首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The breakthrough development of induced pluripotent stem cells(iPSCs)raises the prospect of patient-specific treatment for many diseases through the replacement of affected cells.However,whether iPSC-derived functional cell lineages generate a deleterious immune response upon auto-transplantation remains unclear.In this study,we differentiated five human iPSC lines from skin fibroblasts and urine cells into neural progenitor cells(NPCs)and analyzed their immunogenicity.Through co-culture with autogenous peripheral blood mononuclear cells(PBMCs),we showed that both somatic cells and iPSC-derived NPCs do not stimulate significant autogenous PBMC proliferation.However,a significant immune reaction was detected when these cells were co-cultured with allogenous PBMCs.Furthermore,no significant expression of perforin or granzyme B was detected following stimulation of autogenous immune effector cells(CD3+CD8 T cells,CD3+CD8+T cells or CD3 CD56+NK cells)by NPCs in both PBMC and T cell co-culture systems.These results suggest that human iPSC-derived NPCs may not initiate an immune response in autogenous transplants,and thus set a base for further preclinical evaluation of human iPSCs.  相似文献   

2.
Previous studies demonstrated that a human pre-B acute lymphoblastic leukemia cell line, NALM-6, failed to stimulate a primary MLR, despite expression of class II MHC and adhesion molecules. Here we demonstrate that this is the result of the fact that NALM-6 cells do not express the ligand for CD28, namely B7. NALM-6 transfectants that expressed high levels of B7 gained the capacity to stimulate IL-2 production by class II MHC molecule-specific alloreactive T cells and to costimulate a polyclonal population of purified T cells cultured with immobilized anti-CD3 mAb. In the presence of PMA, NALM-6 cells transfected with B7 polyclonally stimulated T cells in a cyclosporine A-resistant fashion, a property previously attributed only to agonistic anti-CD28 mAb. The gain of these functions could not be explained solely by an increased capacity of the transfectants to form conjugates with T cells, suggesting that the CD28/B7 interaction transduces a costimulatory signal in T cells.  相似文献   

3.
4.
Mesenchymal stromal cells (MSCs) may be derived from a variety of tissues, with human umbilical cord (UC) providing an abundant and noninvasive source. Human UC-MSCs share similar in vitro immunosuppressive properties as MSCs obtained from bone marrow and cord blood. However, the mechanisms and cellular interactions used by MSCs to control immune responses remain to be fully elucidated. In this paper, we report that suppression of mitogen-induced T cell proliferation by human UC-, bone marrow-, and cord blood-MSCs required monocytes. Removal of monocytes but not B cells from human adult PBMCs (PBMNCs) reduced the immunosuppressive effects of MSCs on T cell proliferation. There was rapid modulation of a number of cell surface molecules on monocytes when PBMCs or alloantigen-activated PBMNCs were cultured with UC-MSCs. Indomethacin treatment significantly inhibited the ability of UC-MSCs to suppress T cell proliferation, indicating an important role for PGE(2). Monocytes purified from UC-MSC coculture had significantly reduced accessory cell and allostimulatory function when tested in subsequent T cell proliferation assays, an effect mediated in part by UC-MSC PGE(2) production and enhanced by PBMNC alloactivation. Therefore, we identify monocytes as an essential intermediary through which UC-MSCs mediate their suppressive effects on T cell proliferation.  相似文献   

