首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The viable fraction of immobilized cells in a bioreactor may be critical in predicting long-term or steady-state reactor performance. The assumption of near 100% viable cells in a bioreactor may not be valid for portions of immobilized cell reactors (ICRs) characterized by conditions resulting in appreciable death rates. A mathematical model of an adsorbed cell type ICR is presented in which a steady-state viable cell fraction is predicted, based on the assumptions of no cell accumulation in the reactor and a random loss of cells from the reactor. Data on cell death rates, cell growth rates, and productivity rates as functions of temperature, substrate, and ethanol concentration for the lactose utilizing yeast K. fragillis were incorporated into this model. The steady-state reactor viable cell fraction as predicted by this model is a strong function of both temperature and ethanol concentration. For example, a stable 20% viable fraction of the immobilized cells is predicted in ICR locations experiencing continuous conditions of either 30 g/L ethanol at 40 degrees C, or 95 g/L ethanol at 25 degrees C. Steady-state ICR "plug flow" concentration profiles and column productivities are predicted at three operating temperatures, 20, 30, and 40 degrees C using two different models for ethanol inhibition of productivity. These profiles suggest that the reactor operating temperature should be low if higher outlet ethanol concentrations are desired. Three reactor design strategies are presented to maximize the viable cell fraction and improve long-term ethanol productivity in ICR's: (1) reducing outlet ethanol concentrations, (2) rotating segments of an ICR between high and low ethanol environments, and (3) simultaneous removal of the ethanol produced from the reactor as it is formed.  相似文献   

2.
Schizosaccharomyces pombe was cultivated in a medium of glucose (10 g/L) malt extract (3 g/L), yeast extract (3 g/L), and bactopeptone (5 g/L) to form flocs. More than 95% of the cell population were flocculated. Variation in glucose concentration (from 10 to 100 g/L) did not affect flocculation. Yeast extract helped induce flocculation. Application of the immobilized yeast for the continuous production of ethanol was tested in a column reactor. Soft yeast flocs (50-200 mesh) underwent morphological changes to heavy particles (0.1-0.3 cm diameter) after continuously being fed with fresh substrates in the column. Productivity as high as 87 g EtOH L(-1) h(-1) was obtained when a 150 g/L glucose medium was fed. The performance of this yeast reactor was stable over a two-month period. The ethanol yield was 97% of the theoretical maximum based upon glucose consumed.  相似文献   

3.
The simultaneous separation of volatile fermentation products from product-inhibited fermentations can greatly increase the productivity of a bioreactor by reducing the product concentration in the bioreactor, as well as concentrating the product in an output stream free of cells, substrate, or other feed impurities. The Immobilized Cell Reactor-Separator (ICRS) consists of two column reactors: a cocurrent gas-liquid "enricher" followed by a countercurrent "stripper" The columns are four-phase tubular reactors consisting of (1) an inert gas phase, (2) the liquid fermentation broth, (3) the solid column internal packing, and (4) the immobilized biological catalyst or cells. The application of the ICRS to the ethanol-from-whey-lactose fermentation system has been investigated. Operation in the liquid continuous or bubble flow regime allows a high liquid holdup in the reactor and consequent long and controllable liquid residence time but results in a high gas phase pressure drop over the length of the reactor and low gas flow rates. Operation in the gas continuous regime gives high gas flow rates and low pressure drop but also results in short liquid residence time and incomplete column wetting at low liquid loading rates using conventional gas-liquid column packings. Using cells absorbed to conventional ceramic column packing (0.25-in. Intalox saddles), it was found that a good reaction could be obtained in the liquid continuous mode, but little separation, while in the gas continuous mode there was little reaction but good separation. Using cells sorbed to an absorbant matrix allowed operation in the gas continuous regime with a liquid holdup of up to 30% of the total reactor volume. Good reaction rates and product separation were obtained using this matrix. High reaction rates were obtained due to high density cell loading in the reactor. A dry cell density of up to 92 g/L reactor was obtained in the enricher. The enricher ethanol productivity ranged from 50 to 160 g/L h while the stripper productivity varied from 0 to 32 g/L h at different feed rates and concentrations. A separation efficiency of as high as 98% was obtained from the system.  相似文献   

