首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 955 毫秒
1.
Seminalplasmin (SPLN), a 47-residue peptide present in bovine seminal plasma, is one of the few proteins isolated from mammalian sources having potent antibacterial activity. SPLN also interacts with sperm acrosomal and plasma membranes. On the basis of analysis of the primary structure of SPLN with respect to its relative hydrophobicity and hydrophilicity, a region comprising of 13-amino acids, Pro-Lys-Leu-Leu-Glu-Thr-Phe-Leu-Ser-Lys-Trp-Ile-Gly, has been delineated. It is demonstrated that a synthetic peptide corresponding to this 13-residue region inhibits growth of Escherichia coli like SPLN and also has the ability to lyse red blood cells.  相似文献   

2.
Abstract

Seminalplasmin (SPLN) is a 47-residue peptide (SDEKASPDKHHRFSLSRYAKLANR LANPKLLETFLSKWIGDRGNRSV) from bovine seminal plasma. It has broad spectrum antimicrobial activity, without any hemolytic activity. The 28–40 segment of SPLN with the sequence PKLLETFLSKWIG, designated as SPF, is the most hydrophobic stretch of SPLN and primarily responsible for the membrane-perturbing activity of SPLN. It was reported that SPF has a helical structure and the interchange of E5 and K10 residues disrupted the helical structure. The present paper reports a possible mechanism of disruption of the helical structure of SPF peptide during the interchange of E5 and K10 residues. The result is based on simulated annealing and molecular dynamics simulation studies on SPF and its four analogues with K10E, K10D, E5K, and E5K & K10E substitutions. It showed that K10 residue has a critical role in maintaining the highest helical content and the positions of charged residues are also very important for maintaining the helical structure of the SPF peptide. Formation of some new long-range hydrogen bonds and the rupture of some shortrange hydrogen bonds involving the tenth residue led to the disruption of helical structure of SPF peptide when E5 and K10 residues are interchanged.  相似文献   

3.
Haney EF  Nazmi K  Lau F  Bolscher JG  Vogel HJ 《Biochimie》2009,91(1):141-154
Human lactoferrampin is a novel antimicrobial peptide found in the cationic N-terminal lobe of the iron-binding human lactoferrin protein. The amino acid sequence that directly corresponds to the previously characterized bovine lactoferrin-derived lactoferrampin peptide is inactive on its own (WNLLRQAQEKFGKDKSP, residues 269-285). However, by increasing the net positive charge near the C-terminal end of human lactoferrampin, a significant increase in its antibacterial and Candidacidal activity was obtained. Conversely, the addition of an N-terminal helix cap (sequence DAI) did not have any appreciable effect on the antibacterial or antifungal activity of human lactoferrampin peptides, even though it markedly influenced that of bovine lactoferrampin. The solution structure of five human lactoferrampin variants was determined in SDS micelles and all of the structures display a well-defined amphipathic N-terminal helix and a flexible cationic C-terminus. Differential scanning calorimetry studies indicate that this peptide is capable of inserting into the hydrophobic core of a membrane, while fluorescence spectroscopy results suggest that a hydrophobic patch encompassing the single Trp and Phe residues as well as Leu, Ile and Ala side chains mediates the interaction between the peptide and the hydrophobic core of a phospholipid bilayer.  相似文献   

4.
牛乳铁蛋白素是牛乳铁蛋白经胃蛋白酶水解后释放出来的一段小肽,是牛乳铁蛋白的活性中心。通过对不同动物来源乳铁蛋白素活性的研究发现牛乳铁蛋白素的抗菌活性最强。进一步的丙氨酸突变实验研究表明,在牛乳铁蛋白素活性最强的15个氨基酸序列中,色氨酸在抗菌过程中起着重要作用。牛乳铁蛋白素正是因为含有两个色氨酸,其活性才会比只含有一个色氨酸的其它来源的乳铁蛋白素活性要高。很多实验室围绕着牛乳铁蛋白素中的色氨酸、碱性氨基酸和其他一些芳香族氨基酸展开了一系列的突变研究,本文综述了这些研究及在氨基酸改变后活性的变化,为以后研究及开发牛乳铁蛋白素提供理论基础。  相似文献   

