首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Inhibition of aflatoxin production by selected insecticides.   总被引:4,自引:3,他引:1       下载免费PDF全文
The insecticide naled completed inhibition production of aflatoxins B1, B2, G1, and G2 by and growth of Aspergillus parasiticus at a 100-ppm (100 microgram/ml) concentration. The insecticides dichlorvos, Landrin, pyrethrum, Sevin, malathion, and Diazinon significantly (P = 0.05) inhibited production of aflatoxins at a 100-ppm concentration. However, at a concentration of 10 ppm, significant inhibition in production of aflatoxins was found only with naled, dichlorvos, Sevin, Landrin, and pyrethrum. Dichlorvos, Landrin, Sevin, and naled inhibited growth of A. parasiticus by 28.9 , 18.9, 15.7, and 100%, respectively, at 100 ppm. Stimulation of growth was observed when diazinon was added to cultures. Aflatoxin B1 was most resistant to inhibition by insecticides, followed by G1, G2, and B2, respectively.  相似文献   

2.
The insecticide naled completed inhibition production of aflatoxins B1, B2, G1, and G2 by and growth of Aspergillus parasiticus at a 100-ppm (100 microgram/ml) concentration. The insecticides dichlorvos, Landrin, pyrethrum, Sevin, malathion, and Diazinon significantly (P = 0.05) inhibited production of aflatoxins at a 100-ppm concentration. However, at a concentration of 10 ppm, significant inhibition in production of aflatoxins was found only with naled, dichlorvos, Sevin, Landrin, and pyrethrum. Dichlorvos, Landrin, Sevin, and naled inhibited growth of A. parasiticus by 28.9 , 18.9, 15.7, and 100%, respectively, at 100 ppm. Stimulation of growth was observed when diazinon was added to cultures. Aflatoxin B1 was most resistant to inhibition by insecticides, followed by G1, G2, and B2, respectively.  相似文献   

3.
Aspergillus flavus isolates produce only aflatoxins B1 and B2, while Aspergillus parasiticus and Aspergillus nomius produce aflatoxins B1, B2, G1, and G2. Sequence comparison of the aflatoxin biosynthesis pathway gene cluster upstream from the polyketide synthase gene, pksA, revealed that A. flavus isolates are missing portions of genes (cypA and norB) predicted to encode, respectively, a cytochrome P450 monooxygenase and an aryl alcohol dehydrogenase. Insertional disruption of cypA in A. parasiticus yielded transformants that lack the ability to produce G aflatoxins but not B aflatoxins. The enzyme encoded by cypA has highest amino acid identity to Gibberella zeae Tri4 (38%), a P450 monooxygenase previously shown to be involved in trichodiene epoxidation. The substrate for CypA may be an intermediate formed by oxidative cleavage of the A ring of O-methylsterigmatocystin by OrdA, the P450 monooxygenase required for formation of aflatoxins B1 and B2.  相似文献   

4.
Fourteen isolates of Aspergillus parasiticus and 2 isolates of Aspergillus flavus isolated from the mealybug Saccharicoccus sacchari were analyzed for production of aflatoxins B1, B2, G1, and G2 in liquid culture over a 20-day period. Twelve Aspergillus isolates including 11 A. parasiticus and 1 A. flavus produced aflatoxins which were extracted from both the mycelium and culture filtrate. Aflatoxin production was detected at day 3 and was detected continually for up to day 20. Aflatoxin B1 production was greatest between 7 and 10 days and significantly higher quantities were produced by A. flavus compared to A. parasiticus. Aflatoxin production was not a stable trait in 1 A. parasiticus isolate passaged 50 times on agar. In addition to loss of aflatoxin production, an associated loss in sporulation ability was also observed in this passaged isolate, although it did maintain pathogenicity against S. sacchari. An aflatoxin B1 concentration of 0.16 micrograms/mealybug (14.2 micrograms/g wet wt) was detected within the tissues of infected mealybugs 7 days after inoculation. In conclusion, the ability of Aspergillus isolates to produce aflatoxins was not essential to the entomopathogenic activity of this fungus against its host S. sacchari.  相似文献   

