首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Aflatoxins are a family of toxic, acetate-derived decaketides that arise biosynthetically through polyhydroxyanthraquinone intermediates. Most studies have assumed that aflatoxin B1 is the biosynthetic precursor of the other aflatoxins. We used a strain of Aspergillus flavus which accumulates aflatoxin B2 to investigate the later stages of aflatoxin biosynthesis. This strain produced aflatoxins B2 and M2 but no detectable aflatoxin B1 when grown over 12 days in a low-salt, defined growth medium containing asparagine. Addition of dichlorvos to this growth medium inhibited aflatoxin production with concomitant accumulation of versiconal hemiacetal acetate. When mycelial pellets were grown for 24, 48, and 72 h in growth medium and then transferred to a replacement medium, only aflatoxin B2 and M2 were recovered after 96 h of incubation. Addition of sterigmatocystin to the replacement medium led to the recovery of higher levels of aflatoxins B2 and M2 than were detected in control cultures, as well as to the formation of aflatoxins B1 and M1 and O-methylsterigmatocystin. These results support the hypothesis that aflatoxins B1 and B2 can arise independently via a branched pathway.  相似文献   

2.
The covalent binding of the activated forms of several aflatoxins to N-7 of guanine residues on purified DNA has been studied. The aflatoxins include aflatoxin B1 (AFB1) and two human metabolites, aflatoxicol and aflatoxin M1, along with aflatoxicol M1, a rabbit and trout metabolite. DNA binding studies using tritiated [3H]aflatoxins indicate that equimolar solutions of each aflatoxin upon activation with chloroperoxybenzoic acid readily react to produce covalently bound adducts. These reactions produce alkali-labile sites which can be identified using a simple variation of the Maxam-Gilbert sequencing procedure. Two DNA fragments were exposed to each aflatoxin, and the reaction intensities at 33 guanine residues were determined. As much as 10-fold variation in reaction intensities was observed for various guanyl sites. Data indicate that none of the aflatoxins had identical reaction profiles, although AFB1 and aflatoxicol M1 were similar, as were aflatoxicol and aflatoxin M1. Hence, the frequency with which the various aflatoxin epoxides might damage specific sites critical for tumor initiation in vivo would not be predictable from total covalent binding indices. The frequency of occurrence of modifications at particular sites for AFB1 was also compared with the empirical "rules" established for AFB1 by Misra et al. (Misra, R. P., Muench, K. F., and Humayun, M. Z. (1983) Biochemistry 22, 3351-3359). Identical sites within fragments were compared for each aflatoxin, and the data showed that the attacking frequency for some such sites varied significantly. These results indicate that binding intensity rules based on nearest neighbor nucleotides do not reliably predict guanyl-AFB1 binding frequencies.  相似文献   

3.
Production and characterization of aflatoxin B2a antiserum.   总被引:4,自引:3,他引:1       下载免费PDF全文
The specificity and sensitivity of antiserum elicited from rabbits against aflatoxin B2a-bovine serum albumin conjugates were characterized with a radioimmunoassay (RIA) and an enzyme-linked immunosorbent assay (ELISA). Aflatoxin B1 was first converted to aflatoxin B2a and then conjugated to bovine serum albumin and horseradish peroxidase by a reductive alkylation method. The antiserum was developed in New Zealand white rabbits by multiple-site injection with the aflatoxin B2a-bovine serum albumin conjugate. Antibody titers were determined by both RIA and ELISA. Competitive RIAs with various aflatoxin analogs indicated that the antiserum was most reactive with aflatoxin B1 and slightly cross-reactive with aflatoxins B2a, B2, and M1. Competitive ELISAs showed the antiserum to be equally specific for aflatoxins B2a and B12 and less reactive with aflatoxins B2 and M1. The relative sensitivities of RIA and ELISA for aflatoxin B1 quantitation were 100 and 10 pg per assay, respectively.  相似文献   

