首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Atoh1 plays a crucial role in intestinal cell differentiation. We have demonstrated that its human homolog Hath1 protein is targeted by the Wnt-GSK3 axis, resulting in the proteasomal degradation in human colon cancer. However, the contribution of Hath1 degradation to the undifferentiated state of colon cancer remains unknown. In this study, we demonstrated that both constitutive expression of mutant Hath1 and stabilization of Hath1 protein by a GSK3 inhibitor in colon cancer cells increased the expression of MUC2 known as a representative function of differentiated goblet cells. This means that Hath1 protein degradation may be required for maintaining the undifferentiated state of colon cancers, and that GSK3 inhibitors have potential for use in cancer therapy.  相似文献   

3.
STRL33/BONZO/TYMSTR is an orphan chemokine and HIV/SIV coreceptor receptor that is expressed on activated T lymphocytes. We describe an expression cloning strategy whereby we isolated a novel chemokine, which we name CXCL16. CXCL16 is an alpha (CXC) chemokine but also has characteristics of CC chemokines and a structure similar to fractalkine (neurotactin) in having a transmembrane region and a chemokine domain suspended by a mucin-like stalk. A recombinant version of CXCL16 fails to mediate chemotaxis to all known chemokine receptor transfectants tested but does mediate robust chemotaxis, high affinity binding, and calcium mobilization to Bonzo receptor transfectants, indicating that this is a unique receptor ligand interaction. In vitro polarized T cell subsets including Th1, Th2, and Tr1 cells express functional Bonzo, suggesting expression of this receptor in chronic inflammation, which we further verified by demonstration of CXCL16-mediated migration of tonsil-derived CD4(+) T lymphocytes. CXCL16 is expressed on the surface of APCs including subsets of CD19(+) B cells and CD14(+) monocyte/macrophages, and functional CXCL16 is also shed from macrophages. The combination of unique structural features of both Bonzo and CXCL16 suggest that this interaction may represent a new class of ligands for this receptor family. Additionally, this chemokine might play a unique dual role of attracting activated lymphocyte subsets during inflammation as well as facilitating immune responses via cell-cell contact.  相似文献   

4.
Recent evidence suggests a major role of tumor-stromal interactions in pancreatic cancer pathobiology. The chemokine CXCL12 (stromal cell-derived factor 1 (SDF-1)), abundantly produced by stromal cells, promotes progression, metastasis, and chemoresistance of pancreatic cancer cells. On the other hand, pancreatic tumor cell-derived sonic hedgehog (SHH) acts predominantly on stromal cells to induce desmoplasia and, thus, has a paracrine effect on tumorigenesis and therapeutic outcome. In this study, we examined the association between these two proteins of pathological significance in pancreatic cancer. Our data demonstrate that CXCL12 leads to a dose- and time-dependent up-regulation of SHH in pancreatic cancer cells. CXCL12-induced SHH up-regulation is specifically mediated through the receptor CXCR4 and is dependent on the activation of downstream Akt and ERK signaling pathways. Both Akt and ERK cooperatively promote nuclear accumulation of NF-κB by inducing the phosphorylation and destabilization of its inhibitory protein, IκB-α. Using dominant negative IκB-α, a SHH promoter (deletion mutant) reporter, and chromatin immunoprecipitation assays, we demonstrate that CXCL12 exposure enhances direct binding of NF-κB to the SHH promoter and that suppression of NF-κB activation abrogates CXCL12-induced SHH expression. Finally, our data demonstrate a strong correlative expression of CXCR4 and SHH in human pancreatic cancer tissues, whereas their expression is not observed in the normal pancreas. Altogether, our data reveal a novel mechanism underlying aberrant SHH expression in pancreatic cancer and identify a molecular link facilitating bidirectional tumor-stromal interactions.  相似文献   

