首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-O-[3H]Alkyl-2-lyso-sn-glycero-3-phosphocholine (1-O-[3H]alkyl-2-lyso-GPC) incubated with human polymorphonuclear leukocytes (PMN) for 30 min is metabolized to 1-O-alkyl-2-acyl-GPC containing greater than 80% arachidonate at the 2 position (Chilton, F. H., O'Flaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L. (1983) J. Biol. Chem. 258, 7268-7271). PMN containing 1-O-[3H]alkyl-2-arachidonoyl-GPC incorporated into their cellular phospholipids in this manner were stimulated with Ca2+ ionophore (A23187). Within 5 min after stimulation, 14%, 7%, and 7% of the total 1-O-[3H]alkyl-2-arachidonoyl-GPC in the cells had been converted to 1-O-[3H]alkyl-2-acetyl-GPC (platelet-activating factor), 1-O-[3H]alkyl-2-lyso-GPC, and 3H-labeled neutral lipid, respectively. Stimulation by opsonized zymosan yielded similar results. In related studies, cells were labeled with 1-O-hexadecyl-2-arachidonoyl-GPC containing a [methyl-14C] choline moiety. The nature of the long-chain acyl residues in the sn-2 position of the labeled 1-O-hexadecyl-2-acyl-GPC remaining after stimulation with A23187 was examined. Analysis by high-performance liquid chromatography using synthetic 1-O-hexadecyl-2-acyl-GPC standards indicated there is a time-dependent loss of arachidonate from the 2 position of the labeled 1-O-hexadecyl-2-arachidonoyl-GPC followed by reacylation by other fatty acids (primarily linoleic and oleic). This shift in the acylation pattern exhibited after Ca2+ ionophore stimulation was further examined in PMN preincubated with A23187 and subsequently incubated with labeled 1-O-alkyl-2-lyso-GPC; the stimulated cells produced 1-O-[3H]alkyl-2-acetyl-GPC (greater than 15% of total label) and 1-O-[3H]alkyl-2-acyl-GPC containing linoleic acid and oleic acid, rather than arachidonic acid in the sn-2 position. The findings demonstrate that upon stimulation of PMN, 1-O-alkyl-2-arachidonoyl-GPC can yield arachidonate and 1-O-alkyl-2-lyso-GPC; the 1-O-alkyl-2-lyso-GPC formed may be acetylated producing platelet-activating factor or reacylated with fatty acyl residues other than arachidonate.  相似文献   

2.
Short- and long-chain 1-O-alkyl-2-acylaminodeoxyglycero- and alkoxy-alkylphosphonic acid p-nitrophenyl esters were synthesized as inhibitors for analytical and mechanistic studies on lipolytic enzymes. The respective compounds contain perylene or nitrobenzoxadiazole as reporter fluorophores covalently bound to the omega-ends of the respective 2-acylamino- and alkoxy- residues. Their inhibitory effects on the activities of three selected lipases showing different substrate preferences were determined, including the lipases from Rhizopus oryzae, Pseudomonas species, and Pseudomonas cepacia. R. oryzae lipase reacted much better with the single-chain inhibitors than the two-chain deoxyglycerolipids. In contrast, P. cepacia lipase was inactivated by perylene-containing two-chain phosphonate (XXII) to a larger extent as compared to the other inhibitors whereas Pseudomonas species lipase interacted efficiently and without any preferences with all inhibitors used in this study. In summary, the different lipases show a very characteristic reactivity pattern not only with respect to triacylglycerol substrates but also to their structurally related inhibitors. Thus, the novel phosphonates might be useful tools not only for analysis and discrimination of known lipolytic enzymes but also for discovery of yet unknown lipases/esterases in biological samples.  相似文献   