4.
J J Pestka  P K Gaur    F S Chu 《Applied microbiology》1980,40(6):1027-1031
A specific microtest plate enzyme immunoassay has been developed for the rapid quantitation of aflatoxin B1 at levels as low as 25 pg per assay. Multiple-site injection of rabbits with an aflatoxin B1 carboxymethyloxime-bovine serum albumin conjugate was used for the production of hyperimmune sera. Dilutions of the purified antibody were air dried onto microplates previously treated with bovine serum albumin and glutaraldehyde and then incubated with an aflatoxin B1 carboxymethyloxime-horseradish peroxidase conjugate. The amount of enzyme bound to antibody was determined by monitoring the change in absorbance at 414 nm after the addition of a substrate solution consisting of hydrogen peroxide and 2,2'-azino-di-3-ethyl-benzthiazoline-6-sulfonate. Antibody titers determined in this manner closely correlated with those determined by radioimmunoassay. Competition assays as performed by incubation of different aflatoxin analogs with the peroxidase conjugate showed that aflatoxins B1 and B2 and aflatoxicol caused the most inhibition of conjugate binding to antibody. Aflatoxins G1 and G2 inhibited the conjugate binding to a lesser degree, whereas aflatoxins M1 and B2a had no effect of the assay.  相似文献   

5.
Aspergillus flavus grown on yeast extract-sucrose medium produced higher amounts of aflatoxin B1 in the presence of 0.025% sorbic acid than without this chemical with a maximum at 17 days of incubation. Addition of 0.05 to 0.0125% sorbic acid stimulated T-2 toxin production of Fusarium acuminatum cultures grown on maize meal. The highest amounts of the mycotoxin were detected in 14-day-old cultures containing 0.025% sorbic acid. It is assumed that certain amounts of sorbic acid near the minimal inhibitory concentration reduce the activity of the tricarboxylic acid cycle; this may lead to an accumulation of acetyl coenzyme A, which is an essential intermediate in the biosynthesis of aflatoxin B1 and T-2 toxin.  相似文献   

6.
Aspergillus flavus grown on yeast extract-sucrose medium produced higher amounts of aflatoxin B1 in the presence of 0.025% sorbic acid than without this chemical with a maximum at 17 days of incubation. Addition of 0.05 to 0.0125% sorbic acid stimulated T-2 toxin production of Fusarium acuminatum cultures grown on maize meal. The highest amounts of the mycotoxin were detected in 14-day-old cultures containing 0.025% sorbic acid. It is assumed that certain amounts of sorbic acid near the minimal inhibitory concentration reduce the activity of the tricarboxylic acid cycle; this may lead to an accumulation of acetyl coenzyme A, which is an essential intermediate in the biosynthesis of aflatoxin B1 and T-2 toxin.  相似文献   

7.
AIMS: To find a supplemental ingredient that can be added to routinely used growth media to increase conidial production and decrease aflatoxin biosynthesis in small sclerotial (S strain) isolates of Aspergillus flavus. METHODS AND RESULTS: Molasses was added to three commonly used culture media: coconut agar (CAM), potato dextrose agar (PDA), and vegetable juice agar (V8) and production of conidia, sclerotia, and aflatoxins by A. flavus isolate CA43 was determined. The effect of nitrogen sources in molasses medium (MM) on production of conidia, sclerotia and aflatoxins was examined. Water activity and medium pH were also measured. Conidia harvested from agar plates were counted using a haemocytometer. Sclerotia were weighed after drying at 45 degrees C for 5 days. Aflatoxins B(1) and B(2) were quantified by high-performance liquid chromatography. Addition of molasses to the media did not change water activity or the pH significantly. Supplementing CAM and PDA with molasses increased conidial production and decreased aflatoxins. Two-fold increased yield of conidia was found on MM, which, like V8, did not support aflatoxin production. Adding ammonium to MM significantly increased the production of sclerotia and aflatoxins, but slightly decreased conidial production. Adding urea to MM significantly increased the production of conidia, sclerotia and aflatoxins. CONCLUSIONS: Molasses stimulated conidial production and inhibited aflatoxin production. Its effect on sclerotial production was medium-dependent. Water activity and medium pH were not related to changes in conidial, sclerotial or aflatoxin production. Medium containing molasses alone or molasses plus V8 juice were ideal for conidial production by S strain A. flavus. SIGNIFICANCE AND IMPACT OF THE STUDY: Insight into molecular events associated with the utilization of molasses may help to elucidate the mechanism(s) that decreases aflatoxin biosynthesis. Targeting genetic parameters in S strain A. flavus isolates may reduce aflatoxin contamination of crops by reducing the survival and toxigenicity of these strains.  相似文献   

