首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Pleiss J  Scheib H  Schmid RD 《Biochimie》2000,82(11):1043-1052
Lipases preferably hydrolyze the sn-1 and sn-3 acyl chain of triacylglycerols and sn-2 substituted analogs. Molecular modeling studies of the stereopreference of microbial lipases from Rhizopus oryzae, Rhizomucor miehei, Candida rugosa, and lipase B from Candida antarctica toward the hydrolysis of triacylglycerols and analogs revealed that sterical interactions occurring between the sn-2 substituent and the His gap affect substrate geometry, which can be monitored by a single torsion angle. This torsion angle correlates to the experimentally determined stereopreference and is, therefore, suitable to predict stereopreference by molecular modeling. For a given microbial lipase, stereopreference can be estimated by measuring the distance between the side chains of the His gap residues: a narrow His gap cleft implies sn-3 stereopreference for all investigated substrates; a medium-sized His gap discriminates by flexibility of the substrates: flexible substrates are hydrolyzed in sn-1, while rigid substrates are hydrolyzed in sn-3. A wide open His gap implies sn-1 stereopreference for all substrates. This rule holds for all investigated microbial wild type lipases and mutants.  相似文献   

2.
Stereoselectivity of several triacylglycerol lipases (EC 3.1.1.3) has been investigated in the enzymatic esterification of rac-1-O-octadecylglycerol with oleic acid in the presence of organic solvents, such as hexane. X-1(3)-O-Octadecylmonooleoylglycerols were the only products formed with most lipases; considerable proportions of X-1(3)-O-octadecyldioleoylglycerols were also formed with the lipase from Candida cylindracea. The mixtures of unesterified enantiomeric substrates, i.e., X-1(3)-O-octadecylglycerols were converted to their 3,5-dinitrophenylurethane derivatives and subsequently resolved into sn-1 and sn-3 enantiomers by HPLC on a chiral stationary phase (Sumichiral OA 2100). The data on enantiomeric excess (ee) and enantiomeric ratio (E) in the unesterified substrate revealed for the lipases from porcine pancreas, Rhizopus sp., Pseudomonas sp., Candida cylindracea, Chromobacterium viscosum and Penicillium cyclopium a distinct preference for 1-O-octadecyl-sn-glycerol over its enantiomer indicating stereoselectivity for the sn-3 position. For the lipase from Rhizomucor miehei a slight stereoselectivity for the sn-1 position was observed. Solvents, such as diethyl ether and dichloromethane, strongly inhibited the esterification reaction, but the enzymatic activity could be restored upon removal of such solvents by washing with hexane indicating reversible inhibition.  相似文献   

3.
In the present study, we propose a general and accessible method for the resolution of enantiomeric 1,2-sn- and 2,3-sn-diacylglycerols based on derivatization by isocyanates, which can be easily used routinely by biochemists to evaluate the stereopreferences of lipases in a time course of triacylglycerol (TAG) hydrolysis. Diacylglycerol (DAG) enantiomers were transformed into carbamates using achiral and commercially available reagents. Excellent separation and resolution factors were obtained for diacylglycerols present in lipolysis reaction mixtures. This analytical method was then applied to investigate the stereoselectivity of three model lipases (porcine pancreatic lipase, PPL; lipase from Rhizomucor miehei, MML; and recombinant dog gastric lipase, rDGL) in the time course of hydrolysis of prochiral triolein as a substrate. From the measurements of the diglyceride enantiomeric excess it was confirmed that PPL was not stereospecific (position sn-1 vs sn-3 of triolein), whereas MML and rDGL preferentially hydrolyzed the ester bond at position sn-1 and sn-3, respectively. The enantiomeric excess of DAGs was not constant with time, decreasing with the course of hydrolysis. This was due to the fact that DAGs can be products of the stereospecific hydrolysis of TAGs and substrates for stereospecific hydrolysis into monoacylglycerols.  相似文献   

