首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oncogenic receptor tyrosine kinase in leukemia.   总被引:2,自引:0,他引:2  
Growth, survival and differentiation of hematopoietic cells are regulated by the interaction between hematopoietic growth factors and their receptors. While the defect in this interaction results in an insufficient hematopoiesis, the aberrantly elevated activation leads to the transformation of hematopoietic cells. The constitutive active mutations of receptor tyrosine kinase, such as c-Kit platelet-derived growth factor receptor (PDGFR) or fins-like tyrosine kinase 3 (Flt3), play a major role in the development of hematopoietic neoplasia. The constitutive activation is provoked by several mechanisms, such as making fusion genes by chromosomal translocations, or various mutations involving regulatory regions of the receptor. The chromosomal translocation brings the receptor intracytoplasmic domain juxtaposed to an unrelated molecule which has dimerization or multimerization motif, resulting in the constitutive dimerization of the receptor. The missense, insertion or deletion mutations in the regulatory regions, such as juxtamembrane domain, activation loop and extracellular domain, cause constitutive activation by releasing the respective auto-inhibitory functions of each regulatory region. Constitutive active receptors generate different signals quantitatively and qualitatively from wild type receptor, which mediate the oncogenic phenotype. Given the frequent involvement of constitutive active receptor tyrosine kinase in hematopoietic malignancies, targeted inhibitions of active tyrosine kinase and downstream aberrant signaling are rapidly developing novel therapeutic modality with much promise.  相似文献   

2.
Wybenga-Groot LE  Baskin B  Ong SH  Tong J  Pawson T  Sicheri F 《Cell》2001,106(6):745-757
The Eph receptor tyrosine kinase family is regulated by autophosphorylation within the juxtamembrane region and the kinase activation segment. We have solved the X-ray crystal structure to 1.9 A resolution of an autoinhibited, unphosphorylated form of EphB2 comprised of the juxtamembrane region and the kinase domain. The structure, supported by mutagenesis data, reveals that the juxtamembrane segment adopts a helical conformation that distorts the small lobe of the kinase domain, and blocks the activation segment from attaining an activated conformation. Phosphorylation of conserved juxtamembrane tyrosines would relieve this autoinhibition by disturbing the association of the juxtamembrane segment with the kinase domain, while liberating phosphotyrosine sites for binding SH2 domains of target proteins. We propose that the autoinhibitory mechanism employed by EphB2 is a more general device through which receptor tyrosine kinases are controlled.  相似文献   

3.
4.
Members of the Eph family of receptor tyrosine kinases exhibit a striking degree of amino acid homology, particularly notable in the kinase and membrane-proximal regions. A mutagenesis approach was taken to address the functions of specific conserved tyrosine residues within these catalytic and juxtamembrane domains. Ligand stimulation of wild-type EphB2 in neuronal NG108-15 cells resulted in an upregulation of catalytic activity and an increase in cellular tyrosine phosphorylation, accompanied by a retraction of neuritic processes. Tyrosine-to-phenylalanine substitutions within the conserved juxtamembrane motif abolished these responses. The mechanistic basis for these observations was examined using the highly related EphA4 receptor in a continuous coupled kinase assay. Tandem mass spectrometry experiments confirmed autophosphorylation of the two juxtamembrane tyrosine residues and also identified a tyrosine within the kinase domain activation segment as a phosphorylation site. Kinetic analysis revealed a decreased affinity for peptide substrate upon substitution of activation segment or juxtamembrane tyrosines. Together, our data suggest that the catalytic and therefore biological activities of Eph receptors are controlled by a two-component inhibitory mechanism, which is released by phosphorylation of the juxtamembrane and activation segment tyrosine residues.  相似文献   