8.
The effect of temperature cycling on the relative productions of aflatoxins B1 and G1 by Aspergillus parasiticus NRRL 2999 was studied. The cycling of temperature between 33 and 15 degrees C favored aflatoxin B1 accumulation, whereas cycling between 35 and 15 degrees C favored aflatoxin G1 production. Cultures subjected to temperature cycling between 33 and 25 degrees C at various time intervals changed the relative productions of aflatoxins B1 and G1 drastically. Results obtained with temperature cycling and yeast extract-sucrose medium with ethoxyquin to decrease aflatoxin G1 production suggest that the enzyme system responsible for the conversion of aflatoxin B1 to G1 might be more efficient at 25 degrees C than at 33 degrees C. The possible explanation of the effect of both constant and cycling temperatures on the relative accumulations of aflatoxins B1 and G2 might be through the control of the above enzyme system. The study also showed that greater than 57% of aflatoxin B1, greater than 47% of aflatoxin G1, and greater than 50% of total aflatoxins (B1 plus G1) were in the mycelium by day 10 under both constant and cyclic temperature conditions.  相似文献   

9.
Aspergillus parasiticus NIAH-26, a UV-irradiated mutant of A. parasiticus SYS-4 (NRRL 2999), produces neither aflatoxins nor precursors. When sterigmatocystin (ST) or O-methylsterigmatocystin was fed to this mutant in YES medium, aflatoxins B1 (AFB1) and G1 (AFG1) were produced. When dihydrosterigmatocystin (DHST) or dihydro-O-methylsterigmatocystin was fed to this mold, aflatoxins B2 (AFB2) and G2 (AFG2) were produced. The reactions from ST to AFB1 and DHST to AFB2 were also observed in the cell-free system and were catalyzed stepwise by the methyltransferase and oxidoreductase enzymes. In the feeding experiments of strain NIAH-26, the convertibility from ST to AFB1-AFG1 was found to be remarkably suppressed by the coexistence of DHST in the medium, and the convertibility from DHST to AFB2-AFG2 was also suppressed by the presence of ST. When some other mutants which endogenously produce a small amount of aflatoxins (mainly AFB1 and AFG1) were cultured with DHST, the amounts of AFB1 and AFG1 produced were significantly decreased, whereas AFB2 and AFG2 were newly produced. In similar feeding experiments in which 27 kinds of mutants including these mutants were used, most of the mutants which were able to convert exogenous ST to AFB1-AFG1 were also found to convert exogenous DHST to AFB2-AFG2. These results suggest that the same enzymes may be involved in the both biosynthetic pathways from ST to AFB1-AFG1 and DHST to AFB2-AFG2. The reactions described herein were not observed when the molds had been cultured in the YEP medium.  相似文献   

10.
Biosynthetic relationship among aflatoxins B1, B2, G1, and G2.   总被引:9,自引:8,他引:1       下载免费PDF全文
K Yabe  Y Ando    T Hamasaki 《Applied microbiology》1988,54(8):2101-2106
Aspergillus parasiticus NIAH-26, a UV-irradiated mutant of A. parasiticus SYS-4 (NRRL 2999), produces neither aflatoxins nor precursors. When sterigmatocystin (ST) or O-methylsterigmatocystin was fed to this mutant in YES medium, aflatoxins B1 (AFB1) and G1 (AFG1) were produced. When dihydrosterigmatocystin (DHST) or dihydro-O-methylsterigmatocystin was fed to this mold, aflatoxins B2 (AFB2) and G2 (AFG2) were produced. The reactions from ST to AFB1 and DHST to AFB2 were also observed in the cell-free system and were catalyzed stepwise by the methyltransferase and oxidoreductase enzymes. In the feeding experiments of strain NIAH-26, the convertibility from ST to AFB1-AFG1 was found to be remarkably suppressed by the coexistence of DHST in the medium, and the convertibility from DHST to AFB2-AFG2 was also suppressed by the presence of ST. When some other mutants which endogenously produce a small amount of aflatoxins (mainly AFB1 and AFG1) were cultured with DHST, the amounts of AFB1 and AFG1 produced were significantly decreased, whereas AFB2 and AFG2 were newly produced. In similar feeding experiments in which 27 kinds of mutants including these mutants were used, most of the mutants which were able to convert exogenous ST to AFB1-AFG1 were also found to convert exogenous DHST to AFB2-AFG2. These results suggest that the same enzymes may be involved in the both biosynthetic pathways from ST to AFB1-AFG1 and DHST to AFB2-AFG2. The reactions described herein were not observed when the molds had been cultured in the YEP medium.  相似文献   