3.
The substrate specificity of a calcium-independent, 97-kDa phospholipase B purified from guinea pig intestine was further investigated using various natural and synthetic lipids. The enzyme was equally active toward enantiomeric phosphatidylcholines under conditions allowing a strict phospholipase A activity. The lysophospholipase activity declined with the following substrates: 1-acyl-sn-glycero-3-phosphocholine greater than 1-palmitoyl-propanediol-3-phosphocholine greater than 1-palmitoyl-glycol-2-phosphocholine, suggesting some influence of the polar residue vicinal to the cleavage site. The enzyme also acted on various neutral lipids including triacylglycerol, diacylglycerol, and monoacylglycerol, whereas cholesteryl oleate remained refractory to enzymatic hydrolysis. The lipase hydrolyzed sequentially the sn-2 and sn-1 acyl ester bonds of diacylglycerol, although some direct cleavage of the external acyl ester bond could also occur, as shown with diacylglycerol analogues bearing a nonhydrolyzable alkyl ether or amide bond in the sn-1 or sn-2 position. The three main activities of the enzyme (phospholipase A2, lysophospholipase, and diacylglycerol lipase) were resistant to 4-bromophenacyl bromide, but they were inhibited by N-ethylmaleimide, 5,5'-dithiobis-(2-nitrobenzoic acid), and diisopropyl fluorophosphate, suggesting the possible involvement of both cysteine and serine residues in a single active site. It is concluded that guinea pig intestinal phospholipase B, which was also detected in rat and rabbit, is actually a glycerol ester lipase with broad substrate specificity and some unique enzymatic properties.  相似文献   

4.
Diacylglycerol lipase (glycerol ester hydrolase, EC 3.1.1.3) activities were investigated in subcellular fractions from neonatal and adult rat liver in order to determine whether one or more different lipases might provide the substrate for the developmentally expressed, activity monoacylglycerol acyltransferase. The assay for diacylglycerol lipase examined the hydrolysis of sn-1-stearoyl,2- [14C]oleoylglycerol to labeled monoacylglycerol and fatty acid. Highest specific activities were found in lysosomes (pH 4.8) and cytosol and microsomes (pH 8). The specific activity from plasma membrane from adult liver was 5.8-fold higher than the corresponding activity in the neonate. In other fractions, however, no developmental differences were observed in activity or distribution. In both lysosomes and cytosol, 75 to 90% of the labeled product was monoacylglycerol, suggesting that these fractions contained relatively little monoacylglycerol lipase activity. In contrast, 80% of the labeled product from microsomes was fatty acid, suggesting the presence of monoacylglycerol lipase in this fraction. Analysis of the reaction products strongly suggested that the lysosomal and cytosolic diacylglycerol lipase activities hydrolyzed the acyl-group at the sn-1 position. The effects of serum and NaCl on diacylglycerol lipase from each of the subcellular fractions differed from those effects routinely observed on lipoprotein lipase and hepatic lipase, suggesting that the hepatic diacylglycerol lipase activities were not second functions of these triacylglycerol lipases. Cytosolic diacylglycerol lipase activity from neonatal liver and adult liver was characterized. The apparent Km for 1-stearoyl,2-oleoylglycerol was 115 microM. There was no preference for a diacylglycerol with arachidonate in the sn-2 position. Bovine serum albumin stimulated the activity, whereas dithiothreitol, N-ethylmaleimide, and ATP inhibited the activity. Both sn-1(3)- and 2-monooleylglycerol ethers stimulated cytosolic diacylglycerol lipase activity 2-3-fold. The corresponding amide analogs stimulated 28 to 85%, monooleoylglycerol itself had little effect, and 1-alkyl- or 1-acyl-lysophosphatidylcholine inhibited the activity. These data provide the first characterization of hepatic subcellular lipase activities from neonatal and adult rat liver and suggest that independent diacylglycerol and monoacylglycerol lipase activities are present in microsomal membranes and that the microsomal and cytosolic diacylglycerol lipase activities may describe an ambipathic enzyme. The data also suggest possible cellular regulation by monoalkylglycerols.  相似文献   

5.
We report on the determination of active enzyme components in pure and crude lipases, using fluorescent inhibitors for covalent modification and visualization of the enzymatically active proteins. Lipase-specific compounds are triacylglycerol analogs, namely 1,2(2, 3)-di-O-alkylglyceroalkylphosphonic acid-p-nitrophenyl esters, containing a fluorescent substituent bound to the omega-end of an alkyl chain. Inhibitors derived from single-chain alcohols, such as p-nitrophenyl esters of fluorescent alkyl phosphonates, react with lipases and esterases. The p-nitrophenyl ester bond is susceptible toward nucleophilic attack by the active serine of the lipolytic enzyme. This reaction is stoichiometric, specific, and irreversible. Stable lipid-protein complexes are formed which can be analyzed on the basis of their fluorescent signal. From fluorescence intensity the moles of active serine (enzyme) were accurately determined. A lipase-specific inhibitor was used for the analysis of a commercial lipase preparation from Rhizomucor miehei. After incubation of the enzyme with the fluorescent lipid, a single fluorescence band was observed after SDS-gel electrophoresis, indicating the presence of a single lipase in the crude enzyme material. A linear correlation was obtained between fluorescence intensity and the amount of enzyme. Using a combination of different inhibitors, we were able to discriminate between lipases and esterases.  相似文献   

