首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reviews current co-culture systems for fermenting mixtures of glucose and xylose to ethanol. Thirty-five co-culture systems that ferment either synthetic glucose and xylose mixture or various biomass hydrolysates are examined. Strain combinations, fermentation modes and conditions, and fermentation performance for these co-culture systems are compared and discussed. It is noted that the combination of Pichia stipitis with Saccharomyces cerevisiae or its respiratory-deficient mutant is most commonly used. One of the best results for fermentation of glucose and xylose mixture is achieved by using co-culture of immobilized Zymomonas mobilis and free cells of P. stipitis, giving volumetric ethanol production of 1.277 g/l/h and ethanol yield of 0.49–0.50 g/g. The review discloses that, as a strategy for efficient conversion of glucose and xylose, co-culture fermentation for ethanol production from lignocellulosic biomass can increase ethanol yield and production rate, shorten fermentation time, and reduce process costs, and it is a promising technology although immature.  相似文献   

2.
Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 23 full factorial design with six axial points. Temperatures ranged from 132 to 180 °C, time from 10 to 90 min and oxalic acid loadings from 0.01 to 0.038 g/g solids. Separate maxima were found for enzymatic saccharification and hemicellulose fermentation, respectively, with the condition for maximum saccharification being significantly more severe. Ethanol production was affected by reaction temperature more than by oxalic acid and reaction time over the ranges examined. The effect of reaction temperature was significant at a 95% confidence level in its effect on ethanol production. Oxalic acid and reaction time were statistically significant at the 90% level. The highest ethanol concentration (20 g/l) was obtained after 48 h with an ethanol volumetric production rate of 0.42 g ethanol l−1 h−1. The ethanol yield after SSF with P. stipitis was significantly higher than predicted by sequential saccharification and fermentation of substrate pretreated under the same condition. This was attributed to the secretion of β-glucosidase by P. stipitis. During SSF, free extracellular β-glucosidase activity was 1.30 pNPG U/g with P. stipitis, while saccharification without the yeast was 0.66 pNPG U/g.  相似文献   

3.
In this study, the optimization of the major factors for efficient dilute acid pretreatment (DAP) of Korean barley straw was conducted by response surface method (RSM). In addition, saccharification of the optimized pretreated barley straw as well as fermentation of solubilized hemicellulose and enzymatic hydrolysates was performed for bioethanol production. The factors optimized by RSM were concentration of sulfuric acid, reaction time and temperature. Optimization experiments were carried out within the scope of 0.16 ∼ 1.84% sulfuric acid, 10 ∼ 20 min of reaction time, and 116 ∼ 183°C of temperature using a statistical program, and optimal conditions (1.16% of sulfuric acid, 16.9 min of reaction time, and 150°C) were determined based on reliable statistical indicators. The predicted value at stationary point and the experimental value were 81.38 and 80.66%, respectively. Saccharification was performed at 50°C using Celluclast (cellulase) and Novozyme 188 (β-glucosidase) as biocatalysts in an enzyme loading test. Conversion of the saccharification process was approximately 65%. In addition, fermentation of glucose after saccharification and solubilization of xylose solution by DAP were performed using Saccharomyces cerevisiae and Pichia stipitis at 30°C and 200 rpm for 12 h.  相似文献   

4.
A potential fungal strain producing extracellular β-glucosidase enzyme was isolated from sea water and identified as Aspergillus sydowii BTMFS 55 by a molecular approach based on 28S rDNA sequence homology which showed 93% identity with already reported sequences of Aspergillus sydowii in the GenBank. A sequential optimization strategy was used to enhance the production of β-glucosidase under solid state fermentation (SSF) with wheat bran (WB) as the growth medium. The two-level Plackett-Burman (PB) design was implemented to screen medium components that influence β-glucosidase production and among the 11 variables, moisture content, inoculums, and peptone were identified as the most significant factors for β-glucosidase production. The enzyme was purified by (NH4)2SO4 precipitation followed by ion exchange chromatography on DEAE sepharose. The enzyme was a monomeric protein with a molecular weight of ∼95 kDa as determined by SDS-PAGE. It was optimally active at pH 5.0 and 50°C. It showed high affinity towards pNPG and enzyme has a K m and V max of 0.67 mM and 83.3 U/mL, respectively. The enzyme was tolerant to glucose inhibition with a K i of 17 mM. Low concentration of alcohols (10%), especially ethanol, could activate the enzyme. A considerable level of ethanol could produce from wheat bran and rice straw after 48 and 24 h, respectively, with the help of Saccharomyces cerevisiae in presence of cellulase and the purified β-glucosidase of Aspergilus sydowii BTMFS 55.  相似文献   