5.
Tyrosine 984 in the juxtamembrane region of the insulin receptor, between the transmembrane helix and the cytoplasmic tyrosine kinase domain, is conserved among all insulin receptor-like proteins from hydra to humans. Crystallographic studies of the tyrosine kinase domain and proximal juxtamembrane region reveal that Tyr-984 interacts with several other conserved residues in the N-terminal lobe of the kinase domain, stabilizing a catalytically nonproductive position of alpha-helix C. Steady-state kinetics measurements on the soluble kinase domain demonstrate that replacement of Tyr-984 with phenylalanine results in a 4-fold increase in kcat in the unphosphorylated (basal state) enzyme. Moreover, mutation of Tyr-984 in the full-length insulin receptor results in significantly elevated receptor phosphorylation levels in cells, both in the absence of insulin and following insulin stimulation. These data demonstrate that Tyr-984 plays an important structural role in maintaining the quiescent, basal state of the insulin receptor. In addition, the structural studies suggest a possible target site for small molecule activators of the insulin receptor, with potential use in the treatment of noninsulin-dependent diabetes mellitus.  相似文献   

6.
7.
Loss-of-function mutations of the c-kit receptor tyrosine kinase (KIT) result in depletion of mast cells and interstitial cells of Cajal (ICCs). In contrast, gain-of-function mutations of KIT induce neoplasms of mast cells and ICCs. In humans, the sites of mutations are different between mast cell neoplasms and those of ICCs. The former were found in the juxtamembrane domain between the transmembrane and tyrosine kinase domains, and the latter in the tyrosine kinase domain. Moreover, the mechanism of constitutive activation is different. Point mutations and/or deletions in the juxtamembrane domain induced the KIT dimerization, and the dimerized KIT was activated. A point mutation at the particular aspartic acid in the tyrosine kinase domain induced spontaneous activation without forming dimers. Mutations of the c-kit gene are a good model for understanding the relationship between mutations and diseases in both humans and mice.  相似文献   

8.
B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms   总被引:2,自引:0,他引:2  
B-Raf is a key regulator of the ERK pathway and is mutationally activated in two-thirds of human melanomas. In this work, we have investigated the activation mechanism of B-Raf and characterized the roles of Ras and of B-Raf phosphorylation in this regulation. Raf-1 is regulated by an N-terminal autoinhibitory domain whose actions are blocked by interaction with Ras and subsequent phosphorylation of Ser(338). We observed that B-Raf also contains an N-terminal autoinhibitory domain and that the interaction of this domain with the catalytic domain was inhibited by binding to active H-Ras. However, unlike Raf-1, the phosphorylation of B-Raf at Ser(445) was constitutive and was only moderately increased by expression of constitutively active H-Ras or constitutively active PAK1. Ser(445) phosphorylation is important to the B-Raf activation mechanism, however, because mutation of this site to alanine increased the affinity of the regulatory domain for the catalytic domain and increased autoinhibition. Similarly, expression of constitutively active PAK1 also decreased auto-inhibition. B-Raf autoinhibition was negatively regulated by acidic substitutions at phosphorylation sites within the activation loop of B-Raf and by the oncogenic substitution V599E. However, these substitutions did not affect the ability of the regulatory domain to co-immunoprecipitate with the catalytic domain. These data demonstrate that B-Raf activity is autoregulated, that constitutive phosphorylation of Ser(445) primes B-Raf for activation, and that a key feature of phosphorylation within the activation loop or of oncogenic mutations within this region is to block autoinhibition.  相似文献   

9.
The epidermal growth factor receptor plays crucial roles throughout the development of multicellular organisms, and inappropriate activation of the receptor is associated with neoplastic transformation of many cell types. The receptor is thought to be activated by ligand-induced homodimerisation. Here, however, we show by chemical cross-linking and sucrose density-gradient centrifugation that in the absence of bound ligand the receptor has an ability to form a dimer and exists as a preformed dimer on the cell surface. We also analysed the receptor dimerisation by inserting cysteine residues at strategic positions about the putative alpha-helix axis of the extracellular juxtamembrane region. The mutant receptors spontaneously formed disulphide bridges and transformed NIH3T3 cells in the absence of ligand, depending upon the positions of the cysteine residue inserted. Kinetic analyses of the disulphide bonding indicate that EGF binding induces flexible rotation or twist of the juxtamembrane region of the receptor in the plane parallel with the lipid bilayer. The binding of an ATP competitor to the intracellular domain also induced similar flexible rotation of the juxtamembrane region. All the disulphide-bonded dimers had flexible ligand-binding domains with the same biphasic affinities for EGF as the wild-type. These results demonstrate that ligand binding to the flexible extracellular domains of the receptor dimer induce rotation or twist of the juxtamembrane regions, hence the transmembrane domains, and dissociate the dimeric, inactive form of the intracellular domains. The flexible rotation of the intracellular domains may be necessary for the intrinsic catalytic kinase to become accessible to the multiple tyrosine residues present in the regulatory domain and various substrates, and may be a common property of many cell-surface receptors, such as the insulin receptor.  相似文献   