6.
Enzymes for the biosynthesis and degradation of the endocannabinoid 2-arachidonoyl glycerol (2-AG) have been cloned and are the sn-1-selective-diacylglycerol lipases alpha and beta (DAGLalpha and beta) and the monoacylglycerol lipase (MAGL), respectively. Here, we used membranes from COS cells over-expressing recombinant human DAGLalpha to screen new synthetic substances as DAGLalpha inhibitors, and cytosolic fractions from wild-type COS cells to look for MAGL inhibitors. DAGLalpha and MAGL activities were assessed by using sn-1-[14C]-oleoyl-2-arachidonoyl-glycerol and 2-[3H]-arachidonoylglycerol as substrates, respectively. We screened known compounds as well as new phosphonate derivatives of oleic acid and fluoro-phosphinoyl esters of different length. Apart from the general lipase inhibitor tetrahydrolipstatin (orlistat) (IC50 approximately 60 nM), the most potent inhibitors of DAGLalpha were O-3640 [octadec-9-enoic acid-1-(fluoro-methyl-phosphoryloxymethyl)-propylester] (IC50 = 500 nM), and O-3841 [octadec-9-enoic acid 1-methoxymethyl-2-(fluoro-methyl-phosphinoyloxy)-ethyl ester] (IC50 = 160 nM). Apart from being almost inactive on MAGL, these two compounds showed high selectivity over rat liver triacylglycerol lipase, rat N-acylphosphatidyl-ethanolamine-selective phospholipase D (involved in anandamide biosynthesis), rat fatty acid amide hydrolase and human recombinant cannabinoid CB1 and CB2 receptors. Methylarachidonoyl-fluorophosphonate and the novel compound UP-101 [O-ethyl-O-p-nitro-phenyl oleylphosphonate] inhibited both DAGLalpha and MAGL with similar potencies (IC50 = 0.8-0.1 and 3.7-3.2 microM, respectively). Thus, we report the first potent and specific inhibitors of the biosynthesis of 2-AG that may be used as pharmacological tools to investigate the biological role of this endocannabinoid.  相似文献   

7.
Chemical modification of potato apyrase suggests that tryptophan residues are close to the nucleotide binding site. Kd values (+/- Ca2+) for the complexes of apyrase with the non-hydrolysable phosphonate adenine nucleotide analogues, adenosine 5'-(beta,gamma-methylene) triphosphate and adenosine 5'-(alpha,beta-methylene) diphosphate, were obtained from quenching of the intrinsic enzyme fluorescence. Other fluorescent nucleotide analogues (2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate, 2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-diphosphate. 1,N6-ethenoadenosine triphosphate and 1,N6-ethenoadenosine diphosphate) were hydrolysed by apyrase in the presence of Ca2+, indicating binding to the active site. The dissociation constants for the binding of these analogues were calculated from both the decrease of the protein (tryptophan) fluorescence and enhancement of the nucleotide fluorescence. Using the sensitised acceptor (nucleotide analogue) fluorescence method, energy transfer was observed between enzyme tryptophans and ethene-derivatives. These results support the view that tryptophan residues are present in the nucleotide-binding region of the protein, appropriately oriented to allow the energy transfer process to occur.  相似文献   

8.
We assessed the ability of endothelial lipase (EL) to hydrolyze the sn-1 and sn-2 fatty acids (FAs) from HDL phosphatidylcholine. For this purpose, reconstituted discoidal HDLs (rHDLs) that contained free cholesterol, apolipoprotein A-I, and either 1-palmitoyl-2-oleoylphosphatidylcholine, 1-palmitoyl-2-linoleoylphosphatidylcholine, or 1-palmitoyl-2-arachidonylphosphatidylcholine were incubated with EL- and control (LacZ)-conditioned media. Gas chromatography analysis of the reaction mixtures revealed that both the sn-1 (16:0) and sn-2 (18:1, 18:2, and 20:4) FAs were liberated by EL. The higher rate of sn-1 FA cleavage compared with sn-2 FA release generated corresponding sn-2 acyl lyso-species as determined by MS analysis. EL failed to release sn-2 FA from rHDLs containing 1-O-1'-hexadecenyl-2-arachidonoylphosphatidylcholine, whose sn-1 position contained a nonhydrolyzable alkyl ether linkage. The lack of phospholipase A(2) activity of EL and its ability to liberate [(14)C]FA from [(14)C]lysophosphatidylcholine (lyso-PC) led us to conclude that EL-mediated deacylation of phosphatidylcholine (PC) is initiated at the sn-1 position, followed by the release of the remaining FA from the lyso-PC intermediate. Thin-layer chromatography analysis of cellular lipids obtained from EL-overexpressing cells revealed a pronounced accumulation of [(14)C]phospholipid and [(14)C]triglyceride upon incubation with 1-palmitoyl-2-[1-(14)C]linoleoyl-PC-labeled HDL(3), indicating the ability of EL to supply cells with unsaturated FAs.  相似文献   

