首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight groups of 13-15 female rats were fed purified diets after littering. Four groups received a low protein (8% casein) diet (groups 8) and the others, a normal protein (20% casein) diet (groups 20). Carbohydrates were supplied either as starch (groups S) or as starch plus 40% fructose (groups F). Half the animals received a 0.4% methionine supplementation (groups M). Four or five dams per group were sacrificed on days 2, 7 and 14 after littering. The diet intake was increased by methionine supplementation, substitution of starch for fructose and increased protein content, mainly during the second week of lactation. This influenced weight variation of the dams and litter growth. On all days, the plasma levels of cholesterol esters, triglycerides and phospholipids were positively correlated with the dietary protein level. On days 7 and 14, the liver neutral lipid content was increased in rats fed the low protein diets supplemented with methionine (groups 8SM and 8FM) and the normal protein diets containing 40% fructose (groups 20F and 20FM). The plasma free threonine content was positively correlated with the protein level in the diet. On day 14, rats fed a low protein diet had a threonine deficiency, except those in groups 8S and 8F. The plasma free threonine content of these rats was not reduced, possibly due to an impaired utilization of this amino acid. The liver lipidosis observed during lactation, in contrast to that observed during growth with a low protein diet, was not due to a threonine deficiency.  相似文献   

2.
To investigate the role of selenium (Se) in the developing porcine fetus, prepubertal gilts (n=42) were randomly assigned to either Se-adequate (0.39 ppm Se) or Se-deficient (0.05 ppm Se) gestation diets 6 wk prior to breeding. Maternal and fetal liver was collected at d 30, 45, 70, 90, and 114 of pregnancy. Concentrations of Se in maternal liver decreased during gestation in gilts fed the low-Se diet. The activity of cellular glutathione peroxidase (GPx) was decreased at d 30 and 45 of gestation in liver of gilts fed the low-Se diet. Concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were greater in liver homogenates from gilts fed the low-Se diet. Within the fetuses, liver Se decreased in those fetuses of gilts fed the low-Se diet. Although the activity of GPx in fetal liver was not affected by the maternal diet, concentrations of H2O2 and MDA in fetal liver were greater in fetuses from gilts fed the low-Se diet. Maternal liver GPx activity was approx 12-fold greater than fetal liver GPx activity regardless of dietary treatment. These results indicate that maternal dietary Se intake affects fetal liver Se concentration and feeding a low-Se diet during gestation increases oxidative stress to the fetus, as measured by fetal liver H2O2 and MDA.  相似文献   

3.
The aim of the study was to investigate whether the protein and folic acid content of the maternal diet and the sex of the offspring alter the polyunsaturated fatty acid content of hepatic phospholipids and triacylglycerol (TAG). Pregnant rats were fed diets containing 18% or 9% protein with either 1 or 5mg/kg folic acid. Maternal diet did not alter hepatic lipid composition in the adult offspring. Data from each maternal dietary group were combined and reanalysed. The proportion of 18:0, 20:4n-6 and 22:6n-3 in liver phospholipids was higher in females than in males, while hepatic TAG composition did not differ between sexes. Delta5 Desaturase expression was higher in females than in males. Neither Delta5 nor Delta6 desaturase expression was related to polyunsaturated fatty acid concentrations. These results suggest that sex differences in liver phospholipid fatty acid composition may reflect primary differences in the specificity of phospholipid biosynthesis.  相似文献   

4.
The teratogenic effects of feeding a diet based on textured vegetable protein to Long-Evans rats were studied along with maternal and fetal mineral interactions and their relationship to diet composition. Pregnant rats were fed purified diets containing 18% protein as casein (CAS), textured vegetable protein (TVP, from defatted soy flour) with 18 mg Zn/kg, or TVP diet with 100 mg Zn/kg. A fourth group was fed diet NIH-31. The animals received their diets throughout pregnancy and were sacrificed on day 20 of gestation. Fetuses were examined for developmental effects, and mineral levels were determined in maternal and fetal tissues by inductively coupled argon plasma-atomic emission spectrometry. Females fed the casein diet or diet NIH-31 had normal weight gains throughout pregnancy and their progeny exhibited normal development. The animals on the TVP-containing diet with 18 mg Zn/kg had decreased food consumption and body weights, and their fetuses exhibited developmental anomalies as well as reductions in size and weight. These developmental alterations may be the result of decreased zinc levels in the fetal tissues, caused by reduced bioavailability of the trace element in the maternal diet. Significant increases in tissue iron accompanied the low zinc levels. No developmental effects were found in animals receiving the high Zn-TVP diet, and mineral data from these animals were not significantly different from the casein group.  相似文献   

5.
The contents of glycogen, lipid, urea and amino acids, and some enzyme activities in plasma, liver muscle and urine were determined with rats fed 10 to 12 g of 100 g body weight per day of the 10% casein diet (control) and 10% casein diets containing 7% glycine with or without 1.4% l-arginine HC1 and l-methionine for 7 days.