5.
This research examines the distribution of aflatoxins among conidia and sclerotia of toxigenic strains of Aspergillus flavus Link and Aspergillus parasiticus Speare cultured on Czapek agar (21 days, 28 degrees C). Total aflatoxin levels in conidia and sclerotia varied considerably both within (intrafungal) and among strains. Aspergillus flavus NRRL 6554 accumulated the highest levels of aflatoxin (conidia: B1, 84000 ppb; G1, 566000 ppb; sclerotia: B1, 135000 ppb; G1, 968000 ppb). Substantial aflatoxin levels in conidia could place at risk those agricultural workers exposed to dust containing large numbers of A. flavus conidia. Cellular ratios of aflatoxin B1 to aflatoxin G1 were nearly identical in conidia and sclerotia even though levels of total aflatoxins in these propagule types may have differed greatly. Aflatoxin G1 was detected in sclerotia of all A. flavus strains but in the conidia of only one strain. Each of the A. parasiticus strains examined accumulated aflatoxin G1 in both sclerotia and conidia. These results are examined in the context of current evolutionary theory predicting an increase in the chemical defense systems of fungal sclerotia, propagules critical to the survival of these organisms.  相似文献   

6.
Accumulation of the carcinogenic mycotoxin aflatoxin B, has been reported from members of three different groups of Aspergilli (4) Aspergillus flavus, A. flavus var. parvisclerotigenus, A. parasiticus, A. toxicarius, A. nomius, A. pseudotamarii, A. zhaoqingensis, A. bombycis and from the ascomycete genus Petromyces (Aspergillus section Flavi), (2) Emericella astellata and E. venezuelensis from the ascomycete genus Emericella (Aspergillus section Nidulantes) and (3) Aspergillus ochraceoroseus from a new section proposed here: Aspergillus section Ochraceorosei. We here describe a new species, A. rambellii referable to Ochraceorosei, that accumulates very large amounts of sterigmatocystin, 3-O-methylsterigmatocystin and aflatoxin B1, but not any of the other known extrolites produced by members of Aspergillus section Flavi or Nidulantes. G type aflatoxins were only found in some of the species in Aspergillus section Flavi, while the B type aflatoxins are common in all three groups. Based on the cladistic analysis of nucleotide sequences of ITS1 and 2 and 5.8S, it appears that type G aflatoxin producers are paraphyletic and that section Ochraceorosei is a sister group to the sections Flavi, Circumdati and Cervini, with Emericella species being an outgroup to these sister groups. All aflatoxin producing members of section Flavi produce kojic acid and most species, except A. bombycis and A. pseudotamarii, produce aspergillic acid. Species in Flavi, that produce B type aflatoxins, but not G type aflatoxins, often produced cyclopiazonic acid. No strain was found which produce both G type aflatoxins and cyclopiazonic acid. It was confirmed that some strains of A. flavus var. columnaris produce aflatoxin B2, but this extrolite was not detected in the ex type strain of that variety. A. flavus var. parvisclerotigenus is raised to species level based on the specific combination of small sclerotia, profile of extrolites and rDNA sequence differences. A. zhaoqingensis is regarded as a synonym of A. nomius, while A. toxicarius resembles A. parasiticus but differs with at least three base pair differences. At least 10 Aspergillus species can be recognized which are able to biosynthesize aflatoxins, and they are placed in three very different clades.  相似文献   

7.
The effect of temperature cycling on the relative productions of aflatoxins B1 and G1 by Aspergillus parasiticus NRRL 2999 was studied. The cycling of temperature between 33 and 15 degrees C favored aflatoxin B1 accumulation, whereas cycling between 35 and 15 degrees C favored aflatoxin G1 production. Cultures subjected to temperature cycling between 33 and 25 degrees C at various time intervals changed the relative productions of aflatoxins B1 and G1 drastically. Results obtained with temperature cycling and yeast extract-sucrose medium with ethoxyquin to decrease aflatoxin G1 production suggest that the enzyme system responsible for the conversion of aflatoxin B1 to G1 might be more efficient at 25 degrees C than at 33 degrees C. The possible explanation of the effect of both constant and cycling temperatures on the relative accumulations of aflatoxins B1 and G2 might be through the control of the above enzyme system. The study also showed that greater than 57% of aflatoxin B1, greater than 47% of aflatoxin G1, and greater than 50% of total aflatoxins (B1 plus G1) were in the mycelium by day 10 under both constant and cyclic temperature conditions.  相似文献   