5.
6.
A sequence encoding a CXC - type chemokine from rainbow trout was found to most resemble members of the CXCL9/CXCL10/CXCL11 sub-family. In mammals, all 3 chemokines are regulated by IFN-gamma and are chemotactic for activated T lymphocytes. The trout chemokine (gammaIP1), with a message of 787 nucleotides, contains 100 amino acids in a typical non-ELR CXC chemokine arrangement. A second sequence (gammaIP2), with 6 nucleotide differences in the coding region when compared to the first, was also identified although it is not known whether this is a second functional gene or a second allele. The gene is separated onto 4 exons, and the introns intervene in conserved positions according to the mammalian equivalents. The sequence encoded by the second exon shares the highest amino acid identity (37%) with CXCL10, with lower values of identity to other CXC chemokines (17-31%). Furthermore, phylogenetic analysis groups the trout chemokine with mammalian CXCL9, CXCL10 and CXCL11 peptides. Constitutive expression of gammaIP is seen in trout gill and low level expression in spleen, head kidney and liver. In RTS-11 cells, gammaIP expression can be induced with poly I:C, but not by LPS, suggesting virus-mediated regulation of gammaIP. Intraperitoneal injection of recombinant trout TNF-alpha caused elevation in gammaIP mRNA levels in trout head kidney.  相似文献   

7.
Metastasis is considered the obvious mark for most aggressive cancers. However, little is known about the molecular mechanism of the regulation of cancer metastasis. Recent evidence increasingly suggests that the interaction between chemokines and chemokine receptors is pivotal in the process of metastasis. The chemokine receptor CXCR4 and its ligand CXCL12, for example, have been reported to play a vital role in cancer metastasis. Another chemokine and chemokine receptor pair, the CXCL16/CXCR6 axis, has been studied by several independent research groups. Here, we summarize recent advances in our knowledge of the function of CXC chemokine receptor CXCR6 and its ligand CXCL16 in regulating metastasis and invasion of cancer. CXCR6 and CXCL16 are up-regulated in multiple cancer tissue types and cancer cell lines relative to normal tissues and cell lines. In addition, both CXCR6 and CXCL16 levels increase as tumor malignancy increases. Trans-membranous CXCL16 chemokine reduces proliferation while soluble CXCL16 chemokine enhances proliferation and migration. TM-CXCL16 functions as an inducer for lymphocyte build-up around tumor sites. High trans-membranous CXCL16 expression correlates with a good prognosis. Moreover, the Akt/mTOR signal pathway is involved in activating the CXCR6/CXCL16 axis. These findings suggest multiple opportunities for blocking the CXCR6/CXCL16 axis and the Akt/mTOR signal pathway in novel cancer therapies.  相似文献   

8.
Colorectal cancer (CRC) is characterized by a distinct metastatic pattern resembling chemokine-induced leukocyte trafficking. This prompted us to investigate expression, signal transduction and specific functions of the chemokine receptor CXCR4 in CRC cells and metastases. Using RT-PCR analysis and Western blotting, we demonstrated CXCR4 and CXCL12 expression in CRC and CRC metastases. Cell differentiation increases CXCL12 mRNA levels. Moreover, CXCR4 and its ligand are inversely expressed in CRC cell lines with high CXCR4 and low or not detectable CXCL12 expression. CXCL12 activates ERK-1/2, SAPK/JNK kinases, Akt and matrix metalloproteinase-9. These CXCL12-induced signals mediate reorganization of the actin cytoskeleton resulting in increased cancer cell migration and invasion. Moreover, CXCL12 increases vascular endothelial growth factor (VEGF) expression and cell proliferation but has no effect on CRC apoptosis. Therefore, the CXCL12/CXCR4 system is an important mediator of invasion and metastasis of CXCR4 expressing CRC cells.  相似文献   