4.
Summary In ethanol production with immobilized yeast a major problem is the provision of nutrients to these highly concentrated cells. O2 being one of the nutrients of utmost importance to yeast cells, was fed into a column packed with beads with a cell loading of more than 40 g/l. Since addition of large volume of air or O2 to a cylindrical column reactor would aggravate the problems of pressure build up and channelling caused by the evolving CO2 gas, a tapered-column reactor and pulsed flow of oxygen gas was used. The supplement of O2 gas to the tapered column increased the productivity from 21.1 g ethanol x (l gel x h)-1 to 26.7 g x (l gel x h)-1, when the ethanol concentration at the outlet was about 80 g/l. The yield coefficient of ethanol was also increased from 0.41 g ethanol/g glucose to 0.43 after O2 supplement was started. The effects of frequency and duration of O2 supplement were also determined.  相似文献   

5.
Ethanol fermentation by immobilized Saccharomyces cerevisiae cells in magnetic particles was successfully carried out in a magnetically stabilized fluidized bed reactor (MSFBR). These immobilized magnetic particles solidified in a 2 % CaCl(2) solution were stable and had high ethanol fermentation activity. The performance of ethanol fermentation of glucose in the MSFBR was affected by initial particle loading rate, feed sugar concentration and dilution rate. The ethanol theoretical yield, productivity and concentration reached 95.3%, 26.7 g/L h and 66 g/L, respectively, at a particle loading rate of 41% and a feed dilution rate of 0.4 h(-1) with a glucose concentration of 150 g/L when the magnetic field intensity was kept in the range of 85-120 Oe. In order to use this developed MSFBR system for ethanol production from cheap raw materials, cane molasses was used as the main fermentation substrate for continuous ethanol fermentation with the immobilized S. cerevisiae cells in the reactor system. Molasses gave comparative ethanol productivity in comparison with glucose in the MSFBR, and the higher ethanol production was observed in the MSFBR than in a fluidized bed reactor (FBR) without a magnetic field.  相似文献   

6.
In the U.S., forest and crop residues contain enough glucose and xylose to supply 10 times the country's usage of ethanol and ethylene, but an efficient fermentation scheme is lacking,(1,2,3) To develop a strategy for process design, specific ethanol productivities and yields of Pachysolen tannophilus NRRL Y-2460 and Saccharomyces cerevisiae NRRL Y-2235 were compared. Batch cultures and continuous stirred reactors (CSTR) loaded with immobilized cells were fed glucose and xylose. As expected from previous reports, Y-2235 fermented glucose but not xylose. Y-2460 consumed both sugars but fermented glucose inefficiently relative to Y-2235, and it suffered a diauxic lag lasting 10-20 h when given a sugar mixture. Immobilized Y-2235 exhibited increasing productivity but constant yield with in creasing glucose concentration. In contrast, Y-2460 exhibited an optimum productivity at 30-40 g/L xylose and a declining yield with increasing xylose concentration. Immobilized Y-2235 tolerated more than 100 g/L ethanol while the productivity and yield of Y-2460 fell by 80 and 58%, respectively, as ethanol reached 50 g/L. A 38.8-g/L ethanol stream could be produced as 103 g/L xylose was continuously fed to Y-2460. If it was blended with a 274 g/L glucose stream to give a composite of 23.7 g/L ethanol and 107 g/L glucose, Y-2235 could en rich the ethanol to 75 g/L. Taken together these results suggest use of a two-stage continuous reactor for pro cessing xylose and glucose from lignocellulose. An immobilized Y-2460 CSTR (or cascade) would convert the hemicellulose hydrolyzate. Then downstream, an immobilized Y-2235 plug flow reactor would enrich the hemicellulose-derived ethanol to more than 70 g/L upon addition of cellulose hydrolyzate.  相似文献   