4.
For the first time fully protected substrates with only one hydrolyzable ester bond have been used to analyze the substrate specificity of microbial lipases. In these substrates the ester is attached to the glycerol molecule in a precisely defined position. The use of three different substituents generates chirality and thus allows the analysis of positional specificities of individual lipases. Therefore, these new substrates have been used to study the enzymatic activities of two closely related lipases isolated from Staphylococcus aureus (TEN5) designated the 44 and 43 kDa lipase. The lipases, especially the 44 kDa molecule, show a high specificity for the hydrolysis of the ester in the sn-1 position (S-configuration), which is hydrolyzed by a factor of ten faster than that in the sn-3 position. In addition, the study demonstrates for the first time that the rate of hydrolysis of a fatty acid ester attached to the sn-2 position of glycerol by microbial lipases depends on the configuration of the substrate molecule.  相似文献   

5.
A new type of fluorogenic alkyldiacyl glycerols was synthesized and used as fluorogenic substrates for the analysis of lipase activities and stereoselectivities. These compounds contain perylene as a fluorophore and the trinitrophenylamino (TNP) residue as a quencher. Both substituents are covalently bound to the ω-ends of the sn-2 and sn-1(3) acyl chains, respectively. Upon glycerolipid hydrolysis, the residues are separated from each other thus allowing determination of lipase activity by the continuous increase in fluorescence intensity which is caused by dequenching. Using enantiomeric pairs of these compounds, we were able to analyze lipase stereoselectivity depending on the reaction medium. Mixtures of enantiomeric fluorogenic alkyldiacyl glycerols, selectively labelled with pyrene or perylene as fluorophores, can be used for a dual-wavelength “stereoassay” of lipases. Since absorption and emission maxima of both labels are clearly separated, hydrolysis of the respective enantiomeric substrates can be determined simultaneously, and the difference in the rates of hydrolysis can be taken as a parameter for the stereopreference of a lipase. Hydrolysis rates measured with perylene-substituted lipids are generally lower than those obtained with the pyrene analogs. Thus, with a mixture of perylene and pyrene-substituted lipids, we observe a higher apparent stereoselectivity of lipases since we measure a combination of stereo- and substrate selectivity. In the presence of albumin, all microbial lipases tested so far exhibit stereopreference for the sn-1 glycerol position. In our assay, the apparent stereoselectivities are highest if in the presence of albumin, the sn-1 position carries pyrene and the sn-3 position is substituted with perylene. The lipase stereoselectivity assay described here requires the simultaneous measurement of the fluorescence intensities at two different wavelengths in a single cuvette and can thus be carried out using existing and cheap instrumentation that was developed for the fluorimetric analysis of Ca++ concentrations. © 1996 Wiley-Liss, Inc.  相似文献   

6.
In the present study, porcine pancreatic lipase, rabbit gastric lipase, and human gastric lipase stereospecificity toward chemically alike, but sterically nonequivalent ester groups within one single triglyceride molecule was investigated. Lipolysis reactions were carried out on synthetic trioctanoin or triolein, which are homogenous, prochiral triglycerides, chosen as models for physiological lipase substrates. Diglyceride mixtures resulting from lipolysis were derivatized with optically active R-(+)-1-phenylethylisocyanate, to give diastereomeric carbamate mixtures, which were further separated by high performance liquid chromatography. Resolution of diastereomeric carbamates gave enantiomeric excess values, which reflect the lipases stereobias and clearly demonstrate the existence of a stereopreference by both gastric lipases for the sn-3 position. The stereoselectivity of human and rabbit gastric lipases, expressed as the enantiomeric excess percentage, was 54% and 70% for trioctanoin and 74% and 47% for triolein, respectively. The corresponding values with porcine pancreatic lipase were 3% in the case of trioctanoin and 8% in that of triolein. It is worth noting that rabbit gastric lipase, unlike human gastric lipase, became more stereoselective for the triglyceride with shorter acyl chains (trioctanoin). This is one of the most striking catalytic differences observed between these two gastric lipases.  相似文献   

