including a mouse monoclonal antibody, specifically inhibited splicing. Antisera specific for U2 RNP had no effect on splicing nor did antisera specific for the La or Ro class of small RNPs. These results suggest that U1 RNP is essential for the splicing of mRNA precursors.  相似文献   

12.
Proteomic and RNomic approaches have identified many components of different ribonucleoprotein particles (RNPs), yet still little is known about the organization and protein proximities within these heterogeneous and highly dynamic complexes. Here we describe a targeted cross-linking approach, which combines cross-linking from a known anchor site with affinity purification and mass spectrometry (MS) to identify the changing vicinity interactomes along RNP maturation pathways. Our method confines the reaction radius of a heterobifunctional cross-linker to a specific interaction surface, increasing the probability to capture low abundance conformations and transient vicinal interactors too infrequent for identification by traditional cross-linking-MS approaches, and determine protein proximities within RNPs. Applying the method to two conserved RNA-associated complexes in Saccharomyces cerevisae, the mRNA export receptor Mex67:Mtr2 and the pre-ribosomal Nop7 subcomplex, we identified dynamic vicinal interactomes within those complexes and along their changing pathway milieu. Our results therefore show that this method provides a new tool to study the changing spatial organization of heterogeneous dynamic RNP complexes.  相似文献   

13.
14.
In Drosophila, the asymmetric localization of specific mRNAs to discrete regions within the developing oocyte determines the embryonic axes. The microtubule motors dynein and kinesin are required for the proper localization of the determinant ribonucleoprotein (RNP) complexes, but the mechanisms that account for RNP transport to and within the oocyte are not well understood. In this work, we focus on the transport of RNA complexes containing bicoid (bcd), an anterior determinant. We show in live egg chambers that, within the nurse cell compartment, dynein actively transports green fluorescent protein-tagged Exuperantia, a cofactor required for bcd RNP localization. Surprisingly, the loss of kinesin I activity elevates RNP motility in nurse cells, whereas disruption of dynein activity inhibits RNP transport. Once RNPs are transferred through the ring canal to the oocyte, they no longer display rapid, linear movements, but they are distributed by cytoplasmic streaming and gradually disassemble. By contrast, bcd mRNA injected into oocytes assembles de novo into RNP particles that exhibit rapid, dynein-dependent transport. We speculate that after delivery to the oocyte, RNP complexes may disassemble and be remodeled with appropriate accessory factors to ensure proper localization.  相似文献   

15.
H/ACA Box ribonucleoprotein complexes (RNPs) play a major role in modification of rRNA and snRNA, catalyzing the sequence specific pseudouridylation in eukaryotes and archaea. This enzymatic reaction takes place on a substrate RNA recruited via base pairing to an internal loop of the snoRNA. Eukaryotic snoRNPs contain the four proteins Nop10, Cbf5, Gar1 and Nhp2, with Cbf5 as the catalytic subunit. In contrast to archaeal H/ACA RNPs, eukaryotic snoRNPs contain several conserved features in both the snoRNA as well as the protein components. Here, we reconstituted the eukaryotic H/ACA RNP containing snR81 as a guide RNA in vitro and report on the effects of these eukaryote specific features on complex assembly and enzymatic activity. We compare their contribution to pseudouridylation activity for stand-alone hairpins versus the bipartite RNP. Using single molecule FRET spectroscopy, we investigated the role of the different eukaryote-specific proteins and domains on RNA folding and complex assembly, and assessed binding of substrate RNA to the RNP. Interestingly, we found diverging effects for the two hairpins of snR81, suggesting hairpin-specific requirements for folding and RNP formation. Our results for the first time allow assessing interactions between the individual hairpin RNPs in the context of the full, bipartite snoRNP.  相似文献   

16.

Background

Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication.

Methodology/Principal Findings

We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro.

Conclusions/Significance

We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins.  相似文献   

17.
Protective cellular responses to stress and aging in the germline are essential for perpetuation of a species; however, relatively few studies have focused on how germ cells respond to stress and aging. We have previously shown that large ribonucleoprotein (RNP) complexes assemble in oocytes of Caenorhabditis during extended meiotic arrest or after environmental stress. Here we explore the regulation of these dynamic RNPs and demonstrate their assembly is coordinated with dramatic, nuclear membrane blebbing in oocytes. Our ultrastructural analyses reveal distinct changes in the endoplasmic reticulum, and the first evidence for the assembly of stacked annulate lamellae in Caenorhabditis. We further show several nucleoporins are required for the complete assembly of RNP granules, and a disruption in RNP granule assembly coupled with a low frequency of nuclear blebbing in arrested oocytes negatively impacts embryonic viability. Our observations support a model where nuclear membrane blebbing is required to increase the trafficking of nucleoporins to the cell cortex in stressed or meiotically arrested cells and to facilitate the recruitment of RNA and protein components of RNPs into large complexes. These new insights may have general implications for better understanding how germ cells preserve their integrity when fertilization is delayed and how cells respond to stress.  相似文献   

18.
RNA molecules rarely function alone in cells. For most RNAs, their function requires formation of various ribonucleoprotein (RNP) complexes. For example, mRNP composition can determine mRNA localization, translational repression, level of translation or mRNA stability. RNPs are usually studied by biochemical methods. However, biochemical approaches are unsuitable for some model systems, such as mammalian oocytes and early embryos, due to the small amounts that can be obtained for experimental analysis. In such cases, microscopic techniques are often used to learn about RNPs. Here, we present a review of immunostaining, fluorescence in situ hybridization with subcellular resolution and a combination of both, with emphasis on the mouse oocyte and early embryos models. Application of these techniques to whole-mount fixed oocytes and early embryos can provide information about RNP composition and localization with three-dimensional resolution.  相似文献   

19.
20.
Messenger RNA (mRNA) export involves the unidirectional passage of ribonucleoprotein particles (RNPs) through nuclear pore complexes (NPCs), presumably driven by the ATP-dependent activity of the DEAD-box protein Dbp5. Here we report that Dbp5 functions as an RNP remodeling protein to displace the RNA-binding protein Nab2 from RNA. Strikingly, the ADP-bound form of Dbp5 and not ATP hydrolysis is required for RNP remodeling. In vivo studies with nab2 and dbp5 mutants show that a Nab2-bound mRNP is a physiological Dbp5 target. We propose that Dbp5 functions as a nucleotide-dependent switch to control mRNA export efficiency and release the mRNP from the NPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号