9.
Meuter S  Moser B 《Cytokine》2008,44(2):248-255
CXCL14 (BRAK) is an ill-described chemokine with unknown receptor selectivity. The human chemokine is constitutively expressed in epithelial tissues and is selective for dendritic cell precursors, indicating a possible function in the maintenance of epithelial DCs. Several studies have addressed the question of human CXCL14 expression in cancerous tissues; however, distribution in healthy tissues and, in particular, the cellular origin of this chemokine has not been thoroughly investigated. The expression pattern of murine CXCL14 is largely unknown. In agreement with the human chemokine, we demonstrated ubiquitous and constitutive expression of murine CXCL14 in various tissues, foremost in those of epithelial origin such as the skin and the gastrointestinal tract. In addition, we did not find any CXCL14 in lymphoid tissues. Interestingly and in contrast to humans, murine CXCL14 was strongly expressed in the lung. In the skin, CXCL14 was produced by keratinocytes and dermal macrophages in both mice and humans, whereas CXCL14-expressing mast cells could only be found in the human dermis. Therefore, despite the remarkable structural homology and the broad similarity in the tissue distribution of human and murine CXCL14, distinct differences point to diverse, species-specific needs for CXCL14 in epithelial immunity.  相似文献   

10.
The transmembrane chemokine CXCL16 is expressed by dendritic and vascular cells and mediates chemotaxis and adhesion of activated T cells via the chemokine receptor CXCR6/Bonzo. Here we describe the expression and shedding of this chemokine by glioma cells in situ and in vitro. By quantitative RT-PCR and immunohistochemistry, we show that CXCL16 is highly expressed in human gliomas, while expression in normal brain is low and mainly restricted to brain vascular endothelial cells. In cultivated human glioma cells as well as in activated mouse astroglial cells, CXCL16 mRNA and protein is constitutively expressed and further up-regulated by tumour necrosis factor alpha (TNFalpha) and interferon-gamma (IFNgamma). CXCL16 is continuously released from glial cells by proteolytic cleavage which is rapidly enhanced by stimulation with phorbol-12-myristate-13-acetate (PMA). As shown by inhibitor studies, two distinct members of the disintegrin-like metalloproteinase family ADAM10 and 17 are involved in the constitutive and PMA-induced shedding of glial CXCL16. In addition to the chemokine, its receptor CXCR6 could be detected by quantitative RT-PCR in human glioma tissue, cultivated murine astrocytes and at a lower level in microglial cells. Functionally, recombinant soluble CXCL16 enhanced proliferation of CXCR6-positive murine astroglial and microglial cells. Thus, the transmembrane chemokine CXCL16 is expressed in the brain by malignant and inflamed astroglial cells, shed to a soluble form and targets not only activated T cells but also glial cells themselves.  相似文献   

11.
The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38α, β, γ and δ. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38α and β, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38γ and/or δ was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38δ attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38δ with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38δ isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38α and/or β isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.  相似文献   

12.
CXCL12 (stromal cell-derived factor-1) is a potent CXC chemokine that is constitutively expressed by stromal resident cells. Although it is considered a homeostatic rather than an inflammatory chemokine, CXCL12 has been immunodetected in different inflammatory diseases, but also in normal tissues, ant its potential functions and regulation in inflammation are not well known. In this study, we examined the cellular sources of CXCL12 gene expression and the mechanism and effects of its interactions with endothelial cells in rheumatoid arthritis synovium. We show that CXCL12 mRNA was not overexpressed nor induced in cultured rheumatoid synoviocytes, but it specifically accumulated in the rheumatoid hyperplastic lining layer and endothelium. CXCL12 gene expression was restricted to fibroblast-like synoviocytes, whereas endothelial cells did not express CXCL12 mRNA, but displayed the protein on heparitinase-sensitive factors. CXCL12 colocalized with the angiogenesis marker alpha(v)beta(3) integrin in rheumatoid endothelium and induced angiogenesis in s.c. Matrigel plugs in mice. The angiogenic activity of rheumatoid synovial fluid in vivo was abrogated by specific immunodepletion of CXCL12. Our results indicate that synoviocyte-derived CXCL12 accumulates and it is immobilized on heparan sulfate molecules of endothelial cells, where it can promote angiogenesis and inflammatory cell infiltration, supporting a multifaceted function for this chemokine in the pathogenesis of rheumatoid arthritis.  相似文献   