9.
Incubation of photomixotrophic cell suspension cultures of rape (Brassica napus) and heterotrophic cell suspension cultures of soya (Glycine max) with 1-O-[1'-14C]hexadecyl-sn-glycerol or rac-1-O-[1'-14C]hexadecylglycerol leads in high yield (up to 78%) to labeled 1-O-hexadecyl-2-acyl-sn-glycero-3-phosphocholines. Alkaline hydrolysis of the choline glycerophospholipids yields pure 1-O-[1'-14C]hexadecyl-sn-glycero-3-phosphocholine. 1-O-[1'-14C]Hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) is obtained by acetylating the lyso compound. The semi-synthetic preparation described leads to labeled platelet activating factor in an overall yield of 50-60% without loss of specific activity.  相似文献   

10.
In the present study, we propose a continuous assay for the screening of sn-2 lipases by using triacylglycerols (TAGs) from Aleurites fordii seed (tung oil) and a synthetic TAG containing the α-eleostearic acid at the sn-2 position and the oleic acid (OA) at the sn-1 and sn-3 positions [1,3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol (sn-OEO)]. Each TAG was coated into a microplate well, and the lipase activity was measured by optical density increase at 272 nm due to transition of α-eleostearic acid from the adsorbed to the soluble state. The sn-1,3-regioselective lipases human pancreatic lipase (HPL), LIP2 lipase from Yarrowia lipolytica (YLLIP2), and a known sn-2 lipase, Candida antarctica lipase A (CALA) were used to validate this method. TLC analysis of lipolysis products showed that the lipases tested were able to hydrolyze the sn-OEO and the tung oil TAGs, but only CALA hydrolyzed the sn-2 position. The ratio of initial velocities on sn-OEO and tung oil TAGs was used to estimate the sn-2 preference of lipases. CALA was the enzyme with the highest ratio (0.22 ± 0.015), whereas HPL and YLLIP2 showed much lower ratios (0.072 ± 0.026 and 0.038 ± 0.016, respectively). This continuous sn-2 lipase assay is compatible with a high sample throughput and thus can be applied to the screening of sn-2 lipases.  相似文献   

11.
Lipid biosynthesis in developing perilla seeds   总被引:3,自引:0,他引:3  
Ichihara K  Suda Y 《Phytochemistry》2003,63(2):139-143
In developing seeds of Perilla frutescens var. crispa, the triacylglycerol fraction was found to accumulate between 15 and 19 days after flowering. Of this, 65% of the total fatty acids was alpha-linolenic acid in the mature seeds, with the latter being esterified in comparable amounts at all positions (sn-1, 2 and 3) of the glycerol residue. It was also demonstrated that, 1-acylglycerol-3-phosphate acyltransferase, which catalyzes esterification at the sn-2 position of the glycerol backbone, showed low activities for alpha-linolenoyl-CoA as substrate. These findings suggest that the diacylglycerol precursor for triacylglycerol synthesis is not directly derived from phosphatidic acid through the glycerol phosphate pathway.  相似文献   

12.
To understand the role of the ester moiety of the sn-1 acyl chain in phospholipase A2-glycerophospholipid interactions, we introduced an additional methylene residue between the glycerol C1 and C2 carbon atoms of phosphatidylcholines, and then studied the kinetics of hydrolysis and the binding of such butanetriol-containing phospholipids with Naja naja phospholipase A2. Hydrolysis was monitored by using phospholipids containing a NBD-labelled sn-2 acyl chain and binding was ascertained by measuring the protein tryptophan fluorescence. The hydrolysis of butanetriol-containing phospholipids was invariably slower than that of the glycerol-containing phospholipids. In addition, the enzyme binding with the substrate was markedly decreased upon replacing the glycerol residue with the 1,3,4-butanetriol moiety in phosphatidylcholines. These results have been interpreted to suggest that the sn-1 ester group in glycerophospholipids could play an important role in phospholipase A2-phospholipid interactions.  相似文献   