7.
Summary The rate of continuous alcohol fermentation by a mixture of free and immobilized yeast cells was found to be higher in a horizontal flow channel reactor than in a vertical column reactor under the same operational conditions. This higher fermentation rate in the horizontal reactor was attributed to accumulation of yeast cells in the reactor by free sedimentation and incomplete mixing in the direction of liquid flow. It was estimated that most of the ethanol in the horizontal bioreactor was produced by free cells in suspended or settled states. The relatively low ethanol production by the immobilized yeast cells on the ethanol production was considered due to higher product inhibition of fermentation rate within the support.  相似文献   

8.
The thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3 was immobilized in calcium alginate and used in a continuous flow bioreactor to produce ethanol from molasses at 45?°C. The molasses was diluted to yield a number of final sugar concentrations and the effect of molasses sugar concentration on ethanol production by the continuous system was examined. Although maximum ethanol concentrations were obtained using sugar concentrations of 140?g/l, within 10?h of introducing the feed to the column bioreactors, those ethanol concentrations subsequently decreased to lower levels over a 48?h period. Examination of viable yeast cell number within the immobilization matrix indicated a dramatic reduction over this time period. At lower molasses concentrations, ethanol production by the continuous flow system remained relatively constant over this time period. In addition, the effect of residence time on ethanol production by the continuous flow bioreactor was examined at a fixed molasses sugar concentration (120?g/l) and a residence time of 0.66?h was found to be optimal on the basis of volumetric productivity. Efficiencies of the continuous flow bioreactor configuration used in these studies ranged from 31–76%.  相似文献   

9.
Conversion of paper sludge to ethanol was investigated with the objective of operating under conditions approaching those expected of an industrial process. Major components of the bleached Kraft sludge studied were glucan (62 wt.%, dry basis), xylan (11.5%), and minerals (17%). Complete recovery of glucose during compositional analysis required two acid hydrolysis treatments rather than one. To avoid the difficulty of mixing unreacted paper sludge, a semicontinuous solids-fed laboratory bioreactor system was developed. The system featured feeding at 12-h intervals, a residence time of 4 days, and cellulase loading of 15 to 20 FPU/g cellulose. Sludge was converted to ethanol using simultaneous saccharification and fermentation (SSF) featuring a -glucosidase-supplemented commercial cellulase preparation and glucose fermentation by Saccharomyces cerevisiea. SSF was carried out for a period of 4 months in a first-generation system, resulting in an average ethanol concentration of 35 g/L. However, steady state was not achieved and operational difficulties were encountered. These difficulties were avoided in a retrofitted design that was operated for two 1-month runs, achieving steady state with good material balance closure. Run 1 with the retrofitted reactor produced 50 g/L ethanol at a cellulose conversion of 74%. Run 2 produced 42 g/L ethanol at a conversion of 92%. For run 2, the ethanol yield was 0.466 g ethanol/g glucose equivalent fermented and >94% of the xylan fed to the reactor was solubilized to a mixture of xylan oligomers and xylose.  相似文献   

10.
Fermentation of sugar by Saccharomyces cerevisiae, for production of ethanol in an immobilized cell reactor (ICR) was successfully carried out to improve the performance of the fermentation process. The fermentation set-up was comprised of a column packed with beads of immobilized cells. The immobilization of S. cerevisiae was simply performed by the enriched cells cultured media harvested at exponential growth phase. The fixed cell loaded ICR was carried out at initial stage of operation and the cell was entrapped by calcium alginate. The production of ethanol was steady after 24 h of operation. The concentration of ethanol was affected by the media flow rates and residence time distribution from 2 to 7 h. In addition, batch fermentation was carried out with 50 g/l glucose concentration. Subsequently, the ethanol productions and the reactor productivities of batch fermentation and immobilized cells were compared. In batch fermentation, sugar consumption and ethanol production obtained were 99.6% and 12.5% v/v after 27 h while in the ICR, 88.2% and 16.7% v/v were obtained with 6 h retention time. Nearly 5% ethanol production was achieved with high glucose concentration (150 g/l) at 6 h retention time. A yield of 38% was obtained with 150 g/l glucose. The yield was improved approximately 27% on ICR and a 24 h fermentation time was reduced to 7 h. The cell growth rate was based on the Monod rate equation. The kinetic constants (K(s) and mu(m)) of batch fermentation were 2.3 g/l and 0.35 g/lh, respectively. The maximum yield of biomass on substrate (Y(X-S)) and the maximum yield of product on substrate (Y(P-S)) in batch fermentations were 50.8% and 31.2% respectively. Productivity of the ICR were 1.3, 2.3, and 2.8 g/lh for 25, 35, 50 g/l of glucose concentration, respectively. The productivity of ethanol in batch fermentation with 50 g/l glucose was calculated as 0.29 g/lh. Maximum production of ethanol in ICR when compared to batch reactor has shown to increase approximately 10-fold. The performance of the two reactors was compared and a respective rate model was proposed. The present research has shown that high sugar concentration (150 g/l) in the ICR column was successfully converted to ethanol. The achieved results in ICR with high substrate concentration are promising for scale up operation. The proposed model can be used to design a lager scale ICR column for production of high ethanol concentration.  相似文献   