Nine hours after the final feeding, the amount of liver glycogen was high in the order of rats fed 10% casein diet containing 7% glycine, 10% casein diet containing 7% glycine with l-arginine and l-methionine, and the control. The amount of muscle glycogen was decreased only in those fed the control diet. The amount of liver lipid was increased by the addition of l-arginine and l-methionine to the excess glycine diet. Plasma and urinary urea was increased in animals given the excess glycine diets with or without both amino acids. In plasma liver, and muscle of animals given either of both the excess glycine diets 3 and 9 hr after the feeding, in general, glycine and serine were increased, and threonine and alanine were decreased as compared with those of rats given the control diet. However, the increase of glycine in plasma, liver and muscle detected at 9 hr after feeding the excess glycine diet was slightly prevented by the supplementation of both amino acids to the excess glycine diet. The activities of liver glycine oxidase and ornithine δ-aminotransferase of rats given the excess glycine diet with both amino acids were higher than those of other dietary groups. Liver serine dehydratase and glutamate-oxalacetate transaminase activities were high in the order of the animals fed the control, the excess glycine diet and the excess glycine diet containing both amino acids. Glutamate-pyruvate transaminase activity in the liver of rats fed the excess glycine diets with or without both amino acids were markedly higher than that of those fed the control. The activities of phosphopyruvate carboxylase and aconitase in the liver of animals given the excess glycine diet were higher than those of other dietary groups. Liver pyruvate kinase and glutamate dehydrogenase activities were similar among those dietary groups.  相似文献   

6.
Rats were pair-fed isocaloric diets containing either 25% (control diet) or 6% protein (low-protein diet) during the 5 weeks prior to conception and through the gestation and lactation periods; then, carnitine palmitoyltransferase I (CPT-I) activity was determined in liver and skeletal muscle mitochondria isolated from the corresponding pups. Maternal protein undernutrition increased the activity of hepatic CPT-I all along the suckling period, whereas the activity of the skeletal muscle enzyme was unaffected. Moreover, the sensitivity of hepatic CPT-I to inhibition by both malonyl-CoA and 4-hydroxyphenylglyoxylate was decreased in the low-protein group. These alterations in the properties of hepatic CPT-I may be involved in the appearance of hyperketonemia in the rat pup upon maternal administration of low-protein diets.  相似文献   

7.
We evaluated the effect of a high-protein diet (HP) on pregnancy, lactational and rearing success in mice. At the time of mating, females were randomly assigned to isoenergetic diets with HP (40% w/w) or control protein levels (C; 20%). After parturition, half of the dams were fed the other diet throughout lactation resulting in four dietary groups: CC (C diet during gestation and lactation), CHP (C diet during gestation and HP diet during lactation), HPC (HP diet during gestation and C diet during lactation) and HPHP (HP diet during gestation and lactation). Maternal and offspring body mass was monitored. Measurements of maternal mammary gland (MG), kidney and abdominal fat pad masses, MG histology and MG mRNA abundance, as well as milk composition were taken at selected time points. HP diet decreased abdominal fat and increased kidney mass of lactating dams. Litter mass at birth was lower in HP than in C dams (14.8 v. 16.8 g). Dams fed an HP diet during lactation showed 5% less food intake (10.4 v. 10.9 g/day) and lower body and MG mass. On day 14 of lactation, the proportion of MG parenchyma was lower in dams fed an HP diet during gestation as compared to dams fed a C diet (64.8% v. 75.8%). Abundance of MG α-lactalbumin, β-casein, whey acidic protein, xanthine oxidoreductase mRNA at mid-lactation was decreased in all groups receiving an HP diet either during gestation and/or lactation. Milk lactose content was lower in dams fed an HP diet during lactation compared to dams fed a C diet (1.6% v. 2.0%). On days 14, 18 and 21 of lactation total litter mass was lower in litters of dams fed an HP diet during lactation, and the pups' relative kidney mass was greater than in litters suckled by dams receiving a C diet. These findings indicate that excess protein intake in reproducing mice has adverse effects on offspring early in their postnatal growth as a consequence of impaired lactational function.  相似文献   