13.
The lipases from Rhizopus and Rhizomucor are members of the family of Mucorales lipases. Although they display high sequence homology, their stereoselectivity toward triradylglycerols (sn-2 substituted triacylglycerols) varies. Four different triradylglycerols were investigated, which were classified into two groups: flexible substrates with rotatable O'-C1' ether or ester bonds adjacent to C2 of glycerol and rigid substrates with a rigid N'-C1' amide bond or a phenyl ring in sn-2. Although Rhizopus lipase shows opposite stereopreference for flexible and rigid substrates (hydrolysis in sn-1 and sn-3, respectively), Rhizomucor lipase hydrolyzes both groups of triradylglycerols preferably in sn-1. To explain these experimental observations, computer-aided molecular modeling was applied to study the molecular basis of stereoselectivity. A generalized model for both lipases of the Mucorales family highlights the residues mediating stereoselectivity: (1) L258, the C-terminal neighbor of the catalytic histidine, and (2) G266, which is located in a loop contacting the glycerol backbone of a bound substrate. Interactions with triradylglycerol substrates are dominated by van der Waals contacts. Stereoselectivity can be predicted by analyzing the value of a single substrate torsion angle that discriminates between sn-1 and sn-3 stereopreference for all substrates and lipases investigated here. This simple model can be easily applied in enzyme and substrate engineering to predict Mucorales lipase variants and synthetic substrates with desired stereoselectivity.  相似文献   

14.
We studied the metabolism of phospholipids exogenously added to cultures of the protozoan, Tetrahymena pyriformis. Tetrahymena cells were found to metabolize the extracellular phospholipids and the fatty acyl chains of the latter were accumulated predominantly as a form of triacylglycerol in the cells. This metabolism was considered to be initiated via endocytosis of phospholipid vesicles, as judged from the following facts: Cytochalasin B, an inhibitor of endocytosis, suppressed the metabolism almost completely. Phospholipid vesicles were incorporated into a phagosome-like structure in Tetrahymena cells, as observed under an electron microscope. When phospholipids doubly labeled with 14C and 3H at the glycerol moiety and fatty acyl chain, respectively, were incubated with Tetrahymena cells, the glycerol moiety and fatty acyl chain at the sn-2-position of the exogenous phospholipids were incorporated into the cellular triacylglycerol fraction in a 1 to 1 ratio. Monoacylglycerol acyltransferase activity was detected in the microsomal fraction of Tetrahymena cells. From these results, together with those of our previous study on lysosomal phospholipid hydrolysis in Tetrahymena (J. Biochem. 99, 125-133 (1986)), it is suggested that the extracellular phospholipids which were taken up by the cells via endocytosis were hydrolyzed through the action of lysosomal phospholipases A1 and C, and also that one of the products, sn-2-monoacylglycerol, served as an acyl acceptor for the synthesis of triacylglycerol via the microsomal "monoacylglycerol pathway."  相似文献   

15.
Acute hydrazine exposure elevated rat liver triacylglycerol content and produced a rapid rise in triacylglycerol production from sn-[1,3-14C]glycerol 3-phosphate by liver homogenate and microsomal fractions. Hydrazine treatment also increased the incorporation of [1,3-14C]glycerol into hepatic triacylglycerol by the intact animal. Homogenates of hepatocyte monolayers exposed to hydrazine in vitro also exhibited an increased capacity to form triacylglycerol from sn-[1,3-14C]glycerol 3-phosphate. Hydrazine-dependent increases in hepatic triacylglycerol production measured in vitro correlated well with an increase in microsomal phosphatidate phosphohydrolase (EC 3.1.3.4) activity. Therefore, the fatty liver associated with hydrazine exposure may be explained in part by a rise in the enzymatic capacity of hepatic triacylglycerol biosynthesis.  相似文献   