8.
An isolate of Aspergillus parasiticus CP461 (SRRC 2043) produced no detectable aflatoxins, but accumulated O-methylsterigmatocystin (OMST). When sterigmatocystin (ST) was fed to this isolate in a low-sugar medium, there was an increase in the accumulation of OMST, without aflatoxin synthesis. When radiolabeled [14C]OMST was fed to resting mycelia of a non-aflatoxin-, non-ST-, and non-OMST-producing mutant of A. parasiticus AVN-1 (SRRC 163), 14C-labeled aflatoxins B1 and G1 were produced; 10 nmol of OMST produced 7.8 nmol of B1 and 1.0 nmol of G1, while 10 nmol of ST produced 6.4 nmol of B1 and 0.6 nmol of G1. A time course study of aflatoxin synthesis in ST feeding experiments with AVN-1 revealed that OMST is synthesized by the mold during the onset of aflatoxin synthesis. The total amount of aflatoxins recovered from OMST feeding experiments was higher than from experiments in which ST was fed to the resting mycelia. These results suggest that OMST is a true metabolite in the aflatoxin biosynthetic pathway between sterigmatocystin and aflatoxins B1 and G1 and is not a shunt metabolite, as thought previously.  相似文献   

9.
The potential of sodium bicarbonate to inhibit growth of and aflatoxin synthesis by Aspergillus parasiticus was examined in Czapek's agar (CA), a medium in which fluorescence under UV light indicates aflatoxin production. Incorporation of sodium bicarbonate (SB) into CA at 0.011, 0.022, and 0.033 mol% reduced cell viability 63-, 10(3)-, and greater than 10(7)-fold, respectively. Colonies resulting from surviving cells did not fluoresce under UV light, but thin-layer chromatography analysis of culture extracts detected aflatoxins. Potassium bicarbonate (KB) at 0.011 and 0.022 mol% produced inhibitory effects similar to those of SB, but NaCl and silica had no effect. After 7 days, control cultures had the normal aflatoxin distribution (B1 greater than G1 greater than B2 greater than G2), but this distribution shifted to B2 greater than B1 approximately equal to G2 greater than G1 during prolonged incubation. Cultures supplemented with SB and KB contained mostly aflatoxins B1 and G1 after 28 days. Both SB and KB raised the pH of CA to 7.5 to 8.5 at the time of growth. Culture growth on CA adjusted to pH 7.5 to 8.5 with NaOH was not inhibited but exhibited reduced fluorescence and elevated levels of aflatoxins B1 and G1. Thus, while bicarbonate inhibition of growth could not be attributed to pH elevation, the lack of culture fluorescence on CA-SB and CA-KB and the altered aflatoxin distribution were caused by the ability of SB and KB to elevate pH.  相似文献   

10.
The potential of sodium bicarbonate to inhibit growth of and aflatoxin synthesis by Aspergillus parasiticus was examined in Czapek's agar (CA), a medium in which fluorescence under UV light indicates aflatoxin production. Incorporation of sodium bicarbonate (SB) into CA at 0.011, 0.022, and 0.033 mol% reduced cell viability 63-, 10(3)-, and greater than 10(7)-fold, respectively. Colonies resulting from surviving cells did not fluoresce under UV light, but thin-layer chromatography analysis of culture extracts detected aflatoxins. Potassium bicarbonate (KB) at 0.011 and 0.022 mol% produced inhibitory effects similar to those of SB, but NaCl and silica had no effect. After 7 days, control cultures had the normal aflatoxin distribution (B1 greater than G1 greater than B2 greater than G2), but this distribution shifted to B2 greater than B1 approximately equal to G2 greater than G1 during prolonged incubation. Cultures supplemented with SB and KB contained mostly aflatoxins B1 and G1 after 28 days. Both SB and KB raised the pH of CA to 7.5 to 8.5 at the time of growth. Culture growth on CA adjusted to pH 7.5 to 8.5 with NaOH was not inhibited but exhibited reduced fluorescence and elevated levels of aflatoxins B1 and G1. Thus, while bicarbonate inhibition of growth could not be attributed to pH elevation, the lack of culture fluorescence on CA-SB and CA-KB and the altered aflatoxin distribution were caused by the ability of SB and KB to elevate pH.  相似文献   