11.
Aspergillus niger hyphae were found to grow with unliquefied potato starch under aerobic conditions, but did not grow under anaerobic conditions. The raw culture ofA. niger catalyzed saccharification of potato starch to glucose, producing approximately 12 g glucose/L/day/ The extracellular enzyme activity was decreased in proportion to incubation time, and approximately 64% of initial activity was maintained after 3 days. At 50°C,A. niger hyphae growth stopped, while the extracellular enzyme activity peaked. On the basis of theA. niger growth property and enzyme activity, we designed a serial bioreactor system composed of four different reactors. Fungal hyphae were cultivated in reactor I at 30°C, uniquefied starch was saccharified to glycose by a fungal hyphae culture in reactors II and III at 50°C, and glucose was fermented to ethanol bySaccharomyces cerevisiae in reactor IV. The total glucose produced by fungal hyphae in reactor I and saccharification in reactor II was about 42 g/L/day. Ethanol production in reactor IV was approximately 22 g/L/day, which corresponds to about 79% of the theoretical maximum produced from 55 g starch/L/day.  相似文献   

12.
Acetone-butanol-ethanol (ABE) fermentation was performed continuously in an immobilized cell, trickle bed reactor for 54 days without, degeneration by maintaining the pH above 4.3. Column clogging was minimized by structured packing of immobilization matrix. The reactor contained two serial glass columns packed with Clostridium acetobutylicum adsorbed on 12- and 20-in.-long polyester sponge strips at total flow rates between 38 and 98.7 mL/h. Cells were initially grown at 20 g/L glucose resulting in low butanol (1.15 g/L) production encouraging cell growth. After the initial cell growth phase a higher glucose concentration (38.7 g/L) improved solvent yield from 13.2 to 24.1 wt%, and butanol production rate was the best. Further improvement in solvent yield and butanol production rate was not observed with 60 g/L of glucose. However, when the fresh nutrient supply was limited to only the first column, solvent yield increased to 27.3 wt% and butanol selectivity was improved to 0.592 as compared to 0.541 when fresh feed was fed to both columns. The highest butanol concentration of 5.2 g/L occurred at 55% conversion of the feed with 60 g/L glucose. Liquid product yield of immobilized cells approached the theoretical value reported in the literature. Glucose and product concentration profiles along the column showed that the columns can be divided into production and inhibition regions. The length of each zone was dependent upon the feed glucose concentration and feed pattern. Unlike batch fermentation, there was no clear distinction between acid and solvent production regions. The pH dropped, from 6.18-6.43 to 4.50-4.90 in the first inch of the reactor. The pH dropped further to 4.36-4.65 by the exit of the column. The results indicate that the strategy for long term stable operation with high solvent yield requires a structured packing of biologically stable porous matrix such as polyester sponge, a pH maintenance above 4.3, glucose concentrations up to 60 g/L and nutrient supply only to the inlet of the reactor.  相似文献   