7.
In the present study, porcine pancreatic lipase, rabbit gastric lipase, and human gastric lipase stereospecificity toward enantiomeric glyceride derivatives was kinetically investigated using the monomolecular film technique. Pseudoglycerides such as enantiomeric 1(3)-alkyl-2,3(1,2)-diacyl-sn-glycerol, enantiomeric 1(3)-alkyl-2-acyl-sn-glycerol, or enantiomeric 1(3)-acyl-2-acylamino-2-deoxy-sn-glycerol were synthesized in order to assess the lipase stereoselectivity during the hydrolysis of either the primary or the secondary ester position of these glycerides analogues. The cleaved acyl moiety was the same in both enantiomers, thereby excluding the possibility of effects occurring due to fatty acid specificity. We observed a porcine pancreatic lipase sn-3 stereoselectivity when using the enantiomeric 1(3)-alkyl-2-acylamino-2-deoxy-sn-glycerol (diglyceride analogue) which contrasted with the lack of stereoselectivity observed when using the enantiomeric 1(3)-alkyl-2,3(1,2)-diacyl-sn-glycerol (triglyceride analogue). The gastric lipases, in contrast to the pancreatic lipase, preferentially catalyze the hydrolysis of the primary sn-3 ester bond of the enantiomeric monoakyl-diacyl pair tested. From these kinetic data, high hydrolysis rates and no chiral discrimination were observed in the case of rabbit gastric lipase, whereas low rates and a clear chiral discrimination was noticed in the case of human gastric lipase during hydrolysis of the acyl chain from the secondary ester bond of 1(3)-alkyl-2-acyl enantiomers. It is particularly obvious that in the case of human gastric lipase decreasing the lipid packing increases the lipase sn-3 stereopreference during hydrolysis of the primary ester bond of the enantiomeric 2-acylamino derivatives (diglyceride analogue).  相似文献   

8.
Rhizopus oryzae lipase (ROL) was found to be a true lipase. This enzyme presents the interfacial activation phenomenon. The N-terminal amino acid sequence of ROL was compared to those of rhizopus lipases. Purified ROL possesses the same N-terminal sequence as the mature Rhizopus niveus lipase (RNL). This sequence was found in the last 28 amino acids of the propeptide sequence derived from the cDNA of Rhizopus delemar lipase (RDL). Using the baro-stat method, we have measured the hydrolysis rate of dicaprin films by ROL as a function of surface pressure. Our results show that Rhizopus oryzae lipase is markedly stereoselective of the sn-3 position of the 2,3 enantiomer of dicaprin. Polyclonal antibodies (PAB) directed against ROL have been produced and purified by immunoaffinity. The effects of these PAB on the interfacial behavior of ROL were determined. The immunoblot analysis with polyclonal antibodies anti-ROL (PAB anti-ROL) and various lipases shows a cross-immunoreactivity between the lipase from the rhizopus family (Rhizopus delemar lipase and Rhizopus arrhizus lipase).  相似文献   

9.
2-Phenyl propionic acid, ibuprofen and trans-2-phenyl-1-cyclohexanol were resolved using commercial Rhizomucor miehei lipase (Lipozyme IM20) and Candida rugosa lipase produced in our laboratory immobilised on EP100 polypropylene powder. Important differences were found on the enantioselectivity of both lipases in esterification reactions. Candida rugosa lipase was more enantioselective in the resolution of the tested substrates, especially with trans-2-phenyl-1-cyclohexanol, whereas the lipase from Rhizomucor miehei did not show catalytic activity with this substrate. © Rapid Science Ltd. 1998  相似文献   

10.
We propose a method for characterizing quantitatively the stereoselectivity of lipases during hydrolysis of triacylglycerols. Although it is of general applicability, we demonstrate it specifically for sn-1,3-regiospecific lipases. In this case the method generates a "stereoselectivity fingerprint" that consists of ratios of the specificity constants for the various reactions that produce and consume the 1,2-sn- and 2,3-sn-diacylglycerols. We use the method to determine the stereoselectivity fingerprint of several lipases during the hydrolysis of the prochiral substrate triolein. Our method opens up the possibility of correlating quantitative fingerprints with structural information, in the quest to elucidate the mechanisms underlying the stereoselectivity of lipases.  相似文献   