13.
14.
NKT cells play important roles in the regulation of diverse immune responses. Therefore, chemokine receptor expression and chemotactic responses of murine TCRalphabeta NKT cells were examined to define their homing potential. Most NKT cells stained for the chemokine receptor CXCR3, while >90% of Valpha14i-positive and approximately 50% of Valpha14i-negative NKT cells expressed CXCR6 via an enhanced green fluorescent protein reporter construct. CXCR4 expression was higher on Valpha14i-negative than Valpha14i-positive NKT cells. In spleen only, subsets of Valpha14i-positive and -negative NKT cells also expressed CXCR5. NKT cell subsets migrated in response to ligands for the inflammatory chemokine receptors CXCR3 (monokine induced by IFN-gamma/CXC ligand (CXCL)9) and CXCR6 (CXCL16), and regulatory chemokine receptors CCR7 (secondary lymphoid-tissue chemokine (SLC)/CC ligand (CCL)21), CXCR4 (stromal cell-derived factor-1/CXCL12), and CXCR5 (B cell-attracting chemokine-1/CXCL13); but not to ligands for other chemokine receptors. Two NKT cell subsets migrated in response to the lymphoid homing chemokine SLC/CCL21: CD4(-) Valpha14i-negative NKT cells that were L-selectin(high) and enriched for expression of Ly49G2 (consistent with the phenotype of most NKT cells found in peripheral lymph nodes); and immature Valpha14i-positive cells lacking NK1.1 and L-selectin. Mature NK1.1(+) Valpha14i-positive NKT cells did not migrate to SLC/CCL21. BCA-1/CXCL13, which mediates homing to B cell zones, elicited migration of Valpha14i-positive and -negative NKT cells in the spleen. These cells were primarily CD4(+) or CD4(-)CD8(-) and were enriched for Ly49C/I, but not Ly49G2. Low levels of chemotaxis to CXCL16 were only detected in Valpha14i-positive NKT cell subsets. Our results identify subsets of NKT cells with distinct homing and localization patterns, suggesting that these populations play specialized roles in immunological processes in vivo.  相似文献   

15.
Epithelial neutrophil-activating peptide-78 (CXCL5), a member of the subgroup of CXC-type chemokine family, is an inflammatory factor involved in the progression of lung cancer, but the underlying mechanism remains unclear. In this study, we investigated the effects of CXCL5 on proliferation and migration in non-small cell lung cancer (NSCLC) using tissue microarrays from NSCLC patients and H460 cells transfected with a CXCL5-interfered lentivirus vector or stimulated with recombinant CXCL5. We observed that the expression of CXCL5 was significantly higher in lung cancer cell lines, and high CXCL5 was associated with high chemokine (C-X-C motif) receptor 2 expression and was significantly associated with poor differentiation. The high expression of CXCL5 was associated with poor NSCLC prognosis and was an independent predictive factor. Furthermore, downregulation of CXCL5 in H460 cells significantly reduced proliferation and migration. Recombinant CXCL5 promoted H460 cell proliferation and movement by activating MAPK/ERK1/2 and PI3K/AKT signaling. Our study elucidates the important role of CXCL5 in the progression and prognosis of NSCLC. These findings suggested that CXCL5 might be a potential biomarker and novel therapeutic target for lung cancer.  相似文献   

16.
Cerebellar granule neurons migrate from the external granule cell layer (EGL) to the internal granule cell layer (IGL) during postnatal morphogenesis. This migration process through 4 different layers is a complex mechanism which is highly regulated by many secreted proteins. Although chemokines are well-known peptides that trigger cell migration, but with the exception of CXCL12, which is responsible for prenatal EGL formation, their functions have not been thoroughly studied in granule cell migration. In the present study, we examined cerebellar CXCL14 expression in neonatal and adult mice. CXCL14 mRNA was expressed at high levels in adult mouse cerebellum, but the protein was not detected. Nevertheless, Western blotting analysis revealed transient expression of CXCL14 in the cerebellum in early postnatal days (P1, P8), prior to the completion of granule cell migration. Looking at the distribution of CXCL14 by immunohistochemistry revealed a strong immune reactivity at the level of the Purkinje cell layer and molecular layer which was absent in the adult cerebellum. In functional assays, CXCL14 stimulated transwell migration of cultured granule cells and enhanced the spreading rate of neurons from EGL microexplants. Taken together, these results revealed the transient expression of CXCL14 by Purkinje cells in the developing cerebellum and demonstrate the ability of the chemokine to stimulate granule cell migration, suggesting that it must be involved in the postnatal maturation of the cerebellum.  相似文献   