16.
The binding of Thermomyces lanuginosa lipase and its mutants [TLL(S146A), TLL(W89L), TLL(W117F, W221H, W260H)] to the mixed micelles of cis-parinaric acid/sodium taurodeoxycholate at pH 5.0 led to the quenching of the intrinsic tryptophan fluorescence emission (300-380 nm) and to a simultaneous increase in the cis-parinaric acid fluorescence emission (380-500 nm). These findings were used to characterize the Thermomyces lanuginosa lipase/cis-parinaric acid interactions occurring in the presence of sodium taurodeoxycholate.The fluorescence resonance energy transfer and Stern-Volmer quenching constant values obtained were correlated with the accessibility of the tryptophan residues to the cis-parinaric acid and with the lid opening ability of Thermomyces lanuginosa lipase (and its mutants). TLL(S146A) was found to have the highest fluorescence resonance energy transfer. In addition, a TLL(S146A)/oleic acid complex was crystallised and its three-dimensional structure was solved. Surprisingly, two possible binding modes (sn-1 and antisn1) were found to exist between oleic acid and the catalytic cleft of the open conformation of TLL(S146A). Both binding modes involved an interaction with tryptophan 89 of the lipase lid, in agreement with fluorescence resonance energy transfer experiments.As a consequence, we concluded that TLL(S146A) mutant is not an appropriate substitute for the wild-type Thermomyces lanuginosa lipase for mimicking the interaction between the wild-type enzyme and lipids.  相似文献   

17.
Duan ZQ  Du W  Liu DH 《Bioresource technology》2011,102(23):11048-11050
We investigated the influence of solvent on the positional selectivity of Novozym 435 which was the immobilized Candida antarctica lipase B (CALB) during the esterification of oleic acid with glycerol for 1,3-diolein preparation previously. Herein, molecular modeling was used to elucidate the underlying mechanism of the solvent effect on the positional selectivity of the enzyme. The results showed that the binding energy of sn-1 hydroxyl of glycerol molecular with CALB became higher, and the binding energy of sn-2 hydroxyl of glycerol molecular with CALB became lower along with the increase of the solvent log P. It was demonstrated that, increasing log P of the solvent, the enzyme selectivity to sn-1 hydroxyl of glycerol molecular grew weaker, and the selectivity to sn-2 hydroxyl of glycerol molecular grew stronger.  相似文献   

18.
We describe an efficient method for the synthesis of alkyl lysophosphatidic acid (LPA) analogs as well as alkyl LPA mono- and difluoromethylene phosphonate analogs. Each alkyl LPA analog was evaluated for subtype-specific LPA receptor agonist activity using a cell migration assay for LPA(1) activation in cancer cells and an intracellular calcium mobilization assay for LPA(2) and LPA(3) activation. Alkyl LPAs induced pronounced cell migration activity with equivalent or higher potency than sn-1-oleoyl LPA, while the alkyl LPA fluoromethylene phosphonates proved to be less potent agonists in this assay. However, each alkyl LPA analog activated Ca(2+) release by activation of LPA(2) and LPA(3) receptors. Interestingly, the absolute configuration of the sn-2 hydroxyl group of the alkyl LPA analogs was not recognized by any of the three LPA receptors. The use of alkyl LPA analogs further expands the scope of structure-activity studies, which will better define LPA-LPA receptor interactions.  相似文献   

19.
The substrate requirement of phospholipids for hydrolysis with phospholipase C from Bacillus cereus was studied with synthetic lipids well-defined in structure and configuration. For optimal activity, the glycerol molecule must contain three substituents: phosphocholine in sn-3-, an ester bond in sn-2- and an ether- or ester bond in sn-1-position. The length of the ester or ether chains is of minor importance. Any deviation from these structural requirements results in a large decrease in the hydrolysis rate. These essential structural and configurational elements for optimal activity for the B. cereus enzyme are perfectly combined in the platelet activating factor, 1-O-hexadecyl-2-acetyl-sn-glycero-3- phosphocholine. This molecule is one of the best substrates for hydrolysis with the bacterial phospholipase C.  相似文献   

20.
Ten kinds of lipases were examined as biocatalysts for the incorporation of short-chain fatty acids (acetic, propionic, and butyric acids) into triolein in order to produce one kind of reduced-calorie structured lipids. Trans-esterification (acidolysis) was successfully done in n-hexane by several microbial lipases. Among them, lipase from Aspergillus oryzae was used to investigate the effects of incubation time, substrate molar ratio, and water content on acidolysis. Finally, more than 80% of triolein was incorporated by butyric acid (molar ratio of triolein to butyric acid, 1:10) in the dried n-hexane at 52 degrees C for 72 h. More than 90% of the products was monosubstituent, which was esterified with this short chain fatty acid at the 1-position of the glycerol moiety of triolein. These results suggest that A. oryzae lipase would be a powerful biocatalyst for the synthesis of low caloric oil, such as triacylglycerol containing a mixture of long- and short-chain aliphatic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号