13.
Zymomonas mobilis immobilized on microporous ion exchange resins has previously been shown to allow the attainment of high ethanol productivities in packed-bed bioreactors. The formation of bacterial filaments after several days of continuous operation, however, had resulted in excessive pressure increases across the reactor bed. The present work examines techniques for controlling filament formation by Z. mobilis in two reactor sizes (161 mL and 7.85 L) and a feed glucose concentration of 100 g/L. By controlling the fermentation temperature at 20-25 degrees C it has been possible to eliminate filament formation by Z. mobilis and to operate the larger bioreactor for 232 h with an ethanol productivity of 50 g/L h (based on total reactor volume). The rate of ethanol production has been shown to be very sensitive to temperature in the range 20-30 degrees C, and it is likely that slightly higher temperatures than those used in this study will improve ethanol productivity while still permitting long-term operation.  相似文献   

14.
Amongst four carriers used, rice-straw was found to be superior in terms of ethanol production. The maximum productivity (17.84 gl−1 h−1) corresponded to a dilution rate of 0.39 h−1, the ethanol concentration being 45.80 gl−1. A multistage rhomboidal bioreactor was found to partially overcome the disruption effect caused by the generation of a large volume of carbon dioxide in the column. Increases in productivity of about 12.55% and 3.6%, respectively, were achieved using rhomboidal and tapered bioreactors as compared to the cylindrical bioreactor. It was observed that the generation time of cells, in both the immobilized and free states, was around 2.5 h. The ethanol yield (Yp/s) in the lower part of the reactor was less in comparison with other zones, where the substrate utilization efficiency was relatively higher.  相似文献   

15.
Microporous-membrane-based extractive product recovery in product-inhibited fermentations allows in situ recovery of inhibitory products in a nondispersive fashion. A tubular bioreactor with continuous strands of hydrophobic microporous hollow fibers having extracting solvent flowing in fiber lumen was utilized for yeast fermentation of glucose to ethanol. Yeast was effectively immobilized on the shell side in small lengths of chopped microporous hyrophilic hollow fibers. The beneficial effects of in situ dispersion-free solvent ex (oleyl alcohol and dibutyl phthalate) were demonstrated for a 300 g/L glucose substrate feed. Outlet glucose concentration dropped drastically from 123 to 41 g/L as solvent/ substrate flow ratio was increased from 0 to 3 at 9 mL/h of substrate flow rate with oleyl alcohol as extracting solvent. The significant productivity increase with in situ solvent extraction became more evident as solvent/ substrate flow ratio increased. A model of the locally integrated extractive bioreactor describes the observed fermentor performance quite well.  相似文献   

16.
Summary Hansenula polymorpha was cultivated in a bubble column loop bioreactor employing ethanol and/or glucose as substrates. By varying the substrate concentration, the cultivations were carried out in non-limited, substrate limited and oxygen transfer limited growth ranges. The influence of the transitions from one range to another on reactor performance (OTR,k L a, a) and cell productivity () were investigated. When employing ethanol as a substrate, the concentration considerably influences the fluid dynamics, mass transfer phenomena and cell productivity. When employing glucose as a substrate, glucose repression occurs. At high glucose concentrations no transition into the oxygen transfer limited growth is possible. The ethanol produced during the glucose repression influences the fluid dynamics, mass transfer phenomena and productivity. With decreasing glucose concentration the glucose repression can be gradually eliminated.  相似文献   

17.
The effects of ethanol on reactor performance were studied in a small, 5-cm packed height, "differential" type immobilized cell reactor. Lactose utilizing yeast cells, Kluyveromyces fragilis, were absorbed to a porous adsorbant sponge matrix in a gas continuous reactor. Step changes in the feed ethanol concentration to the column (10-130 g/L) were used to test the reactor response over extended periods of time (about 30-50 h per dosage level) followed by a return to basal zero inlet ethanol feed. Effluent cell density and effluent cell viability were measured at intervals. An inhibitory response in ethanol productivity to feed dosage ethanol levels above 20 g/L was detected almost immediately, with a near steady state response noted within 2.5 h of initiating the dosage. Feed ethanol levels above 50 g/L resulted in a subsequent gradual decrease in reactor productivity over time, which was associated with a decrease in the fraction of viable shed cells in the reactor effluent. The reactor response to a step removal of the ethanol inhibition was also monitored. Quick and complete rebounding of the fermentation rate to the original basal rate was noted following dosage concentrations of under 50 g/L ethanol. Recovery rates slowed following ethanol dosage levels above 50 g/L. Viable shed cell density improved overtime during the slow recovery periods. Growth rates (as determined by shed cell density) were more strongly inhibited than productivity. Growth responded more slowly to changes in ethanol environment as growth rates at 30 h fell to about 40% of the rates measured 7.5 h after initiation of a dosage level. It is concluded that ethanol contributions to cell injury and death (and consequent ICR performance degradation) may be more important than ethanol inhibition of productivity rates in the long-term operation of immobilized cell reactors at ethanol concentrations over 50 g/L.  相似文献   