11.
An isolate of Aspergillus parasiticus CP461 (SRRC 2043) produced no detectable aflatoxins, but accumulated O-methylsterigmatocystin (OMST). When sterigmatocystin (ST) was fed to this isolate in a low-sugar medium, there was an increase in the accumulation of OMST, without aflatoxin synthesis. When radiolabeled [14C]OMST was fed to resting mycelia of a non-aflatoxin-, non-ST-, and non-OMST-producing mutant of A. parasiticus AVN-1 (SRRC 163), 14C-labeled aflatoxins B1 and G1 were produced; 10 nmol of OMST produced 7.8 nmol of B1 and 1.0 nmol of G1, while 10 nmol of ST produced 6.4 nmol of B1 and 0.6 nmol of G1. A time course study of aflatoxin synthesis in ST feeding experiments with AVN-1 revealed that OMST is synthesized by the mold during the onset of aflatoxin synthesis. The total amount of aflatoxins recovered from OMST feeding experiments was higher than from experiments in which ST was fed to the resting mycelia. These results suggest that OMST is a true metabolite in the aflatoxin biosynthetic pathway between sterigmatocystin and aflatoxins B1 and G1 and is not a shunt metabolite, as thought previously.  相似文献   

12.
The presence of glutathione (GSH) S-transferase activity, using 1-chloro-2, 4-dinitrobenzene (CDNB) as a substrate, has been established in the cytosolic fraction of the toxigenic (aflatoxin producing) and nontoxigenic strains of Aspergillus flavus. Significant differences in the GSH S-transferase activity were observed between the toxigenic and non-toxigenic strains. A positive correlation has been demonstrated for the first time between aflatoxin formation and a biochemical parameter, namely GSH S-transferase activity. The evidence in support of A. flavus GSH S-transferase induction by endogenous aflatoxins is as follows: (i) the age-related production of aflatoxin follows the same pattern as the cytosolic GSH S-transferase activity profile; (ii) significantly higher enzyme activity was associated with mycelia of a toxigenic strain grown in medium supporting high aflatoxin production (sucrose-low-salts medium) while the enzyme activity was low in medium producing less aflatoxin (glucose-ammonium nitrate medium). The GSH S-transferase activity of the non-toxigenic strain was hardly affected by a change in the medium as it produces no aflatoxins; and (iii) the toxigenic strain demonstrated significantly higher apparent Vmax. with no change in Km as compared with the non-toxigenic strain. This indicates that the enzyme induction by endogenous aflatoxins is similar to the action of phenobarbitol and other inducing drugs (Kaplowitz et al., 1975).  相似文献   

13.
Aspergillus parasiticus RCMB 002001 (2) producing four types of aflatoxins B1, B2, G1, and G2 was used in this study as an aflatoxin-producer. Penicillium griseofulvum, P. urticae, Paecilomyces lilacinus, Trichoderma viride, Candida utilis, Saccharomyces cerevisiae as well as a non-toxigenic strain of Aspergillus flavus were found to be able to exhibit growth on aflatoxin B1-containing medium up to a concentration of 500 ppb. It was also found that several fungal strains exhibited the growth in co-culture with A. parasiticus, natural aflatoxins producer, and were able to decreased the total aflatoxin concentration, resulting in the highest inhibition percentage of 67.2% by T viride, followed by P. lilacinus, P. griseofulvum, S. cerevisiae, C. utilis, P. urticae, Rhizopus nigricans and Mucor rouxii with total aflatoxin inhibition percentage of 53.9, 52.4, 52, 51.7, 44, 38.2 and 35.4%, respectively. The separation of bioremediation products using GC/MS revealed that the toxins were degraded into furan moieties.  相似文献   

14.
The influence of rubratoxin B, a metabolite of Penicillium rubrum Stoll, on the growth and aflatoxin production of a strain of Aspergillus parasiticus Speare grown in the chemically defined medium of Reddy et al. (Appl. Microbiol. 22:393-396, 1971) was studied. After 4 days of incubation on a rotary shaker at 25 degrees C, the presence of 10 microgram/ml caused 45 to 50% reduction in dry weight production, although at the same concentration of rubratoxin B, the reduction of growth after 10 days was only 15%. In the presence of 50 microgram/ml there was a reduction in dry weight production of 94% after 4 days of incubation, and it was still 86% after 8 days. Rubratoxin B concentrations of 50 microgram/ml and higher usually caused a reduction in aflatoxin production in the medium comparable with the reduction in biomass, but at concentrations as low as 10 microgram/ml, there was a pronounced increase in the production of aflatoxins, especially of G1, despite the reduction in biomass. The ecological significance of these observations is discussed.  相似文献   