5.
In this study, simultaneous saccharification and fermentation (SSF) was employed to produce ethanol from 1% sodium hydroxide-treated rice straw in a thermostatically controlled glass reactor using 20 FPU gds−1 cellulase, 50 IU gds−1 β-glucosidase, 15 IU gds−1 pectinase and a newly isolated thermotolerant Pichia kudriavzevii HOP-1 strain. Scanning electron micrograph images showed that the size of the P. kudriavzevii cells ranged from 2.48 to 6.93 μm in diameter while the shape of the cells varied from oval, ellipsoidal to elongate. Pichia kudriavzevii cells showed extensive pseudohyphae formation after 5 days of growth and could assimilate sugars like glucose, sucrose, galactose, fructose, and mannose but the cells could not assimilate xylose, arabinose, cellobiose, raffinose, or trehalose. In addition, the yeast cells could tolerate up to 40% glucose and 5% NaCl concentrations but their growth was inhibited at 1% acetic acid and 0.01% cyclohexamide concentrations. Pichia kudriavzevii produced about 35 and 200% more ethanol than the conventional Saccharomyces cerevisiae cells at 40 and 45°C, respectively. About 94% glucan in alkali-treated rice straw was converted to glucose through enzymatic hydrolysis within 36 h. Ethanol concentration of 24.25 g l−1 corresponding to 82% theoretical yield on glucan basis and ethanol productivity of 1.10 g l−1 h−1 achieved using P. kudriavzevii during SSF hold promise for scale-up studies. An insignificant amount of glycerol and no xylitol was produced during SSF. To the best of our knowledge, this is the first study reporting ethanol production from any lignocellulosic biomass using P. kudriavzevii.  相似文献   

6.
The gene mel1, encoding α-galactosidase in Schizosaccharomyces pombe, and the gene bgl2, encoding and α-glucosidase in Trichoderma reesei, were isolated and co-expressed in the industrial ethanolproducing strain of Saccharomyces cerevisiae. The resulting strains were able to grow on cellobiose and melibiose through simultaneous production of sufficient extracellular α-galactosidase and β-glucosidase activity. Under aerobic conditions, the growth rate of the recombinant strain GC1 co-expressing 2 genes could achieve 0.29 OD600 h−1 and a biomass yield up to 7.8 g l−1 dry cell weight on medium containing 10.0 g l−1 cellobiose and 10.0 g l−1 melibiose as sole carbohydrate source. Meanwhile, the new strain of S. cerevisiae CG1 demonstrated the ability to directly produce ethanol from microcrystalline cellulose during simultaneous saccharification and fermentation process. Approximately 36.5 g l−1 ethanol was produced from 100 g of cellulose supplied with 5 g l−1 melibose within 60 h. The yield (g of ethanol produced/g of carbohydrate consumed) was 0.44 g/g, which corresponds to 88.0% of the theoretical yield.  相似文献   

7.
A β-glucosidase gene from Putranjiva roxburghii (PRGH1) was heterologously expressed in Saccharomyces cerevisiae to enable growth on cellobiose. The recombinant enzyme was secreted to the culture medium, purified and biochemically characterized. The enzyme is a glycoprotein with a molecular weight of ∼68 kDa and exhibited enzymatic activity with β‐linked aryl substrates like pNP-Fuc, pNP-Glc, pNP-Gal and pNP-Cel with catalytic efficiency in that order. Significant enzyme activity was observed for cellobiose, however the enzyme activity was decreased with increase in chain length of glycan substrates. Using cellobiose as substrate, the enzyme showed optimal activity at pH 5.0 and 65 °C. The enzyme was thermostable up to 75 °C for 60 min. The enzyme showed significant resistance towards both glucose and ethanol induced inhibition. The recombinant S. cerevisiae strain showed advantages in cell growth, glucose and bio-ethanol production over the native strain with cellobiose as sole carbon source. In simultaneous saccharification and fermentation (SSF) experiments, the recombinant strain was used for bio-ethanol production from two different cellulosic biomass sources. At the end of the SSF, we obtained 9.47 g L−1 and 14.32 g L−1 of bio-ethanol by using carboxymethyl cellulose and pre-treated rice straw respectively. This is first report where a β-glucosidase gene from plant origin has been expressed in S. cerevisiae and used in SSF.  相似文献   

8.
A study was taken up to evaluate the role of some fermentation parameters like inoculum concentration, temperature, incubation period and agitation time on ethanol production from kinnow waste and banana peels by simultaneous saccharification and fermentation using cellulase and co-culture of Saccharomyces cerevisiae G and Pachysolen tannophilus MTCC 1077. Steam pretreated kinnow waste and banana peels were used as substrate for ethanol production in the ratio 4:6 (kinnow waste: banana peels). Temperature of 30°C, inoculum size of S. cerevisiae G 6% and (v/v) Pachysolen tannophilus MTCC 1077 4% (v/v), incubation period of 48 h and agitation for the first 24 h were found to be best for ethanol production using the combination of two wastes. The pretreated steam exploded biomass after enzymatic saccharification containing 63 gL−1 reducing sugars was fermented with both hexose and pentose fermenting yeast strains under optimized conditions resulting in ethanol production, yield and fermentation efficiency of 26.84 gL−1, 0.426 gg −1 and 83.52 % respectively. This study could establish the effective utilization of kinnow waste and banana peels for bioethanol production using optimized fermentation parameters.  相似文献   

9.