5.
6.
We studied inhibition of histone deacetylases (HDACs), which results in the unraveling of chromatin, facilitating increased gene expression. ITF2357, an orally active, synthetic inhibitor of HDACs, was evaluated as an anti-inflammatory agent. In lipopolysaccharide (LPS)-stimulated cultured human peripheral blood mononuclear cells (PBMCs), ITF2357 reduced by 50% the release of tumor necrosis factor-alpha (TNFalpha) at 10 to 22 nM, the release of intracellular interleukin (IL)-1alpha at 12 nM, the secretion of IL-1beta at 12.5 to 25 nM, and the production of interferon-gamma (IFNgamma) at 25 nM. There was no reduction in IL-8 in these same cultures. Using the combination of IL-12 plus IL-18, IFNgamma and IL-6 production was reduced by 50% at 12.5 to 25 nM, independent of decreased IL-1 or TNFalpha. There was no evidence of cell death in LPS-stimulated PBMCs at 100 nM ITF2357, using assays for DNA degradation, annexin V, and caspase-3/7. By Northern blotting of PBMCs, there was a 50% to 90% reduction in LPS-induced steady-state levels of TNFalpha and IFNgamma mRNA but no effect on IL-1beta or IL-8 levels. Real-time PCR confirmed the reduction in TNFalpha RNA by ITF2357. Oral administration of 1.0 to 10 mg/kg ITF2357 to mice reduced LPS-induced serum TNFalpha and IFNgamma by more than 50%. Anti-CD3-induced cytokines were not suppressed by ITF2357 in PBMCs either in vitro or in the circulation in mice. In concanavalin-A-induced hepatitis, 1 or 5 mg/kg of oral ITF2357 significantly reduced liver damage. Thus, low, nonapoptotic concentrations of the HDAC inhibitor ITF2357 reduce pro-inflammatory cytokine production in primary cells in vitro and exhibit anti-inflammatory effects in vivo.  相似文献   

7.
The underlying mechanisms resulting in the profound immune suppression characteristic of human visceral leishmaniasis (VL) are not fully understood.Here, we tested the hypothesis that arginase, an enzyme associated with immunosuppression, is higher in patients with VL and contributes to impaired T cell responses. We recruited patients with VL before and after treatment and healthy controls and measured the arginase metabolism in the blood of these individuals. Our results show that arginase activity is significantly higher in the blood of patients with active VL as compared to controls. These high levels of arginase decline considerably once the patients are successfully treated. We identified the phenotype of arginase-expressing cells among PBMCs as neutrophils and show that their frequency was increased in PBMCs of patients before treatment; this coincides with reduced levels of L-arginine in the plasma and decreased expression levels of CD3ζ in T cells.  相似文献   

8.
9.
Chronic hepatitis B infection (CHB) is characterized by sub-optimal T cell responses to viral antigens. A therapeutic vaccine capable of restoring these immune responses could potentially improve HBsAg seroconversion rates in the setting of direct acting antiviral therapies. A yeast-based immunotherapy (Tarmogen) platform was used to make a vaccine candidate expressing hepatitis B virus (HBV) X, surface (S), and Core antigens (X-S-Core). Murine and human immunogenicity models were used to evaluate the type and magnitude of HBV-Ag specific T cell responses elicited by the vaccine. C57BL/6J, BALB/c, and HLA-A*0201 transgenic mice immunized with yeast expressing X-S-Core showed T cell responses to X, S and Core when evaluated by lymphocyte proliferation assay, ELISpot, intracellular cytokine staining (ICS), or tumor challenge assays. Both CD4+ and CD8+ T cell responses were observed. Human T cells transduced with HBc18–27 and HBs183–91 specific T cell receptors (TCRs) produced interferon gamma (IFNγ following incubation with X-S-Core-pulsed dendritic cells (DCs). Furthermore, stimulation of peripheral blood mononuclear cells (PBMCs) isolated from CHB patients or from HBV vaccine recipients with autologous DCs pulsed with X-S-Core or a related product (S-Core) resulted in pronounced expansions of HBV Ag-specific T cells possessing a cytolytic phenotype. These data indicate that X-S-Core-expressing yeast elicit functional adaptive immune responses and supports the ongoing evaluation of this therapeutic vaccine in patients with CHB to enhance the induction of HBV-specific T cell responses.  相似文献   