5.
Bovine lactoferricin is a 25-residue antibacterial peptide isolated after gastric cleavage of the iron transporting protein lactoferrin. A 15-residue fragment, FKCRRWQWRMKKLGA of this peptide sustains most of the antibacterial activity. In this truncated sequence, the two Trp residues are found to be essential for antibacterial activity. The anchoring properties of Trp, as have been observed in membrane proteins, are believed to be important for the interaction of Trp containing antibacterial peptides with bacterial cell membranes. We have investigated the molecular properties which make Trp important for the antibacterial activity of the 15-residue peptide by replacing Trp with natural and unnatural aromatic amino acids. This series of peptides was tested for antibacterial activity against Echerichia coli and Staphylococcus aureus. We found that neither the hydrogen bonding ability nor the amphipathicity of the indole system are essential properties for the effect of Trp on the antibacterial activity of the peptides. Replacement of Trp with residues containing aromatic hydrocarbon side chains gave the most active peptides. We propose that aromatic hydrocarbon residues are able to position themselves deeper into the bacterial cell membrane, making the peptide more efficient in disrupting the bacterial cell membrane. From our results the size, shape and aromatic character of Trp seem to be the most important features for the activity of this class of Trp containing antibacterial peptides.  相似文献   

6.
Seminalplasmin     
The importance of seminal plasma in fertilization was appreciated as early as 1677 and would thus hardly seem a source for the search of antibacterial agents. The observation that seminal plasma had the ability to inhibit the growth of microorganisms in 1940 led to a systematic search for molecules possessing antimicrobial activity in addition to factors that might have a role in reproductive physiology. Extensive investigations led to the discovery in bovine seminal fluid of a 47-residue peptide, possessing potent antimicrobial activity as well as calcium transport modulatory properties in bovine sperm. We describe in this article the two, apparently unrelated, biological activities of this peptide.  相似文献   

7.
G Mignogna  M Simmaco  G Kreil    D Barra 《The EMBO journal》1993,12(12):4829-4832
A family of bombinin-related peptides is present in the skin of Bombina variegata. These peptides contain 27 residues with Gly as N-terminus and display antimicrobial activity. From sequence analysis of the cDNAs encoding for the corresponding peptide precursors, the presence of a novel 20-residue peptide with Ile as N-terminus was predicted. We have now purified a family of hydrophobic peptides named H1-H5, whose sequences correspond to the predicted peptide with some variability in positions 1, 2 and 8. In particular, H3-H5 contain a D-alloisoleucine residue in the second position. All these peptides display antibacterial and haemolytic activity.  相似文献   

8.
This review focuses on important structural features affecting the antimicrobial activity of 15-residue derivatives of lactoferricins. Our investigations are based on an alanine-scan of a 15-residue bovine lactoferricin derivative that revealed the absolute necessity of two tryptophan residues for antimicrobial activity. This "tryptophan-effect" was further explored in homologous derivatives of human, caprine, and porcine lactoferricins by the incorporation of one additional tryptophan residue, and by increasing the content of tryptophan in the bovine derivative to five residues. Most of the resulting peptides display a substantial increase in antimicrobial activity. To identify which molecular properties make tryptophan so effective, a series of bovine lactoferricin derivatives were prepared containing non-encoded unnatural aromatic amino acids, which represented various aspects of the physicochemical nature of tryptophan. The results clearly demonstrate that tryptophan is not unique since most of the modified peptides were of higher antimicrobial potency than the native peptide. The size and three-dimensional shape of the inserted "super-tryptophans" are the most important determinants for the high antimicrobial activity of the modified peptides. This review also describes the use of a "soft-modeling" approach in order to identify important structural parameters affecting the antimicrobial activity of modified 15-residue murine lactoferricin derivatives. This QSAR-study revealed that the net charge, charge asymmetry, and micelle affinity of the peptides were the most important structural parameters affecting their antimicrobial activity.  相似文献   