17.
Dual leucine zipper-bearing kinase (DLK) is a mixed-lineage kinase family member that acts as an upstream activator of the c-Jun N-terminal kinases. As opposed to other components of this pathway, very little is currently known regarding the mechanisms by which DLK is regulated in mammalian cells. Here we identify the stress-inducible heat shock protein 70 (Hsp70) as a negative regulator of DLK expression and activity. Support for this notion derives from data showing that Hsp70 induces the proteasomal degradation of DLK when both proteins are co-expressed in COS-7 cells. Hsp70-mediated degradation occurs with expression of wild-type DLK, which functions as a constitutively activated protein in these cells but not kinase-defective DLK. Interestingly, the Hsp70 co-chaperone CHIP, an E3 ubiquitin ligase, seems to be indispensable for this process since Hsp70 failed to induce DLK degradation in COS-7 cells expressing a CHIP mutant unable to catalyze ubiquitination or in immortalized fibroblasts derived from CHIP knock-out mice. Consistent with these data, we have found that endogenous DLK becomes sensitive to CHIP-dependent proteasomal degradation when it is activated by okadaic acid and that down-regulation of Hsp70 levels with an Hsp70 antisense attenuates this sensitivity. Therefore, our studies suggest that Hsp70 contributes to the regulation of activated DLK by promoting its CHIP-dependent proteasomal degradation.  相似文献   

18.
Breast and kidney-expressed chemokine (BRAK) CXCL14 is a new CXC chemokine with unknown function and receptor selectivity. The majority of head and neck squamous cell carcinoma (HNSCC) and some cervical squamous cell carcinoma do not express CXCL14 mRNA, as opposed to constitutive expression by normal oral squamous epithelium. In this study, we demonstrate that the loss of CXCL14 in HNSCC cells and at HNSCC primary tumor sites was correlated with low or no attraction of dendritic cell (DC) in vitro, and decreased infiltration of HNSCC mass by DC at the tumor site in vivo. Next, we found that recombinant human CXCL14 and CXCL14-positive HNSCC cell lines induced DC attraction in vitro, whereas CXCL14-negative HNSCC cells did not chemoattract DC. Transduction of CXCL14-negative HNSCC cell lines with the human CXCL14 gene resulted in stimulation of DC attraction in vitro and increased tumor infiltration by DC in vivo in chimeric animal models. Furthermore, evaluating the biologic effect of CXCL14 on DC, we demonstrated that the addition of recombinant human CXCL14 to DC cultures resulted in up-regulation of the expression of DC maturation markers, as well as enhanced proliferation of allogeneic T cells in MLR. Activation of DC with recombinant human CXCL14 was accompanied by up-regulation of NF-kappaB activity. These data suggest that CXCL14 is a potent chemoattractant and activator of DC and might be involved in DC homing in vivo.  相似文献   

19.
CXCL14 is a member of the CXC chemokine family. CXCL14 possesses chemoattractive activity for activated macrophages, immature dendritic cells and natural killer cells. CXCL14-deficient mice do not exhibit clear immune system abnormalities, suggesting that the function of CXCL14 can be compensated for by other chemokines. However, CXCL14 does appear to have unique biological roles. It suppresses the in vivo growth of lung and head-and-neck carcinoma cells, whereas the invasiveness of breast and prostate cancer cells appears to be promoted by CXCL14. Moreover, recent evidence revealed that CXCL14 participates in glucose metabolism, feeding behaviour-associated neuronal circuits, and anti-microbial defense. Based on the expression patterns of CXCL14 and CXCL12 during embryonic development and in the perinatal brain in mice, the functions of these two chemokines may be opposite or interactive. Although CXCL14 receptors have not yet been identified, the intracellular activity of CXCL14 in breast cancer cells suggests that the CXCL14 receptor(s) and signal transduction pathway(s) may be different from those of conventional CXC-type chemokines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号