10.
The c-Cbl protooncogene is a negative regulator for several receptor tyrosine kinases (RTKs) through its ability to promote their polyubiquitination. Hence, uncoupling c-Cbl from RTKs may lead to their deregulation. In testing this, we show that c-Cbl promotes ubiquitination of the Met RTK. This requires the c-Cbl tyrosine kinase binding (TKB) domain and a juxtamembrane tyrosine residue on Met. This tyrosine provides a direct binding site for the c-Cbl TKB domain, and is absent in the rearranged oncogenic Tpr-Met variant. A Met receptor, where the juxtamembrane tyrosine is replaced by phenylalanine, is not ubiquitinated and has transforming activity in fibroblast and epithelial cells. We propose the uncoupling of c-Cbl from RTKs as a mechanism contributing to their oncogenic activation.  相似文献   

11.
Using the specific Abl tyrosine kinase inhibitor STI 571, we purified unphosphorylated murine type IV c-Abl and measured the kinetic parameters of c-Abl tyrosine kinase activity in a solution with a peptide-based assay. Unphosphorylated c-Abl exhibited substantial peptide kinase activity with K(m) of 204 microm and V(max) of 33 pmol min(-1). Contrary to previous observations using immune complex kinase assays, we found that a transforming c-Abl mutant with a Src homology 3 domain point mutation (P131L) had significantly (about 6-fold) higher intrinsic kinase activity than wild-type c-Abl (K(m) = 91 microm, V(max) = 112 pmol min(-1)). Autophosphorylation stimulated the activity of wild-type c-Abl about 18-fold and c-Abl P131L about 3.6-fold, resulting in highly active kinases with similar catalytic rates. The autophosphorylation rate was dependent on Abl protein concentration consistent with an intermolecular reaction. A tyrosine to phenylalanine mutation (Y412F) at the c-Abl residue homologous to the c-Src catalytic domain autophosphorylation site impaired the activation of wild-type c-Abl by 90% but reduced activation of c-Abl P131L by only 45%. Mutation of a tyrosine (Tyr-245) in the linker region between the Src homology 2 and catalytic domains that is conserved among the Abl family inhibited the autophosphorylation-induced activation of wild-type c-Abl by 50%, whereas the c-Abl Y245F/Y412F double mutant was minimally activated by autophosphorylation. These results support a model where c-Abl is inhibited in part through an intramolecular Src homology 3-linker interaction and stimulated to full catalytic activity by sequential phosphorylation at Tyr-412 and Tyr-245.  相似文献   

12.
Ali S  Ali S 《Gene》2007,401(1-2):38-45
c-Kit encodes for the receptor tyrosine kinase (RTK) and belongs to type III receptor family. This includes platelet derived growth factor (PDGF) alpha and beta and macrophage colony stimulating factor (mCSF) apart from others. Their characteristic features are the presence of five immunologlobulin like domains in the extracellular region and 70-100 residues long kinase insert domain in the cytoplasmic region. The RTKs activate several signaling pathways within the cells leading to cell proliferation, differentiation, migration or metabolic changes. The Kit ligand-stem cell factor (SCF) induces a rapid and complete receptor dimerization resulting in activation by autophosphorylation of the catalytic tyrosine kinase and generation of signal transduction leading to regulation of cell growth. Various mutations in c-kit such as insertions and deletions (without affecting reading frame) and point mutations in the inhibitory juxtamembrane (JM) domain encoded by exon 11 have been reported in gastrointestinal stromal tumors (GISTs). Thus, c-kit signaling is believed to play a role in tumorigenesis. Efforts are being made to control and treat these tumors by blocking kit signaling using Imatinib with varying degrees of success. This review deals with the features of c-kit, its ligand and roles in gastrointestinal stromal tumors.  相似文献   