8.
Although the importance of methyl metabolism in fetal development is well recognized, there is limited information on the dynamics of methionine flow through maternal and fetal tissues and on how this is related to circulating total homocysteine concentrations. Rates of homocysteine remethylation in maternal and fetal tissues on days 11, 19, and 21 of gestation were measured in pregnant rats fed diets with limiting or surplus amounts of folic acid and choline at two levels of methionine and then infused with L-[1-(13)C,(2)H(3)-methyl]methionine. The rate of homocysteine remethylation was highest in maternal liver and declined as gestation progressed. Diets deficient in folic acid and choline reduced the production of methionine from homocysteine in maternal liver only in the animals fed a methionine-limited diet. Throughout gestation, the pancreas exported homocysteine for methylation within other tissues. Little or no methionine cycle activity was detected in the placenta at days 19 and 21 of gestation, but, during this period, fetal tissues, especially the liver, synthesized methionine from homocysteine. Greater enrichment of homocysteine in maternal plasma than placenta, even in animals fed the most-deficient diets, shows that the placenta did not contribute homocysteine to maternal plasma. Methionine synthesis from homocysteine in fetal tissues was maintained or increased when the dams were fed folate- and choline-deficient methionine-restricted diets. This study shows that methyl-deficient diets decrease the remethylation of homocysteine within maternal tissues but that these rates are protected to some extent within fetal tissues.  相似文献   

9.
Macronutrient composition of diets can influence body-weight development and energy balance. We studied the short-term effects of high-protein (HP) and/or high-fat (HF) diets on energy expenditure (EE) and uncoupling protein (UCP1-3) gene expression. Adult male rats were fed ad libitum with diets containing different protein-fat ratios: adequate protein-normal fat (AP-NF): 20% casein, 5% fat; adequate protein-high fat (AP-HF): 20% casein, 17% fat; high protein-normal fat (HP-NF): 60% casein, 5% fat; high protein-high fat (HP-HF): 60% casein, 17% fat. Wheat starch was used for adjustment of energy content. After 4 days, overnight EE and oxygen consumption, as measured by indirect calorimetry, were higher and body-weight gain was lower in rats fed with HP diets as compared with rats fed diets with adequate protein content (P<.05). Exchanging carbohydrates by protein increased fat oxidation in HF diet fed groups. The UCP1 mRNA expression in brown adipose tissue was not significantly different in HP diet fed groups as compared with AP diet fed groups. Expression of different homologues of UCPs positively correlated with nighttime oxygen consumption and EE. Moreover, dietary protein and fat distinctly influenced liver UCP2 and skeletal muscle UCP3 mRNA expressions. These findings demonstrated that a 4-day ad libitum high dietary protein exposure influences energy balance in rats. A function of UCPs in energy balance and dissipating food energy was suggested. Future experiments are focused on the regulation of UCP gene expression by dietary protein, which could be important for body-weight management.  相似文献   

10.
The effect of maternal dietary selenium (Se) and gestation on the concentrations of Se and zinc (Zn) in the porcine fetus were determined. Mature gilts were randomly assigned to treatments of either adequate (0.39 ppm Se) or low (0.05 ppm Se) dietary Se. Gilts were bred and fetuses were collected throughout gestation. Concentrations of Se in maternal whole blood and liver decreased during gestation in sows fed the low-Se diet compared to sows fed the Se-supplemented diet. Maternal intake of Se did not affect the concentration of Se in the whole fetus; however, the concentration of Se in fetal liver was decreased in fetuses of sows fed the low-Se diet. Although fetal liver Se decreased in both treatments as gestation progressed, the decrease was greater in liver of fetuses from sows fed the low-Se diet. Dietary Se did not affect concentrations of Zn in maternal whole blood or liver or in the whole fetus and fetal liver. The concentration of Se in fetal liver was lower but the concentration of Zn was greater than in maternal liver when sows were fed the adequate Se diet. These results indicate that maternal intake of Se affects fetal liver Se and newborn piglets have lower liver Se concentrations compared to their dams, regardless of the Se intake of sows during gestation. Thus, the piglet is more susceptible Se deficiency than the sow.  相似文献   