11.
Kinetic pulse-labeling of aflatoxin pathway compounds was carried out in Aspergillus parasiticus, beginning with radioactive acetate. Norsolorinic acid, averufin, versicolorin A, and sterigmatocystin (all known as compounds which can be incorporated into the aflatoxin molecule) were radiotraced to follow their order of appearance. Aflatoxin species B1, B2, G1, and G2 were included. Norsolorinic acid and averufin appeared as early transient intermediates followed in order by versicolorin A, aflatoxins, and sterigmatocystin. To date, a mutually confirming array of results has been obtained with established precursors in wild-type strains of A. parasiticus and A. versicolor (as well as with an aflatoxin pathway mutant of A. parasiticus), which together establish a practical methodology for recognition of new pathway intermediates. The kinetic of pulse-labeling for sterigmatocystin in relation to aflatoxins suggests that duel branchlets may exist to flatoxins; i.e., sterigmatocystin may not be an obligatory aflatoxin precursor.  相似文献   

12.
Stored and cooked samples of pearl millet (Pennesetum typhoides), which is regularly consumed as food by the Paharia tribe in the hilly regions of Santhal Pargana, Bihar State, India, that were harvested in January 1989 were analyzed for mold flora, natural occurrence of Aspergillus flavus and A. parasiticus, and incidence and levels of aflatoxin B1. Of the 22 fungal species isolated, A. flavus and A. parasiticus were the predominant species (63.8%) during the rainy season, followed by other species of Aspergillus, Penicillium, Fusarium, Rhizopus, Helminthosporium, and Curvularia. Screening of 169 A. flavus and A. parasiticus strains showed that 59 of them were toxigenic, producing various combinations of aflatoxins B1, B2, G1, and G2. The amounts of aflatoxin B1 ranged between 4 and 30 mg/100 ml of liquid medium. Analysis of stored and cooked samples also revealed a high incidence and alarming levels of naturally produced aflatoxin B1. Forty-nine of 75 stored and 16 of 38 cooked samples contained various combinations of aflatoxins. The levels of aflatoxin B1 ranged between 17 and 2,110 ppb in stored samples and 18 and 549 ppb in cooked samples. The correlation of insect damage with A. flavus and A. parasiticus incidence and quantity of aflatoxin B1 was found to be insignificant.  相似文献   

13.
Stored and cooked samples of pearl millet (Pennesetum typhoides), which is regularly consumed as food by the Paharia tribe in the hilly regions of Santhal Pargana, Bihar State, India, that were harvested in January 1989 were analyzed for mold flora, natural occurrence of Aspergillus flavus and A. parasiticus, and incidence and levels of aflatoxin B1. Of the 22 fungal species isolated, A. flavus and A. parasiticus were the predominant species (63.8%) during the rainy season, followed by other species of Aspergillus, Penicillium, Fusarium, Rhizopus, Helminthosporium, and Curvularia. Screening of 169 A. flavus and A. parasiticus strains showed that 59 of them were toxigenic, producing various combinations of aflatoxins B1, B2, G1, and G2. The amounts of aflatoxin B1 ranged between 4 and 30 mg/100 ml of liquid medium. Analysis of stored and cooked samples also revealed a high incidence and alarming levels of naturally produced aflatoxin B1. Forty-nine of 75 stored and 16 of 38 cooked samples contained various combinations of aflatoxins. The levels of aflatoxin B1 ranged between 17 and 2,110 ppb in stored samples and 18 and 549 ppb in cooked samples. The correlation of insect damage with A. flavus and A. parasiticus incidence and quantity of aflatoxin B1 was found to be insignificant.  相似文献   

14.
Tolnaftate [2-napthyl-N-methyl-N-(m-tolyl)thionocarbamate], an antifungal drug, is widely used to control superficial fungal infections in humans and other animals. In this study the effect of tolnaftate on aflatoxin biosynthesis by Aspergillus parasiticus NRRL 3240 was investigated. Tolnaftate changed the morphology of A. parasiticus to yeastlike forms and inhibited aflatoxin formation. The formation of aflatoxin G was blocked considerably, indicating a metabolic block in the conversion of aflatoxin B to aflatoxin G. The incorporation of [1-14C]acetate into aflatoxin was significantly inhibited at a concentration of 1 mM tolnaftate. The presence of zinc in the resuspension buffer resulted in reversal of the tolnaftate-induced inhibition of aflatoxin G1 biosynthesis.  相似文献   