9.
Jang WS  Kim CH  Kang MS  Chae HJ  Son SM  Seo SJ  Lee IH 《Peptides》2005,26(12):2360-2367
Halocidin is an antimicrobial peptide, which is isolated from hemocytes from the tunicate, Halocynthia aurantium. In this study, we cloned the full-length cDNA of halocidin from pharyngeal tissue, using a combination of RT-PCR and 5′-RACE-PCR. The observed cDNA structure indicated that halocidin is synthesized as a 10.37 kDa prepropeptide. Based on the cDNA structure and the known amino acid sequence of the mature peptide, it was concluded that the precursor of halocidin contains a 21-residue signal peptide, followed by the 18 residues of the mature peptide, and a 56-residue anionic C-terminal extension, which is removed later on in the process. The signal sequence of halocidin exhibited a high degree of similarity with the corresponding portion of the Ci-META4 protein, which had been previously discovered in the coelomic cells of another tunicate, Ciona intestinalis, and is considered to play a role in metamorphosis. However, in several respects, the cDNA structure of Ci-META4 suggested that it might constitute a precursor for an antimicrobial peptide. Thus, we prepared a synthetic peptide, which was comprised of 19 N-terminal amino acid residues in the predicted mature region of Ci-META4, and tested it with regard to its antimicrobial activity. As a result, we confirmed that the synthetic peptide exhibited potent antimicrobial activity against Gram (+) and (−) bacteria, while evidencing no hemolytic activity toward human erythrocytes.  相似文献   

10.
Human cationic antimicrobial protein (CAP37) is a neutrophil granule protein with monocyte chemotactic and antibacterial activity. A CAP37 cDNA clone of 899 bp was isolated from an HL-60 cDNA library using degenerate oligonucleotide probes based on partial N-terminal sequence of the CAP37 protein. The cDNA sequence predicts an open reading frame of 753 bp encoding a protein of 251 amino acids. A 26-residue eukaryotic signal peptide and a potential 7 amino acid pro-peptide are present at the N-terminus of the protein. The cDNA sequence also predicts three N-linked glycosylation attachment sites and eight intramolecular cysteines. The deduced amino acid sequence of CAP37 shows 44, 42, and 32% homology at the amino acid level to neutrophil elastase, myeloblastin, and cathepsin G, respectively, suggesting that CAP37 is a member of the serine protease gene family. CAP37 does not possess serine protease activity probably due to mutations in two of three residues in the catalytic triad of the "charge relay system." Whereas CAP37 is expressed in undifferentiated HL-60 cells no message is detected in mature neutrophils.  相似文献   

11.
The biological activities of synthetic retro and diastereo analogs of PKLLKTFLSKWIG (SPFK), a 13-residue peptide with antimicrobial and hemolytic activities, have been investigated. Retro peptides with C-terminal acid and amide exhibited antibacterial activities comparable with those of SPFK. Their hemolytic activities were, however, only marginally lower. The diastereo analog with C-terminal acid was not antibacterial and was weakly hemolytic. Amidation of this analog could restore antibacterial activity. Both retro analogs were unordered in aqueous medium but had a propensity for a helical structure in trifluoroethanol. However, diastereo analogs were unordered in both aqueous medium and trifluoroethanol. Thus, reversing the sequence in a short amphiphilic peptide may not always result in the selective loss of biological activity such as hemolytic activity. Also, introduction of enantiomeric amino acids in a short peptide to generate a diastereomer may result in loss of structure as well as antimicrobial and hemolytic activities, unless compensated by an increase in positive charges.  相似文献   

12.
A 30-residue antimicrobial peptide Ar-AMP was isolated from the seeds of amaranth Amaranthus retroflexus L. essentially by a single step procedure using reversed-phase HPLC, and its in vitro biological activities were studied. The complete amino acid sequence of Ar-AMP was determined by Edman degradation in combination with mass spectrometric methods. In addition, the cDNA encoding Ar-AMP was obtained and sequenced. The cDNA encodes a precursor protein consisting of the N-terminal putative signal sequence of 25 amino acids, a mature peptide of 30 amino acids and a 34-residue long C-terminal region cleaved during post-translational processing. According to sequence similarity the Ar-AMP belongs to the hevein-like family of antimicrobial peptides with six cysteine residues. In spite of the fact that seeds were collected in 1967 and lost their germination capacity, Ar-AMP retained its biological activities. It effectively inhibited the growth of different fungi tested: Fusarium culmorium (Smith) Sacc., Helminthosporium sativum Pammel., King et Bakke, Alternaria consortiale Fr., and Botrytis cinerea Pers., caused morphological changes in Rhizoctonia solani Kühn at micromolar concentrations and protected barley seedlings from H. sativum infection.  相似文献   