15.
Accumulation of the carcinogenic mycotoxin aflatoxin B, has been reported from members of three different groups of Aspergilli (4) Aspergillus flavus, A. flavus var. parvisclerotigenus, A. parasiticus, A. toxicarius, A. nomius, A. pseudotamarii, A. zhaoqingensis, A. bombycis and from the ascomycete genus Petromyces (Aspergillus section Flavi), (2) Emericella astellata and E. venezuelensis from the ascomycete genus Emericella (Aspergillus section Nidulantes) and (3) Aspergillus ochraceoroseus from a new section proposed here: Aspergillus section Ochraceorosei. We here describe a new species, A. rambellii referable to Ochraceorosei, that accumulates very large amounts of sterigmatocystin, 3-O-methylsterigmatocystin and aflatoxin B1, but not any of the other known extrolites produced by members of Aspergillus section Flavi or Nidulantes. G type aflatoxins were only found in some of the species in Aspergillus section Flavi, while the B type aflatoxins are common in all three groups. Based on the cladistic analysis of nucleotide sequences of ITS1 and 2 and 5.8S, it appears that type G aflatoxin producers are paraphyletic and that section Ochraceorosei is a sister group to the sections Flavi, Circumdati and Cervini, with Emericella species being an outgroup to these sister groups. All aflatoxin producing members of section Flavi produce kojic acid and most species, except A. bombycis and A. pseudotamarii, produce aspergillic acid. Species in Flavi, that produce B type aflatoxins, but not G type aflatoxins, often produced cyclopiazonic acid. No strain was found which produce both G type aflatoxins and cyclopiazonic acid. It was confirmed that some strains of A. flavus var. columnaris produce aflatoxin B2, but this extrolite was not detected in the ex type strain of that variety. A. flavus var. parvisclerotigenus is raised to species level based on the specific combination of small sclerotia, profile of extrolites and rDNA sequence differences. A. zhaoqingensis is regarded as a synonym of A. nomius, while A. toxicarius resembles A. parasiticus but differs with at least three base pair differences. At least 10 Aspergillus species can be recognized which are able to biosynthesize aflatoxins, and they are placed in three very different clades.  相似文献   

16.
The metabolism of aflatoxin B1 to aflatoxins M1 and Q1 by rat liver microsomes from animals pretreated with polychlorinated or polybrominated biphenyl congeners depended on the structure of the halogenated biphenyl inducers. Microsomes from rats treated with phenobarbital (PB) or halogenated biphenyls that exhibit PB-type activity preferentially enhanced the conversion of aflatoxin B1 to aflatoxin Q1. In contrast, microsomes from rats treated with 3-methylcholanthrene (MC) or halogenated biphenyls that exhibit MC-type induction activity increased the metabolism of aflatoxin B1 to aflatoxin M1. The coadministration of PB and MC produced microsomes that exhibited both types of induction activity (mixed type) in catalyzing the oxidative metabolism of diverse xenobiotic agents. However, PB-plus-MC-induced hepatic microsomes from immature male Wistar rats preferentially increased the metabolism of aflatoxin B1 to aflatoxin M1 but did not enhance the conversion of aflatoxin B1 to aflatoxin Q1. Comparable results were observed with microsomes from rats pretreated with halogenated biphenyls classified as mixed-type inducers; moreover, in some cases there was a significant decrease in the conversion of aflatoxin B1 to aflatoxin Q1 (compared with that of controls treated with corn oil).  相似文献   