10.
11.
CD8(+) T cells are a key immune component for the eradication of many intracellular pathogens. This study aims to characterize the human CD8(+) T cell response to naturally processed chlamydial Ags in individuals exposed to the intracellular pathogen Chlamydia trachomatis. By using C. trachomatis-infected autologous dendritic cells (DCs) as stimulators, Chlamydia-reactive CD8(+) T cell responses were detected in all 10 individuals tested. The majority of the Chlamydia-reactive CD8(+) T cells were non-MHC class Ia restricted in all three of the individuals tested. From one donor, three non-class Ia-restricted and two class Ia-restricted Chlamydia-specific CD8(+) T cells were cloned and characterized further. All five T cell clones secreted IFN-gamma in response to autologous DCs infected with viable Chlamydia, but not with DCs pulsed with inactivated chlamydial elementary bodies. MHC class Ia-restricted and non-class Ia-restricted responses were inhibited by DC treatment with a proteasomal inhibitor and an endoplasmic reticulum-Golgi transport inhibitor, suggesting that these T cells recognize a peptide Ag translocated to the host cell cytosol during infection that is processed via the classical class Ia Ag-processing pathway. Even though both restricted and nonrestricted CD8(+) T cells produced IFN-gamma in response to Chlamydia-infected fibroblasts, only the non-class Ia-restricted cells were lytic for these targets. The class Ia-restricted CTLs, however, were capable of cytolysis as measured by redirected killing. Collectively, these data demonstrate that both class Ia-restricted and non-classically restricted CD8(+) T cells are elicited in C. trachomatis-exposed individuals. Their role in host immunity remains to be elucidated.  相似文献   

12.
Dehydroepiandrosterone (DHEA) is the predominant steroid hormone secreted by adrenal gland, and it has been proposed in recent years that DHEA has significant effects on immune function. We investigated the effect of DHEA (1 x 10(-5) - 1 x 10(-8)M) on proliferation of human T cells and B cells and on immunoglobulin production, a representative function of B cells. High doses of DHEA (1 x 10(-5)) significantly inhibited proliferation of peripheral blood mononuclear cells (PBMCs) and T cells induced by T cell mitogens hemagglutinin (PHA) and concanavalin A (Con A). Proliferation of PBMCs induced by B cell mitogens pokeweed mitogen (PWM) was increased by 1 x 10(-7) - 1 x 10(-6)M DHEA. Proliferation of PBMCs and B cells induced by Staphylococcus aureus Cowan strain I (SAC) was not significantly changed at any concentrations of DHEA. However, a concentration of 1 x 10(-7)M DHEA tended to potentiate their proliferation. This study suggested that DHEA acted on T and B lymphocytes differentially in immune system.  相似文献   

13.
Mendis C  Campbell K  Das R  Yang D  Jett M 《The FEBS journal》2008,275(12):3088-3098
Staphylococcal enterotoxin B (SEB) has been the focus of a number of studies due to its ability to promote septic shock and a massive impact on the human immune system. Even though symptoms and pathology associated with SEB is well known, early molecular events that lead to lethality are still poorly understood. Our approach was to utilize SEB induced human peripheral blood mononuclear cells (PBMCs) as a prototype module to further investigate the complexity of signaling cascades that may ultimately lead to lethal shock. Our study revealed the activation of multiple divergent intracellular pathways within minutes of SEB induction including components that interconnect investigated pathways. A series of performed inhibitor studies identified a specific inhibitor of 5-LO (MK591), which has the ability to block JNK, MAPK, p38kinase and 5-LO signaling-cascades and drastically reducing the activity of pro-inflammatory cytokine TNF-alpha. Further evaluation of MK591 utilizing cell proliferation assays in PBMCs, human proximal tubule cells and in vivo studies (monkey) showed a decrease in cell proliferation. The inhibitory effect of MK591 was reconfirmed at a genetic level through the utilization of a set of SEB specific genes. Signaling activities, inhibitor studies, cellular analysis and gene expression analysis in unison illustrated the significance of pathway interconnectors such as 5-LO as well as inhibiting such inter-connectors (using MK591) in SEB induced human PBMCs.  相似文献   

14.