11.
We report the 1.7 Å resolution crystal structure of the Lip2 lipase from Yarrowia lipolytica in its closed conformation. The Lip2 structure is highly homologous to known structures of the fungal lipase family (Thermomyces lanuginosa, Rhizopus niveus, and Rhizomucor miehei lipases). However, it also presents some unique features that are described and discussed here in detail. Structural differences, in particular in the conformation adopted by the so-called lid subdomain, suggest that the opening mechanism of Lip2 may differ from that of other fungal lipases. Because the catalytic activity of lipases is strongly dependent on structural rearrangement of this mobile subdomain, we focused on elucidating the molecular mechanism of lid motion. Using the x-ray structure of Lip2, we carried out extensive molecular-dynamics simulations in explicit solvent environments (water and water/octane interface) to characterize the major structural rearrangements that the lid undergoes under the influence of solvent or upon substrate binding. Overall, our results suggest a two-step opening mechanism that gives rise first to a semi-open conformation upon adsorption of the protein at the water/organic solvent interface, followed by a further opening of the lid upon substrate binding.  相似文献   

12.
Endothelial lipase (EL) is a phospholipase A1 (PLA1) enzyme that hydrolyzes phospholipids at the sn-1 position to produce lysophospholipids and free fatty acids. Measurement of the PLA1 activity of EL is usually accomplished by the use of substrates that are also hydrolyzed by lipases in other subfamilies such as PLA2 enzymes. In order to distinguish PLA1 activity of EL from PLA2 enzymatic activity in cell-based assays, cell supernatants, and other nonhomogeneous systems, a novel fluorogenic substrate with selectivity toward PLA1 hydrolysis was conceived and characterized. This substrate was preferred by PLA1 enzymes, such as EL and hepatic lipase, and was cleaved with much lower efficiency by lipases that exhibit primarily triglyceride lipase activity, such as LPL or a lipase with PLA2 activity. The phospholipase activity detected by the PLA1 substrate could be inhibited with the small molecule esterase inhibitor ebelactone B. Furthermore, the PLA1 substrate was able to detect EL activity in human umbilical vein endothelial cells in a cell-based assay. This substrate is a useful reagent for identifying modulators of PLA1 enzymes, such as EL, and aiding in characterizing their mechanisms of action.  相似文献   

13.
In an effort to explore the feasibility of converting a lipase into an esterase by modifying the lid region, we designed and characterized two novel Rhizopus chinensis lipase variants by lid swapping. The substrate specificity of an R. chinensis lipase was successfully modified toward water-soluble substrates, that is, turned into an esterase, by replacing the hydrophobic lid with a hydrophilic lid from ferulic acid esterase from Aspergillus niger. Meanwhile, as a comparison, the lid of R. chinensis lipase was replaced by a hydrophobic lid from Rhizomucor miehei lipase, which did not alter its substrate specificity but led to a 5.4-fold higher catalytic efficiency (k*cat/K*m) toward p-nitrophenyl laurate. Based on the analysis of structure-function relationships, it suggests that the amphipathic nature of the lid is very important for the substrate specificity. This study provides new insight into the structural basis of lipase specificities and a way to tune the substrate preference of lipases.  相似文献   

14.
15.
M J Haas  J Allen  T R Berka 《Gene》1991,109(1):107-113
A lambda gt11 cDNA library was constructed in Escherichia coli using poly(A)-selected mRNA from the fungus, Rhizopus (Rp.) delemar. Lipase-producing members of the library were identified by means of a phenotypic score wherein the release of fatty acids by lipase causes a characteristic color change in the growth medium. One such isolate contained a 1287-bp insert (LIP cDNA) which hybridizes to 1.25- to 1.35-kb mRNA species from Rp. delemar. The lipase produced in E. coli containing the LIP cDNA exhibits the same substrate selectivity as the authentic fungal enzyme, hydrolyzing ester bonds at the stereospecific numbering (sn) sn-1 and sn-3, but not the sn-2, positions of triglycerides. The complete nucleotide sequence of the LIP cDNA was determined. By reference to the N-terminal sequence of authentic Rp. delemar lipase, the lipase-encoding region was identified within this fragment. The LIP cDNA encodes a putative preprolipase consisting of a 26-amino-acid(aa) signal sequence, a 97-aa propeptide, and a 269-aa mature enzyme. The predicted mature lipase has the same molecular weight and aa composition as that of Rp. delemar, is highly homologous to that produced by the fungus Rhizomucor miehei, and contains the consensus pentapeptide (Gly-Xaa-Ser-Yaa-Gly) which is conserved among lipolytic enzymes. It is concluded that the LIP cDNA is an essentially full-length analogue of the lipase-encoding gene of Rp. delemar. The lipase encoded by the LIP cDNA occupies a cytoplasmic location when synthesized in E. coli. Unprocessed forms of the lipase accumulate in E. coli.  相似文献   