18.
We compared carbon flow under constant low-substrate conditions (below 20 microM glucose in situ) in laboratory-scale glucose-fed methanogenic bioreactors containing two very different microbial communities that removed chemical oxygen demand at similar rates. One community contained approximately equal proportions of spiral and cocci morphologies, while the other community was dominated by cocci. In the former bioreactor, over 50% of the cloned SSU rRNA genes and the most common SSU rDNA terminal restriction fragment corresponded to Spirochaetaceae-related sequences, while in the latter bioreactor over 50% of the cloned SSU rRNA genes and the most common SSU rDNA terminal restriction fragment corresponded to Streptococcus-related sequences. Carbon flow was assessed by measuring 14C-labeled metabolites derived from a feeding of [U-14C]glucose that did not alter the concentration of glucose in the bioreactors. Acetate and ethanol were detected in the Spirochaetaceae-dominated reactor, whereas acetate and propionate were detected in the Streptococcus-dominated reactor. A spirochete isolated from a Spirochaetaceae-dominated reactor fermented glucose to acetate, ethanol, and small amounts of lactate. Maximum substrate utilization assays carried out on fluid from the same reactor indicated that acetate and ethanol were rapidly utilized by this community. These data indicate that an acetate- and ethanol-based food chain was present in the Spirochaetaceae-dominated bioreactor, while the typical acetate- and propionate-based food chain was prevalent in the Streptococcus-dominated bioreactor.  相似文献   

19.
An anaerobic thermophilic coculture consisting of a heterofermentative bacterium (Clostridium thermolacticum) and a homoacetogen (Moorella thermoautotrophica) was developed for acetic acid production from lactose and milk permeate. The fermentation kinetics with free cells in conventional fermentors and immobilized cells in a recycle batch fibrous-bed bioreactor were studied. The optimal conditions for the cocultured fermentation were found to be 58 degrees C and pH 6.4. In the free-cell fermentation, C. thermolacticum converted lactose to acetate, ethanol, lactate, H(2) and CO(2), and the homoacetogen then converted lactate, H(2), and CO(2) to acetate. The overall acetate yield from lactose ranged from 0.46 to 0.65 g/g lactose fermented, depending on the fermentation conditions. In contrast, no ethanol was produced in the immobilized-cell fermentation, and the overall acetate yield from lactose increased to 0.8-0.96 g/g lactose fermented. The fibrous-bed bioreactor also gave a higher final acetate concentration (up to 25. 5 g/L) and reactor productivity (0.18-0.54 g/L/h) as compared to those from the free-cell fermentation (final acetate concentration, 15 g/L; productivity, 0.06-0.08 g/L/h). The superior performance of the fibrous-bed bioreactor was attributed to the high cell density (20 g/L) immobilized in the fibrous-bed and adaptation of C. thermolacticum cells to tolerate a higher acetate concentration. The effects of yeast extract and trypticase as nutrient supplements on the fermentation were also studied. For the free-cell fermentation, nutrient supplementation was necessary for the bacteria to grow in milk permeate. For the immobilized-cell fermentation, plain milk permeate gave a high acetate yield (0.96 g/g), although the reactor productivity was lower than those with nutrient supplementation. Balanced growth and fermentation activities between the two bacteria in the coculture are important to the quantitative conversion of lactose to acetic acid. Lactate and hydrogen produced by C. thermolacticum must be timely converted to acetic acid by the homoacetogen to avoid inhibition by these metabolites.  相似文献   

20.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号