17.
Fungal degradation of aflatoxin B1   总被引:3,自引:0,他引:3  
Shantha T 《Natural toxins》1999,7(5):175-178
A number of fungal cultures were screened to select an organism suitable to be used in the detoxification of aflatoxin B1. They were co-cultured in Czapek-Dox-Casamino acid medium with aflatoxin B1 producing Aspergillus flavus. Several fungal cultures were found to prevent synthesis of aflatoxin B1 in liquid culture medium. Among these Phoma sp., Mucor sp., Trichoderma harzianum, Trichoderma sp. 639, Rhizopus sp. 663, Rhizopus sp. 710, Rhizopus sp. 668, Alternaria sp. and some strains belonging to the Sporotrichum group (ADA IV B14(a), ADA SF VI BF (9), strain 720) could inhibit aflatoxin synthesis by > or =90%. A few fungi, namely ADA IV B1, ADA F1, ADA F8, also belonging to the Sporotrichum group, were less efficient than the Phoma sp. The Cladosporium sp. and A. terreus sp. were by far the least efficient, registering <10% inhibition. The cultures which prevent aflatoxin biosynthesis are also capable of degrading the preformed toxin. Among these, Phoma sp. was the most efficient destroying about 99% of aflatoxin B1. The cell free extract of Phoma sp. destroyed nearly 50 microg aflatoxin B1 100 ml(-1) culture medium (90% of the added toxin), and this was more effective than its own culture filtrate over 5 days incubation at 28+/-2 degrees C. The degradation was gradual: 35% at 24 h, 58% at 48 h, 65% at 72 h, 85% at 96 h and 90% at 120 h. The possibility of a heat stable enzymatic activity in the cell free extract of Phoma is proposed.  相似文献   

18.
Five strains of Aspergillus flavus lacking the ability to produce aflatoxins were examined in greenhouse tests for the ability to prevent a toxigenic strain from contaminating developing cottonseed with aflatoxins. All atoxigenic strains reduced contamination when inoculated into developing bolls 24 h prior to the toxigenic strain. However, only one strain, AF36, was highly effective when inoculated simultaneously with the toxigenic strain. All five strains were able to inhibit aflatoxin production by the toxigenic strain in liquid fermentation. Thus, in vitro activity did not predict the ability of an atoxigenic strain to prevent contamination of developing bolls. Therefore, strain selection for competitive exclusion to prevent aflatoxin contamination should include evaluation of efficacy in developing crops prior to field release. Atoxigenic strains were also characterized by the ability to convert several aflatoxin precursors into aflatoxin B1. Four atoxigenic strains failed to convert any of the aflatoxin biosynthetic precursors to aflatoxins. However, the strain (AF36) most effective in preventing aflatoxin contamination in developing bolls converted all tested precursors into aflatoxin B1, indicating that this strain made enzymes in the aflatoxin biosynthetic pathway.  相似文献   

19.
The mutagenic activities of aflatoxins B1 and G1 were studied in the ad-3 test system of Neurospora crassa by treatment of conidia with aflatoxin and liver homogenate for 2 h. No significant increase in the ad-3 mutation frequency over the spontaneous frequency was observed when either aflatoxin or mammalian liver homogenate was omitted from the test system. The ad-3 mutation frequencies increased to between 29 and 87/10(6) survivors, which is a 73- to 217-fold increase over the average spontaneous ad-3 mutation frequency (0.4/10(6) survivors), after conidia of N. crassa were treated with 0.67 mM aflatoxin B1, hamster liver homogenate, and a NADPH generating system. A 9- to 15-fold increase in the mutation frequency over the spontaneous mutation frequency was found when 0.67 mM of aflatoxin G1 instead of aflatoxin B1 was used in the test system. Treatment of conidia with 0.44 mM aflatoxin B1 mice liver homogenate and a NADPH generating system caused a small, but significant increase in the ad-3 mutation frequencies. No significant increase in the mutation frequency was found when a single sample of human liver homogenate was used in the test system. These studies show that metabolic activation is necessary for the expression of the mutagenic activity of aflatoxins B1 and G1 in N. crassa.  相似文献   

20.
Sharma YP  Sumbali G 《Mycopathologia》1999,148(2):103-107
An investigation was undertaken to obtain data on the occurrence of aflatoxins and the aflatoxin producing potential of Aspergillus flavus strains isolated from dry fruit slices of quinces produced in jammu and Kashmir, India. A total of 147 A. flavus isolates recovered from dr fruit slices were grown in liquid rice flour medium and screened for the production of various aflatoxins by thin layer chromatography. The results showed that 23.14% of the tested isolates were aflatoxigenic, producing aflatoxins B1 and B2 in varying amounts. Aflatoxins G1 and G2 were not detected. All 25 of the investigated market samples were also found to be aflatoxin B1 positive and the level of contamination ranged from 96 to 8164 micrograms/kg of the dry fruit which is quite high in comparison to the permissible level of 30 ppb. As per these results biochemical composition of dry fruit slices of quinces, along with climatic conditions seem to be very favourable for aflatoxin production by the toxigenic A. flavus strains. Therefore, monitoring of aflatoxins in dry fruit slices of quinces is recommended for this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号