13.
14.
Ephrin receptors (Eph) affect cell shape and movement, unlike other receptor tyrosine kinases that directly affect proliferative pathways. The kinase domain of EphA3 is activated by ephrin binding and receptor oligomerization. This activation is associated with two tyrosines in the juxtamembrane region; these tyrosines are sites of autophosphorylation and interact with the active site of the kinase to modulate activity. This allosteric event has important implications both in terms of understanding signal transduction pathways mediated by Eph kinases as well as discovering specific therapeutic ligands for receptor kinases. In order to provide further details of the molecular mechanism through which the unphosphorylated juxtamembrane region blocks catalysis, we studied wild-type and site-specific mutants in detail. High-resolution structures of multiple states of EphA3 kinase with and without the juxtamembrane segment allowed us to map the coupled pathway of residues that connect the juxtamembrane segment, the activation loop, and the catalytic residues of the kinase domain. This highly conserved set of residues likely delineates a molecular recognition pathway for most of the Eph RTKs, helping to characterize the dynamic nature of these physiologically important enzymes.  相似文献   

15.
The identification of phosphorylation sites in proteins provides a powerful tool to study signal transduction pathways and to establish interaction networks involving signaling elements. Using different strategies to identify phosphorylated residues, we report here mass spectrometry studies of the entire intracellular regions of four 'receptor-like' protein kinases from Mycobacterium tuberculosis (PknB, PknD, PknE, and PknF), each consisting of an N-terminal kinase domain and a juxtamembrane region of varying length (26-100 residues). The enzymes were observed to incorporate different numbers of phosphates, from five in PknB up to 11 in PknD or PknE, and all detected sites were dephosphorylated by the cognate mycobacterial phosphatase PstP. Comparison of the phosphorylation patterns reveals two recurrent clusters of pThr/pSer residues, respectively, in their activation loops and juxtamembrane regions, which have a distinct effect on kinase activity. All studied kinases have at least two conserved phosphorylated residues in their activation loop and mutations of these residues in PknB significantly decreased the kinase activity, whereas deletion of the entire juxtamembrane regions in PknB and PknF had little effect on their activities. These results reinforce the hypothesis that mycobacterial kinase regulation includes a conserved activation loop mechanism, and suggest that phosphorylation sites in the juxtamembrane region might be involved in putative kinase-mediated signaling cascades.  相似文献   

16.
P M Irusta  D DiMaio 《The EMBO journal》1998,17(23):6912-6923
Platelet-derived growth factor beta receptor (PDGFbetaR) is a transmembrane receptor tyrosine kinase involved in a variety of cellular functions. We have generated a constitutively activated murine PDGFbetaR containing a valine to alanine substitution at residue 536, located in the cytoplasmic juxtamembrane domain. When this mutant receptor (PR-V536A) was expressed in Ba/F3 cells, it allowed the cells to survive and proliferate in the absence of IL-3 or PDGF, and tyrosine phosphorylation of PR-V536A was increased markedly compared with that of the wild-type PDGFbetaR in the absence of ligand and similar to that observed in ligand-activated PDGFbetaR. PR-V536A displayed increased tyrosine kinase activity in vitro toward an exogenous substrate, and the tyrosine kinase activity of the receptor was required for the constitutive activation of the mutant. This valine to alanine substitution also activated a PDGFbetaR mutant unable to bind PDGF. Alanine substitutions at positions homologous to V536 of the murine PDGFbetaR also activated other members of the PDGF receptor subfamily. The amino acid sequence of this region revealed a strong similarity to WW domains present in other signal transduction proteins. Furthermore, GST fusion proteins containing the juxtamembrane region of the PDGFR specifically associated with peptides containing the WW domain consensus recognition sequence PPXY. The results suggest that the cytoplasmic juxtamembrane domain plays a role in the regulation of receptor activity and function, perhaps by participating in protein-protein interactions.  相似文献   