Background

Besides its anti-inflammatory effects, cinnamaldehyde has been reported to have anti-carcinogenic activity. Here, we investigated its impact on immune cells.

Methods

Activation of nuclear factor-κB by cinnamaldehyde (0–10 µg/ml) alone or in combination with lipopolysaccharide was assessed in THP1XBlue human monocytic cell line and in human peripheral blood mononuclear cells (PBMCs). Proliferation and secretion of cytokines (IL10 and TNFα) was determined in primary immune cells and the human cell lines (THP1, Jurkat E6-1 and Raji cell lines) stimulated with cinnamaldehyde alone or in conjunction with lipopolysaccharide. Nitric oxide was determined in mouse RAW264.7 cells. Moreover, different treated PBMCs were stained for CD3, CD20 and AnnexinV.

Results

Low concentrations (up to 1 µg/ml) of cinnamaldehyde resulted in a slight increase in nuclar factor-kB activation, whereas higher concentrations led to a dose-dependent decrease of nuclear factor-kB activation (up to 50%) in lipopolysachharide-stimulated THP1 cells and PBMCs. Accordingly, nitric oxide, interleukin 10 secretion as well as cell proliferation were reduced in lipopolysachharide-stimulated RAW264.7 cells, PBMCs and THP1, Raji and Jurkat-E6 immune cells in the presence of cinnamaldehyde in a concentration-dependent manner. Flow cytometric analysis of PBMCs revealed that CD3+ were more affected than CD20+ cells to apopotosis by cinnamaldehyde.

Conclusion

We attribute the anti-inflammatory properties of cinnamaldehyde to its ability to block nuclear factor-κB activation in immune cells. Treatment with cinnamaldehyde led to inhibition of cell viability, proliferation and induced apoptosis in a dose-dependent manner in primary and immortalized immune cells. Therefore, despite its described anti-carcinogenic property, treatment with cinnamaldehyde in cancer patients might be contraindicated due to its ability to inhibit immune cell activation.  相似文献   

15.
To investigate the role of type II alveolar epithelial cells during the T cell-dependent host immune response to Mycobacterium tuberculosis (MTB), effects of MTB-infected A-549 human type II alveolar epithelial cells (A-549 cells) on T cell mitogenesis in response to concanavalin A (Con A) and purified protein derivatives (PPD) were studied. Human peripheral blood mononuclear cells (PBMCs) were cocultivated with uninfected or MTB-infected A-549 cells and Con A-and PPD-induced T cell mitogeneses were examined, and the following findings were obtained. T cell mitogenesis was inhibited by uninfected as well as MTB-infected A-549 cells, even when a dual-chamber culture system was used to prevent direct cell contact between PBMCs and A-549 cells. Therefore, it appears that A-549 cells suppress T cell mitogenesis by producing some unknown humoral suppressor factors.  相似文献   

16.
Transplantation of human neural stem/progenitor cells (hNSCs) as a regenerative cell replacement therapy holds great promise. However, the underlying mechanisms remain unclear. We, here, focused on the interaction between hNSCs and allogeneic peripheral blood mononuclear cells (PBMCs) in a co-culture model. We found that hNSCs significantly decrease the CD3+ and CD8+ T cells, reduce the gamma delta T cells and increase the regulatory T cells, along with reduced pro-inflammatory cytokines and increased anti-inflammatory cytokines after co-culture. We also found that PBMCs, in turn, significantly promote the proliferation and differentiation of hNSCs. Our data suggest that hNSCs cross-talk with immune cells.  相似文献   