13.
A short α-helical antimicrobial peptide with antibacterial selectivity   总被引:2,自引:0,他引:2  
A 13-residue alpha-helical peptide (K6L5WP), designed from Leu6-->Pro substitution of a hemolytic alpha-helical peptide (K6L6W), exhibited strong antibacterial activity (MIC: 2 to approximately 4 microM against three gram-positives and three gram-negatives) comparable to that of melittin but had no hemolytic activity. Tryptophan fluorescence studies indicated bacterial selectivity of K6L5WP is closely related to the selective interaction with negatively charged phospholipids on the surface of bacterial cells. These results suggested that the central Pro6 in K6L5WP plays an important role in its bacterial cell selectivity. In conclusion, K6L5WP with antibacterial selectivity may serve as an attractive candidate for the development of antimicrobial agents.  相似文献   

14.
Bacteriocin AS-48 is a 70-residue cyclic polypeptide from Enterococcus faecalis that shows a broad antimicrobial spectrum against both Gram-positive and Gram-negative bacteria. The structure of bacteriocin AS-48 consists of a globular arrangement of five helices with a high positive electrostatic potential in the region comprising helix 4, the turn linking helix 4 and 5, and the N-terminus of helix 5. This region has been considered to participate in its biological activity and in particular in membrane permeation. To understand the mechanism of the antibacterial activity of AS-48 and to discriminate the several mechanisms proposed, a simplified bacteriocin was designed consisting of 21 residues and containing the high positively charged region. A disulfide bridge was introduced at an appropriate position to stabilize the peptide and to conserve the helix-turn-helix arrangement in the parent molecule. According to (1)H and (13)C NMR data, the designed simplified bacteriocin fragment adopts a significant population of a native-like helical hairpin conformation in aqueous solution, which is further stabilized in 30% TFE. The designed peptide does not show any antibacterial activity, though it is shown to compete with the intact native bacteriocin AS-48. These results suggest that the mechanism of membrane disruption by bacteriocin is not as simple as being driven by a deposition of positively charged molecules on the plane of the bacterial membrane. Some other regions of the protein must be present such as, for instance, hydrophobic regions so as to enhance the accumulation of the peptide and favour membrane permeation.  相似文献   

15.
Temporins are a family of short antimicrobial peptides (8–17 residues) that mostly show potent activity against Gram-positive bacteria. Herein, we demonstrate that temporin-SHd, a 17-residue peptide with a net charge of +2 (FLPAALAGIGGILGKLFamide), expressed a broad spectrum of antimicrobial activity. This peptide displayed potent antibacterial activities against Gram-negative and Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus strains, as well as antiparasitic activity against promastigote and the intracellular stage (amastigote) of Leishmania infantum, at concentration not toxic for the macrophages. Temporin-SHd that is structured in a non-amphipathic α-helix in anionic membrane-mimetic environments, strongly and selectively perturbs anionic bilayer membranes by interacting with the polar head groups and acyl region of the phospholipids, with formation of regions of two coexisting phases: one phase rich in peptide and the other lipid-rich. The disruption of lipid packing within the bilayer may lead to the formation of transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. To our knowledge, Temporin-SHd represents the first known 17-residue long temporin expressing such broad spectrum of antimicrobial activity including members of the trypanosomatidae family. Additionally, since only a few shorter members (13 residues) of the temporin family are known to display antileishmanial activity (temporins-TA, -TB and -SHa), SHd is an interesting tool to analyze the antiparasitic mechanism of action of temporins.  相似文献   

16.
While natural antimicrobial peptides are potential therapeutic agents, their physicochemical properties and bioactivity generally need to be enhanced for clinical and commercial development. We have previously developed a cationic, amphipathic α-helical, 11-residue peptide (named herein GA-W2: FLGWLFKWASK-NH2) with potent antimicrobial and hemolytic activity, which was derived from a 24-residue, natural antimicrobial peptide isolated from frog skin. Here, we attempted to optimize peptide bioactivity by a rational approach to sequence modification. Seven analogues were generated from GA-W2, and their activities were compared with that of a 12-residue peptide, omiganan, which is being developed for clinical and commercial applications. Most of the modifications reported here improved antimicrobial activity. Among them, the GA-K4AL (FAKWAFKWLKK-NH2) peptide displayed the most potent antimicrobial activity with negligible hemolytic activity, superior to that of omiganan. The therapeutic index of GA-K4AL was improved more than 53- and more than 31-fold against Gram-negative and Gram-positive bacteria, respectively, compared to that of the starting peptide, GA-W2. Given its relatively shorter length and simpler amino acid composition, our sequence-optimized GA-K4AL peptide may thus be a potentially useful antimicrobial peptide agent.  相似文献   