17.
We recently reported that the ETV6/FLT3 fusion protein conferred interleukin-3-independent growth on Ba/F3 cells. The present study has been conducted to assess role of the juxtamembrane domain of FLT3 for signal transduction and cell transformation. The wild-type ETV6/FLT3 fusion protein in transfected cells was a constitutively activated tyrosine kinase that led to up-regulation of PIM-1 and activations of STAT5, AKT, and MAPK. Deletion of the juxtamembrane domain abrogated interleukin-3-independent growth of the transfected cells and PIM-1 up-regulation, whereas it retained compatible levels of phosphorylations of STAT5, AKT, and MAPK. Further deletion of N-terminal region of the tyrosine kinase I domain of FLT3 completely abolished these phosphorylations. Our data indicate that the juxtamembrane domain of FLT3 in ETV6/FLT3 fusion protein is critical for cell proliferation and PIM-1 up-regulation that might be independent of a requirement for signaling through STAT5, MAPK, and AKT pathways.  相似文献   

18.
Oncogenic mutations of the receptor tyrosine kinase KIT are encountered in myeloid leukemia and various solid tumors, including gastrointestinal stromal tumors. We previously identified the human oncogenic germ line mutant KIT(K642E), a substitution in the tyrosine kinase 1 domain (TK1D) in a familial form of gastrointestinal stromal tumors. The effects of oncogenic KIT mutants on cell signaling and regulation are complex. Cellular models are valuable basic tools to tailor novel strategies on specific cellular and molecular bases for tumors expressing KIT oncogenic mutants. Murine KIT(WT) and the murine homologues of human KIT oncogenic mutants, further referred to as KIT(K641E) and KIT(del559), a point deletion in the juxtamembrane domain (JMD), were stably expressed in IL-3-dependent Ba/F3 cells. Major differences in the constitutively activation of Akt/PKB, MAP kinases and STATs pathways were observed between KIT(K641E) and KIT(del559), whereas KIT ligand elicited responses in both mutants. Noteworthy, the protein level of the phosphoinositide phosphatase SHIP1, but not SHIP2 and PTEN, was reduced in KIT(K641E) only while inhibition of KIT phosphorylation reversibly raised SHIP1 level in both JMD and TK1D oncogenic mutants, unraveling the control of SHIP protein level by KIT phosphorylation.  相似文献   

19.
ZAP-70, a Syk family cytoplasmic protein tyrosine kinase (PTK), is required to couple the activated T-cell antigen receptor (TCR) to downstream signaling pathways. It contains two tandem SH2 domains that bind to phosphorylated TCR subunits and a C-terminal catalytic domain. The region connecting the SH2 domains with the kinase domain, termed interdomain B, has previously been shown to have striking regulatory effects on ZAP-70 function, presumed to be due to the recruitment of key substrates. Paradoxically, deletion of interdomain B preserves ZAP-70 function. Recent structural studies of several receptor tyrosine kinases (RTKs) revealed that their juxtamembrane regions negatively regulate their catalytic activities. In EphB2 and several other RTKs, this autoinhibition depends upon interaction between the kinase domain and tyrosine residues within the juxtamembrane region. Autoinhibition is released when these tyrosines become phosphorylated following receptor stimulation. Sequence homology suggested analogous regulation for ZAP-70. Based on mutagenesis analysis of ZAP-70 interdomain B, we find that this region downregulates ZAP-70 catalytic activity in a similar manner as the juxtamembrane region of EphB2. Similar regulation was also noted for the related Syk kinase. These findings suggest that a general autoinhibitory mechanism employed by RTKs is also used by some cytoplasmic tyrosine kinases.  相似文献   

20.
Eph receptor tyrosine kinases (RTKs) mediate numerous developmental processes. Their activity is regulated by auto-phosphorylation on two tyrosines within the juxtamembrane segment (JMS) immediately N-terminal to the kinase domain (KD). Here, we probe the molecular details of Eph kinase activation through mutational analysis, X-ray crystallography and NMR spectroscopy on auto-inhibited and active EphB2 and EphA4 fragments. We show that a Tyr750Ala gain-of-function mutation in the KD and JMS phosphorylation independently induce disorder of the JMS and its dissociation from the KD. Our X-ray analyses demonstrate that this occurs without major conformational changes to the KD and with only partial ordering of the KD activation segment. However, conformational exchange for helix alphaC in the N-terminal KD lobe and for the activation segment, coupled with increased inter-lobe dynamics, is observed upon kinase activation in our NMR analyses. Overall, our results suggest that a change in inter-lobe dynamics and the sampling of catalytically competent conformations for helix alphaC and the activation segment rather than a transition to a static active conformation underlies Eph RTK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号