16.
In the present study, we propose a continuous assay for the screening of sn-2 lipases by using triacylglycerols (TAGs) from Aleurites fordii seed (tung oil) and a synthetic TAG containing the α-eleostearic acid at the sn-2 position and the oleic acid (OA) at the sn-1 and sn-3 positions [1,3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol (sn-OEO)]. Each TAG was coated into a microplate well, and the lipase activity was measured by optical density increase at 272 nm due to transition of α-eleostearic acid from the adsorbed to the soluble state. The sn-1,3-regioselective lipases human pancreatic lipase (HPL), LIP2 lipase from Yarrowia lipolytica (YLLIP2), and a known sn-2 lipase, Candida antarctica lipase A (CALA) were used to validate this method. TLC analysis of lipolysis products showed that the lipases tested were able to hydrolyze the sn-OEO and the tung oil TAGs, but only CALA hydrolyzed the sn-2 position. The ratio of initial velocities on sn-OEO and tung oil TAGs was used to estimate the sn-2 preference of lipases. CALA was the enzyme with the highest ratio (0.22 ± 0.015), whereas HPL and YLLIP2 showed much lower ratios (0.072 ± 0.026 and 0.038 ± 0.016, respectively). This continuous sn-2 lipase assay is compatible with a high sample throughput and thus can be applied to the screening of sn-2 lipases.  相似文献   

17.
The proteolytic activity of 34 commercial lipase preparations (CLP) was determined using a labeled casein substrate. Only three CLP were free from proteolytic activity. Porcine pancreatic lipases exhibited levels of proteolytic activity comparable to or greater than that of a reference porcine trypsin. Bacterial lipases contained up to 10% of the proteolytic activity of commercial trypsin. Proteolytic activities in lipases from fungal species were present at low levels (<1% of the activity in trypsin). Among preparations of fungal origin, lipases from Aspergillus niger and Mucor javanicus were highest in proteolytic activity; Aspergillus oryzae and Pseudomonas cepacia lipases were lowest. Proteins in CLP were separated by non-denaturing PAGE; between 4 and 17 protein bands in the range &#104 6.5- &#83 200 kDa were observed. With the exception of a single pair of Rhizomucor miehei lipases, the distribution of apparent molecular weights (AMW) was unique to each preparation. Bands of caseinolytic activity in commercial lipases were visualized by applying a zymographic technique. CLP contained between 0 (P. cepacia lipases) and 6 (porcine pancreas lipase and Rhizopus oryzae lipase) discrete proteolytic bands. Common themes of proteolytic AMW emerged, including 21-23 kDa and 30-35 kDa bands.  相似文献   

18.
Fluorescent triacylglycerol analogs were synthesized as covalent inhibitors of lipase activity. The respective 1(3), 2-O-dialkylglycero-3(1)-alkyl-phosphonic acid p-nitrophenyl esters contain a fluorescent pyrenealkyl chain and a long-chain alkyl residue bound to the sn-2 and sn-1(3) positions of glycerol, respectively. The phosphonic acid p-nitrophenyl ester bond is susceptible to nucleophilic substitution by the active serine residue in the catalytic triad of a lipase, leading to inactivation of the enzyme. The fluorescent dialkylglycerophosphonates contain two chiral centers, the sn-2 carbon of glycerol and the phosphorus atom. The (1-O-hexadecyl-2-O-pyrenedecyl-sn-glycero)-O-(p-nitrophenyl)-n-hex yl- phosphonate, first peak during HPLC separation and the (3-O-hexadecyl-2-O-pyrenedecyl-sn-glycero)-O-(p-nitrophenyl)-n-hex yl- phosphonate, second peak during HPLC separation were found to be potent lipase inhibitors. After incubation of an equimolar amount of these isomers with lipase from Rhizopus oryzae complete inactivation was observed. Stable conjugates containing a 1 : 1 molar ratio of lipid to protein were formed. The spatial proximity of the fluorescently labeled sn-2 alkyl chain of the inhibitor and tryptophan residues of the lipase was assessed by fluorescence resonance energy transfer. The extent of tryptophan fluorescence quenching and the concomitant increase in pyrene fluorescence upon excitation of lipase tryptophans was found to be similar for the above-mentioned isomers. Thus, the (labeled) sn-2 alkyl chains of a triacylglycerol analog are likely to interact with the same binding site of the R. oryzae lipase, irrespective of their steric configuration. However, it was shown that the extent of resonance energy transfer is strongly influenced by the reaction medium, indicating conformational changes of the lipase in different environments.  相似文献   