11.
Because arachidonic acid-derived eicosanoids are potent modulators of hyperproliferation and inflammation during skin tumor promotion with the phorbol ester, 12-0-tetradecanoylphorbol-13-acetate (TPA) (17, 18), it was hypothesized that dietary modification of epidermal fatty acids might modulate TPA-induced biochemical events in mouse skin. Semipurified diets containing 10% total fat composed of corn oil (CO) or a combination of CO and menhaden oil (MO) or coconut oil (CT) were fed to SENCAR mice for 4 weeks. Fatty acid composition of epidermal phospholipids generally reflected fatty acid composition of dietary oils fed to the mice. Since fatty acid-derived eicosanoids are thought to be essential in tumorigenesis, we compared the effects of dietary fats on prostaglandin E (PGE) production in epidermis treated with a single dose of TPA. TPA-induced PGE production in mouse epidermis from mice fed the MO diet was significantly reduced compared to PGE production in epidermal homogenates from mice fed the CO or CT diets. Type of dietary fats did not appear to modulate TPA-induced vascular permeability, however hyperplasia was slightly elevated in skins of mice fed MO. The subcellular distribution of protein kinase C, the plasma membrane receptor for TPA predominantly located in the cytosol (80%), was altered in epidermis from mice fed the MO diet compared to preparations from mice fed CO or CT diets which exhibited normal protein kinase C distribution. Our results suggest that n-3 rich dietary lipids modulate TPA-elicited events in mouse skin to a greater extent than diets containing higher proportions of saturated or n-6 fatty acids.  相似文献   

12.
Fifty-six castrated male progeny of crossbred (Chester White x Landrace x Large White x Yorkshire) dams fed an adequate diet (control, C), a control diet fed at one-third of C (restricted, R), or diets severely deficient in protein (PF) or restricted in nonprotein calories (RCal) were killed at age 25 weeks. Dams were fed their respective diets in the following regimens: C, 1.8 kg (6000 kcal daily) throughout pregnancy; R, 0.6 kg of C diet daily for 70 days, then 1.8 kg of C daily to parturition at about 114 days; PF, 1.8 kg of a "protein-free" diet (less than 0.2% protein) throughout pregnancy; RCal, 0.6 kg daily (2000 kcal) of a diet containing three times the concentration of protein, minerals, and vitamins provided by the C diet for 70 days, then 1.8 kg of C daily to parturition. All dams were fed an adequate diet ad libitum through a 28-day lactation. Castrated male progeny were assigned to one of two replicates based on birth date and fed a corn-soybean meal diet ad libitum from weaning to age 25 weeks, supplemented from age 10 to 12 weeks with 0, 110, or 220 mg/kg of thyroprotein (iodinated casein). Cerebrum weight was unaffected by maternal diet, despite a significant (P less than 0.001) reduction in body weight of progeny of PF dams compared with other groups, resulting in a higher relative cerebrum weight in progeny of PF dams than in progeny of C, R, and RCal dams. Absolute and relative weights of RNA, DNA, and total protein in cerebrum were unaffected by maternal diet. Thyroprotein supplementation to the diet of the progeny had no effect on cerebrum weight or its protein or nucleic acid content. It is concluded that maternal protein deprivation but not restriction of feed or nonprotein calorie intake to one-third of recommended allowance during gestation results in stunting of body weight in young adult progeny but does not affect cerebrum weight, cerebrum cell number (DNA), or protein synthetic activity (RNA), or RNA-to-protein ratio.  相似文献   

13.
Rats were fed diets containing 20% protein from casein, beef, chicken, tuna, or soybean. All diets contained 15% fat and were supplemented with limiting amino acids as necessary to meet National Research Council requirements. In Experiment 1, the manganese content of all diets was the same; manganese content was 5 mg/kg. In Experiment 2, a basal (adequate) level of minerals was provided in each diet but total mineral content varied depending on the contribution of the protein source; manganese was added to achieve a concentration of 5 mg/kg. In both experiments, 54Mn absorption was greatest from tuna (8.54% and 7.71%) and least from beef (4.57% and 4.14%) (P less than 0.0001). In both experiments, biologic half-life of 54Mn was longest in rats fed beef (18.5 and 26.9 days) and shortest in rats fed soy (14.5 and 16.2 days) (P less than 0.0002). Except for beef, biologic half-life was similar for dietary groups between the two experiments. In Experiment 1, only kidney manganese concentration was significantly affected by diet and was highest in soy-fed animals. In Experiment 2, plasma, kidney, and liver manganese were all significantly affected by diet and were highest in soy-fed animals and lowest in beef-fed animals.  相似文献   