17.
Kim CH  Lee JH  Kim I  Seo SJ  Son SM  Lee KY  Lee IH 《Molecules and cells》2004,17(2):262-266
A cecropin-like antimicrobial peptide, Gm cecropin, was purified from hemolymph of larvae of the wax moth, Galleria mellonella, immunized against E. coli, and its antibacterial activity was examined in a radial diffusion assay. The molecular mass of Gm cecropin was 4,160.69 Da by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis. The full-length cDNA of the Gm cecropin precursor was cloned by a combination of RT-PCR, based on the N-terminal sequence obtained by Edman degradation, and 5'-RACE-PCR. Analysis of the cDNA showed that cecropin is synthesized as a prepropeptide, with a putative 22-residue signal peptide, a 4-residue propeptide and a 39-residue mature peptide with a calculated mass of 4,344.18 Da the difference between the calculated and measured masses suggests that Gm cecropin is a 37-residue peptide generated by removal of the C-terminal residue and amidation.  相似文献   

18.
Apidaecins are 18–20-residue long proline-rich peptides expressed in insects as part of the innate immune system. They are very active against Gram-negative bacteria, especially Enterobacteriaceae. The C-terminal sequence PRPPHPRL is highly conserved, whereas the N-terminal region is variable. By replacing all 18 residues of apidaecin 1a and apidaecin 1b individually by alanine (Ala-scan), we have shown that single mutations in the C-terminal half of the peptides drastically reduced and mostly abolished the antibacterial activity against Escherichia coli. Conversely, substitutions in the N-terminal eight residues produced no, or only minor effects. The activity loss was correlated to the ability of apidaecin 1b and its mutants to enter Gram-negative bacteria, most likely because they no longer bind to a protein transporter. This assumed binding, however, was not inhibited by truncated apidaecin peptides added at tenfold higher concentrations. Interestingly, the antibacterial activity of full length apidaecin 1b was enhanced about four times by addition of a N-terminally truncated apidaecin peptide [11–18]-apidaecin 1b, as indicated by lower MIC-values against E. coli, although the short 5(6)-carboxyfluorescein-labeled peptide did not enter the bacteria. In contrast, the activity against the Gram-positive bacterium Micrococcus luteus was not located in the C-terminal sequence of apidaecins 1a and b, but depended mostly on the presence of all four basic residues.  相似文献   

19.
A template based on positional residue frequencies in the N-terminal stretch of natural alpha-helical antimicrobial peptides was used to prepare sequence patterns and to scan the Swiss-Prot Database, using the ScanProsite tool. This search identified a segment in pilosulin 1, a cytotoxic peptide from the venom of the jumper ant Myrmecia pilosula, as a potential novel antimicrobial peptide sequence. This segment, corresponding to the 20 N-terminal residues, was synthesized and its structural properties and biological activities were investigated. It showed a potent and broad spectrum antimicrobial activity including standard and multi-drug resistant gram-positive and gram-negative bacteria and Candida albicans, confirming the validity of the search method. A rational redesign approach resulting in four amino acid substitutions yielded a variant with improved antibacterial and significantly reduced hemolytic activity.  相似文献   

20.
The iron-binding protein lactoferrin is a multifunctional protein that has antibacterial, antifungal, antiviral, antitumour, anti-inflammatory, and immunoregulatory properties. All of these additional properties appear to be related to its highly basic N-terminal region. This part of the protein can be released in the stomach by pepsin cleavage at acid pH. The 25-residue antimicrobial peptide that is released is called lactoferricin. In this work, we review our knowledge about the structure of the peptide and attempt to relate this to its many functions. Microcalorimetry and fluorescence spectroscopy data regarding the interaction of the peptide with model membranes show that binding to net negatively charged bacterial and cancer cell membranes is preferred over neutral eukaryotic membranes. Binding of the peptide destabilizes the regular membrane bilayer structure. Residues that are of particular importance for the activity of lactoferricin are tryptophan and arginine. These two amino acids are also prevalent in "penetratins", which are regions of proteins or synthetic peptides that can spontaneously cross membranes and in short hexapeptide antimicrobial peptides derived through combinatorial chemistry. While the antimicrobial, antifungal, antitumour, and antiviral properties of lactoferricin can be related to the Trp/Arg-rich portion of the peptide, we suggest that the anti-inflammatory and immunomodulating properties are more related to a positively charged region of the molecule, which, like the alpha- and beta-defensins, may act as a chemokine. Few small peptides are involved in as wide a range of host defense functions as bovine and human lactoferricin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号