19.
Diacylglycerol lipase (glycerol ester hydrolase, EC 3.1.1.3) activities were investigated in subcellular fractions from neonatal and adult rat liver in order to determine whether one or more different lipases might provide the substrate for the developmentally expressed, activity monoacylglycerol acyltransferase. The assay for diacylglycerol lipase examined the hydrolysis of sn-1-stearoyl,2- [14C]oleoylglycerol to labeled monoacylglycerol and fatty acid. Highest specific activities were found in lysosomes (pH 4.8) and cytosol and microsomes (pH 8). The specific activity from plasma membrane from adult liver was 5.8-fold higher than the corresponding activity in the neonate. In other fractions, however, no developmental differences were observed in activity or distribution. In both lysosomes and cytosol, 75 to 90% of the labeled product was monoacylglycerol, suggesting that these fractions contained relatively little monoacylglycerol lipase activity. In contrast, 80% of the labeled product from microsomes was fatty acid, suggesting the presence of monoacylglycerol lipase in this fraction. Analysis of the reaction products strongly suggested that the lysosomal and cytosolic diacylglycerol lipase activities hydrolyzed the acyl-group at the sn-1 position. The effects of serum and NaCl on diacylglycerol lipase from each of the subcellular fractions differed from those effects routinely observed on lipoprotein lipase and hepatic lipase, suggesting that the hepatic diacylglycerol lipase activities were not second functions of these triacylglycerol lipases. Cytosolic diacylglycerol lipase activity from neonatal liver and adult liver was characterized. The apparent Km for 1-stearoyl,2-oleoylglycerol was 115 microM. There was no preference for a diacylglycerol with arachidonate in the sn-2 position. Bovine serum albumin stimulated the activity, whereas dithiothreitol, N-ethylmaleimide, and ATP inhibited the activity. Both sn-1(3)- and 2-monooleylglycerol ethers stimulated cytosolic diacylglycerol lipase activity 2-3-fold. The corresponding amide analogs stimulated 28 to 85%, monooleoylglycerol itself had little effect, and 1-alkyl- or 1-acyl-lysophosphatidylcholine inhibited the activity. These data provide the first characterization of hepatic subcellular lipase activities from neonatal and adult rat liver and suggest that independent diacylglycerol and monoacylglycerol lipase activities are present in microsomal membranes and that the microsomal and cytosolic diacylglycerol lipase activities may describe an ambipathic enzyme. The data also suggest possible cellular regulation by monoalkylglycerols.  相似文献   

20.
A general high-throughput method for in silico biochemical profiling of enzyme families has been developed based on covalent docking of potential substrates into the binding sites of target enzymes. The method has been tested by systematically docking transition state--analogous intermediates of 12 substrates into the binding sites of 20 alpha/beta hydrolases from 15 homologous families. To evaluate the effect of side chain orientations to the docking results, 137 crystal structures were included in the analysis. A good substrate must fulfil two criteria: it must bind in a productive geometry with four hydrogen bonds between the substrate and the catalytic histidine and the oxyanion hole, and a high affinity of the enzyme-substrate complex as predicted by a high docking score. The modelling results in general reproduce experimental data on substrate specificity and stereoselectivity: the differences in substrate specificity of cholinesterases toward acetyl- and butyrylcholine, the changes of activity of lipases and esterases upon the size of the acid moieties, activity of lipases and esterases toward tertiary alcohols, and the stereopreference of lipases and esterases toward chiral secondary alcohols. Rigidity of the docking procedure was the major reason for false positive and false negative predictions, as the geometry of the complex and docking score may sensitively depend on the orientation of individual side chains. Therefore, appropriate structures have to be identified. In silico biochemical profiling provides a time efficient and cost saving protocol for virtual screening to identify the potential substrates of the members of large enzyme family from a library of molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号