14.
Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid oxidation may also contribute to the physiological activity of gamma-linolenic acid in decreasing body fat mass.  相似文献   

15.
Li  Xinyu  Zheng  Shixuan  Ma  Xuekun  Cheng  Kaimin  Wu  Guoyao 《Amino acids》2021,53(1):33-47

Five isonitrogenous and isocaloric diets [containing 54, 30, 15, 10, and 5% fishmeal crude-protein (CP), dry matter (DM) basis] were prepared by replacing fishmeal with poultry by-product meal plus soybean meal to feed juvenile largemouth bass (LMB, with an initial mean body weight of 4.9 g) for 8 weeks. All diets contained 54% CP and 13% lipids. There were four tanks of fish per treatment group (15 fish/tank). The fish were fed twice daily with the same feed intake (g/fish) in all the dietary groups. Results indicated that the inclusion of 15% fishmeal protein in the diet is sufficient for LMB growth. However, some of the fish that were fed diets containing ≤ 15% fishmeal CP had black skin syndrome (characterized by skin darkening and retinal degeneration, as well as intestinal and liver atrophies and structural abnormalities). The concentrations of taurine, methionine, threonine and histidine in serum were reduced (P < 0.05) in fish fed the diets containing 5, 10 and 15% fishmeal CP, compared with the 30 and 54% fishmeal CP diets. Interestingly, the concentrations of tyrosine and tryptophan in serum were higher in fish fed diets with ≤ 15% fishmeal CP than those in the 54% fishmeal CP group. These results indicated that 15% fishmeal CP in the diet containing poultry by-product meal and soybean meal was sufficient for the maximum growth and feed efficiency in LMB but inadequate for their intestinal, skin, eye, and liver health. A reduction in dietary methionine and taurine content and the possible presence of antinutritional factors in the fishmeal replacements diets containing high inclusion levels of soybean meal may contribute to black skin syndrome in LMB. We recommend that the diets of juvenile LMB contain 30% fishmeal CP (DM basis).

  相似文献   

16.
Cats were fed 17.5% (LP) and 70% (HP) diets and hepatocytes were prepared from them. Rates of gluconeogenesis from pyruvate, alanine and threonine (10 mM) were unaffected by protein intake but 10 mM glutamine was converted faster by cells from HP fed animals. Rates of oxidation of alanine, threonine and glutamine and flux rates of tyrosine aminotransferase and tryptophan 2,3-dioxygenase were greater in cells from HP fed cats at all amino acid concentrations used. Proteolysis was indicated by urea production which was higher in cells from HP fed cats but was reduced significantly by leupeptin.  相似文献   

17.
Dietary soy protein, in comparison with casein, generally lowers the serum cholesterol concentration in rats fed on a cholesterol-enriched diet, while mixed results were observed in rats fed on a diet free of cholesterol. Soy protein also suppresses the conversion of linoleic acid to arachidonic acid in the rat liver. The present study examines whether phytate, a minor component of a soy protein isolate, is responsible for these beneficial effects of soy protein. Weanling male rats were fed for 4 weeks on a purified diet containing a 20% level of protein (either casein (CAS), soy protein (SOY), phytate-depleted SOY (PDSOY) or phytate-replenished PDSOY (PRSOY)) and cholesterol (0 or 0.5%). The dietary protein source and phytate level only affected the serum and liver cholesterol concentrations when the animals were fed on the cholesterol-enriched diet, being significantly lower in those rats fed on the SOY and PRSOY diets than in those fed on the CAS diet, while the concentrations in the rats fed on the PDSOY diet were intermediate. When the animals were fed on the cholesterol-free diet, the ratio of (20:3n-6 + 20:4n-6)/18:2n-6 in liver phosphatidylcholine, a delta6 desaturation index, was significantly lower in the SOY diet group than in the CAS, PDSOY and PRSOY diet groups. Dietary cholesterol significantly depressed the ratio, but neither depletion nor replenishment of phytate affected the ratio. These results suggest that phytate in soy protein played a limited role in the cholesterol-lowering effect of soy protein and was not involved in the metabolism of linoleic acid.  相似文献   