15.
Aflatoxin Production in Meats. I. Stored Meats   总被引:2,自引:2,他引:0       下载免费PDF全文
Aflatoxins were produced on fresh beef (in which bacterial spoilage was delayed with antibiotics), ham, and bacon inoculated with toxinogenic fungi and stored at 15, 20 and 30 C. Meats stored at 10 C were spoiled by bacteria and yeast before detectable levels of aflatoxins were produced. High levels of aflatoxins were formed in meats stored at 20 C; one sample supported the production of 630 mug of aflatoxins per g of meat, the major portion (580 mug) of which was aflatoxin G(1). Meats stored below 30 C developed higher levels of aflatoxin G(1) than B(1), but at 30 C Aspergillus flavus produced equal amounts of B(1) and G(1), whereas A. parasiticus continued to produce more G(1) than B(1).  相似文献   

16.
Inhibition of aflatoxin formation by 2-mercaptoethanol.   总被引:2,自引:1,他引:1       下载免费PDF全文
2-Mercaptoethanol inhibits growth of Aspergillus parasiticus NRRL 3240 and aflatoxin formation by the fungus. When added to the resuspended medium, 2-mercaptoethanol inhibited [1-14C]acetate incorporation into both aflatoxins and neutral lipids, thereby showing that it acts at an early stage of aflatoxin biosynthesis. The inhibition is probably due to its chelating action on zinc, which is essential for aflatoxin production. It is proposed that any chelating agent that selectively binds to zinc will inhibit aflatoxin formation.  相似文献   

17.
The origin of aflatoxin G1 was studied using mutant strains of Aspergillus parasiticus blocked early in the pathway and by tracing 14C-labelled aflatoxin B1 (AFB1) in wild-type A. flavus and A. parasiticus strains. Sterigmatocystin (ST) was a precursor of AFB1, AFG1 and AFG2 in the four mutants examined. The identity of AFG1 was confirmed by mass spectrometry. No evidence for conversion of AFB1 to AFG1 was found. A rigorously controlled study of conversions of radioactivity based on preparative thin-layer chromatography of aflatoxins demonstrated that low levels of aflatoxin interconversions previously reported in the literature might actually be artifacts.  相似文献   

18.
Aflatoxins containing B(1), B(2), G(1) and G(2) obtained by growing Aspergillus parasiticus on SMKY liquid medium were tested for cytotoxicity (hemolysis) on RBC suspension in the presence and absence of L-ascorbic acid (AA). The results revealed that hemolysis was significantly increased on increasing the concentration of aflatoxin (0.5-3 microg ml(-1)). It was also found that pretreatment with AA (5-100 microg ml(-1)) significantly decreased aflatoxin-induced hemolysis. The solution chemistry of the interaction of aflatoxin with AA in aqueous solutions showed enhanced conversion of AFB(1) and AFG(1) to AFB(2) and AFG(2), respectively. Hemolytic, kinetic and mechanistic aspects of the interactions of aflatoxins and AA are discussed.  相似文献   

19.
Effect of Diurnal Temperature Cycles on the Production of Aflatoxin   总被引:2,自引:2,他引:0       下载免费PDF全文
Exposures to short periods of high temperature (40 to 50 C) in each 24-hr diurnal temperature cycle (average temperature ca. 25 C) reduced growth of Aspergillus parasiticus and production and accumulation of the aflatoxins when compared with cultures held continuously at 25 C. In contrast, diurnal cycles with an average temperature of ca. 25 C but with minima as low as 10 C did not appreciably affect either growth or toxin production. The ratio of production of aflatoxin B to aflatoxin G increased as the maximal temperature was raised but remained essentially unchanged with decreasing minimal temperatures.  相似文献   

20.
Among phytotherapic medicines, tablets of cascara sagrada (Rhamnus purshiana) dried bark, usually used as laxative, are commercially widespread in our market. Taking into account natural origin and/or inappropriate procedures that may allow the occurrence of toxinogenic Aspergillus flavus group, a study on susceptibility to aflatoxin contamination and natural aflatoxin incidence was performed by TLC and HPLC methods. This survey allows one to conclude that bark of Cascara Sagrada is a good substrate for the growth of A. parasiticus NRRL 2999 and for aflatoxins production. Natural anatoxins presence was detected on 2 from 9 raw material samples. One of them (irradiated sample) had only aflatoxin B1 (10 μg/kg) and the other (pasteurized) was positive for aflatoxin B1 (19 μg/kg); G1 (6 μg/kg) and B2 (1.46 μg/kg). Only one from 10 lots of tablets analyzed was positive for aflatoxin B1 (5.42 μg/kg) and B2 (0.32 μg/kg).Therefore, adequate quality control including an aflatoxins assay must be performed to guarantee the harmlessness of natural drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号