17.
In multiple sclerosis, activated CD4(+) T cells initiate an immune response in the brain and spinal cord, resulting in demyelination, degeneration and progressive paralysis. Repulsive guidance molecule-a (RGMa) is an axon guidance molecule that has a role in the visual system and in neural tube closure. Our study shows that RGMa is expressed in bone marrow-derived dendritic cells (BMDCs) and that CD4(+) T cells express neogenin, a receptor for RGMa. Binding of RGMa to CD4(+) T cells led to activation of the small GTPase Rap1 and increased adhesion of T cells to intracellular adhesion molecule-1 (ICAM-1). Neutralizing antibodies to RGMa attenuated clinical symptoms of mouse myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) and reduced invasion of inflammatory cells into the CNS. Silencing of RGMa in MOG-pulsed BMDCs reduced their capacity to induce EAE following adoptive transfer to naive C57BL/6 mice. CD4(+) T cells isolated from mice treated with an RGMa-specific antibody showed diminished proliferative responses and reduced interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4 and IL-17 secretion. Incubation of PBMCs from patients with multiple sclerosis with an RGMa-specific antibody reduced proliferative responses and pro-inflammatory cytokine expression. These results demonstrate that an RGMa-specific antibody suppresses T cell responses, and suggest that RGMa could be a promising molecular target for the treatment of multiple sclerosis.  相似文献   

18.
The principal antitumor immune response is mediated through the activation of type 1 cytotoxic (Tc1) CD8 T cells, NK cells, and monocytes/macrophages. In this study, we investigated the potency of a clinical-grade soluble form of lymphocyte activation gene-3 protein (IMP321), a physiological high-affinity MHC class II binder, at inducing in PBMCs an appropriate cytotoxic-type response in short-term ex vivo assays. We found that IMP321 binds to a minority (<10%) of MHC class II + cells in PBMCs, including all myeloid dendritic cells, and a small fraction of monocytes. Four hours after addition of IMP321 to PBMCs, these myeloid cells produce TNF-alpha and CCL4 as determined by intracellular staining. At 18 h, 1% of CD8+ T cells and 3.7% NK cells produce Tc1 cytokines such as IFN-gamma and/or TNF-alpha (mean values from 60 blood donors). Similar induction was observed in metastatic cancer patient PBMCs, but the values were lower for the NK cell subset. Early APC activation by IMP321 is needed for this Tc1-type activation because pure sorted CD8+ T cells could not be activated by IMP321. Only Ag-experienced, fully differentiated granzyme+ CD8 T cells (effector and effector memory but not naive or central memory T cells) are induced by IMP321 to full Tc1 activation. In contrast to IMP321, TLR1-9 agonists induce IL-10 and are therefore unable to induce this Tc1 IFN-gamma+ response. Thus, IMP321 has many properties that confirm its potential to be a new class of immunopotentiator in cancer patients.  相似文献   

19.
We report that the addition of human macrophage inflammatory protein-3 beta (MIP-3 beta) to cultures of human PBMCs that have been activated with LPS or PHA results in a significant enhancement of IL-10 production. This effect was concentration-dependent, with optimal MIP-3 beta concentrations inducing more than a 5-fold induction of IL-10 from LPS-stimulated PBMCs and a 2- to 3-fold induction of IL-10 from PHA-stimulated PBMCs. In contrast, no significant effect on IL-10 production was observed when 6Ckine, the other reported ligand for human CCR7, or other CC chemokines such as monocyte chemoattractant protein-1, RANTES, MIP-1 alpha, and MIP-1 beta were added to LPS- or PHA-stimulated PBMCs. Similar results were observed using activated purified human peripheral blood monocytes or T cells. Addition of MIP-3 beta to nonactivated PBMCs had no effect on cytokine production. Enhancement of IL-10 production by MIP-3beta correlated with the inhibition of IL-12 p40 and TNF-alpha production by monocytes and with the impairment of IFN-gamma production by T cells, which was reversed by addition of anti-IL-10 Abs to the cultures. The ability of MIP-3 beta to augment IL-10 production correlated with CCR7 mRNA expression and stimulation of intracellular calcium mobilization in both monocytes and T cells. These data indicate that MIP-3 beta acts directly on human monocytes and T cells and suggest that this chemokine is unique among ligands binding to CC receptors due to its ability to modulate inflammatory activity via the enhanced production of the anti-inflammatory cytokine IL-10.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号