18.
The hepatic removal of plasma chylomicrons was determined for rats fed the following diets: a) containing no triglyceride, b) regular chow diet with 4.5% of its mass as lipid and, c) a corn oil-supplemented chow with triglyceride accounting for 20% of the mass. The fractional hepatic uptake of either radiolabeled chylomicrons or a triglyceride emulsion was reciprocally related to the amount of lipid in the diet. The animals receiving only carbohydrate and protein calories had the most active hepatic uptake of particulate triglyceride and were observed to have a significant decrease in the plasma concentration of the C apolipoproteins. The addition of either C-I, C-II, or C-III apoproteins to the triglyceride emulsion prior to intravenous injection produced a significantly lower hepatic triglyceride recovery of emulsions containing apoC-III. When the plasma of animals fed a fat-free diet was supplemented with human C-III-1 apolipoprotein, the distribution into the liver of either enterally administered fatty acid or parenteral triglyceride was diminished. The triglyceride content in the liver of the rats fed fat-free or corn oil-supplemented diets was significantly greater than that of the control rats and composition was somewhat similar to that of lymph triglyceride. The studies indicate an important influence of dietary lipid on both the partition of plasma triglyceride into the liver and the steady state hepatic triglyceride content.  相似文献   

19.
Eleven Poll Dorset times Merino crossbred female lambs 4 weeks of age were trained to suck liquid diets from bottles. In three separate experiments liquid diets providing 14-2% (expt 1) 10-6% (expt 2) or 8-0% (expt 3) of gross energy as protein and amino acids were fed. Responses in voluntary intake, growth rate and changes in plasma amino acid concentrations were studied when complete or incomplete mixtures of amino acids were added to the liquid diet. These mixtures supplied either: (1) all amino acids in quantities to bring the total of protein plus amino acids to provide more than 20% of dietary gross energy, the amino acids being provided in proportions estimated to meet adequately the lamb's requirements ('complete'); or (2) as the same total amount of amino acids but with the amino acid supplement devoid of threonine ('low-threonine', expts 1 and 2) or isoleucine ('low isoleucine', expt 3). In experiment 1, there was no food intake or growth depression after feeding the amino acid mixture lacking threonine. In both experiments 2 and 3, voluntary food intake was depressed to about 50% of that observed in lambs fed the low protein diet, when the amino acid mixture devoid of threonine or of isoleucine, respectively, was fed. Addition of the missing amino acid to the low threonine and low isoleucine diets resulted in recovery of voluntary intake in experiments 2 and 3 respectively, but no significant improvement above that found after feeding the low protein (basal) diet. In experiments 1 and 2, after feeding the low threonine diet the threonine concentration in the blood plasma decreased markedly, while concentrations of total amino acids were elevated. Although there was no improvement in growth or food intake, the feeding of the diet containing the complete amino acid mixture resulted in an elevation of all essential amino acids including threonin. Similarly in experiment 3, plasma isoleucine concentration decreased in the lambs fed the isoleucine imbalanced diet. Results indicate that the suckled, preruminant lamb exhibits sensitivity to dietary amino acid imbalance, in a manner analogous to that found in simple-stomached animals. These results also clearly illustrate a depression in food intake associated with the deletion of a specific essential nutrient from the diet of the lamb.  相似文献   

20.
The effects of soybean oil (SOO, control), soybean lecithin (SOL), and of sterylglycocides (STG) and phospholipids (PL) fractionated from SOL on lipid indices in the plasma, liver, and feces were examined for male Wistar rats fed with diets containing these lipids for 3 weeks. The body weight gain and liver weight decreased or tended to be reduced in the animals given the diet containing a 5% STG mixture (STGM) compared with the values in the other dietary groups. The plasma lipid concentration in general declined in the rats fed with the diets supplemented with 5% SOL, STGM, or the PL mixture (PLM), and with 1% of STGM, acylated STG (ASTG), or non-acylated STG (NSTG). The triacylglycerol level was significantly depressed in the rats fed with the diets including 1 or 5% of STGM, ASTG, or NSTG when compared to the level of the SOO—fed animals. The total cholesterol and triacylglycerol contents in the liver were lower in the rats provided with the diets containing 5% of SOL, PC, or PLM than in the SOO- or STGM-diet-fed animals. The rats given the diets supplemented with 1 or 5% of STGM, ASTG, or NSTG had a decreased content of liver triacylglycerol compared with the content of the SOO—fed animals. The amounts of total lipids and total cholesterol excreted into the feces were higher in the rats fed with the diets supplemented with 5% SOL, or with 1% of STGM, ASTG, or NSTG, or especially with 5% STGM than in the SOO—fed animals. The present results suggest that STG suppressed the absorption of cholesterol and fatty acids in the intestines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号