Background  

Hydrolysis of cellulose requires the action of the cellulolytic enzymes endoglucanase, cellobiohydrolase and β-glucosidase. The expression ratios and synergetic effects of these enzymes significantly influence the extent and specific rate of cellulose degradation. In this study, using our previously developed method to optimize cellulase-expression levels in yeast, we constructed a diploid Saccharomyces cerevisiae strain optimized for expression of cellulolytic enzymes, and attempted to improve the cellulose-degradation activity and enable direct ethanol production from rice straw, one of the most abundant sources of lignocellulosic biomass.  相似文献   

10.
Ethanol production by recombinant Escherichia coli strain FBR5 from dilute acid pretreated wheat straw (WS) by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) was studied. The yield of total sugars from dilute acid (0.5% H2SO4) pretreated (160 °C, 10 min) and enzymatically saccharified (pH 5.0, 45 °C, 72 h) WS (86 g/l) was 50.0 ± 1.4 g/l. The hydrolyzate contained 1,184 ± 19 mg furfural and 161 ± 1 mg hydroxymethyl furfural per liter. The recombinant E. coli FBR5 could not grow at all at pH controlled at 4.5 to 6.5 in the non-abated wheat straw hydrolyzate (WSH) at 35 °C. However, it produced 21.9 ± 0.3 g ethanol from non-abated WSH (total sugars, 44.1 ± 0.4 g/l) in 90 h including the lag time of 24 h at controlled pH 7.0 and 35 °C. The bioabatement of WS was performed by growing Coniochaeta ligniaria NRRL 30616 in the liquid portion of the pretreated WS aerobically at pH 6.5 and 30 °C for 15 h. The bacterium produced 21.6 ± 0.5 g ethanol per liter in 40 h from the bioabated enzymatically saccharified WSH (total sugars, 44.1 ± 0.4 g) at pH 6.0. It produced 24.9 ± 0.3 g ethanol in 96 h and 26.7 ± 0.0 g ethanol in 72 h per liter from bioabated WSH by batch SSF and fed-batch SSF, respectively. SSF offered a distinct advantage over SHF with respect to reducing total time required to produce ethanol from the bioabated WS. Also, fed-batch SSF performed better than the batch SSF with respect to shortening the time requirement and increase in ethanol yield.  相似文献   

11.
Hemicellulose liquid hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol using Pichia stipitis CBS 6054. The fermentation rate increased with aeration but the pH also increased due to consumption of acetic acid by Pichia stipitis. Hemicellulose hydrolyzate containing 34 g/L xylose, 8 g/L glucose, 8 g/L Acetic acid, 0.73 g/L furfural, and 1 g/L hydroxymethyl furfural was fermented to 15 g/L ethanol in 72 h. The yield in all the hemicellulose hydrolyzates was 0.37–0.44 g ethanol/g (glucose + xylose). Nondetoxified hemicellulose hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol with high yields, and this has the potential to improve the economics of the biomass to ethanol process.  相似文献   

12.
Rice straw is one of the abundant lignocellulosic feed stocks in the world and has been selected for producing ethanol at an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses).Biphasic acid hydrolysis was carried out with sulphuric acid using rice straw. After acid hydrolysis, the sugars, furans and phenolics were estimated. The initial concentration of sugar was found to be 16.8 g L−1. However to increase the ethanol yield, the initial sugar concentration of the hydrolysate was concentrated to 31 g L−1 by vacuum distillation. The concentration of sugars, phenols and furans was checked and later detoxified by over liming to use for ethanol fermentation. Ethanol concentration was found to be 12 g L−1, with a yield, volumetric ethanol productivity and fermentation efficiency of 0.33 g L−1 h−1, 0.4 g g−1 and 95%, respectively by co-culture of OVB 11 (Saccharomyces cerevisiae) and Pichia stipitis NCIM 3498.  相似文献   

13.
Apple pomace as a substrate for bioethanol production is interesting due to its abundance and sustainable availability in varied states like Himachal Pradesh (H.P.), Jammu and Kashmir, Uttarakhand and Arunachal Pradesh, India. In the current study, apple pomace which is the main fruit industrial waste of H.P. was evaluated as feedstock for bioethanol production by the process of enzymatic saccharification using multiple carbohydrases. Microwave pretreatment of the apple pomace resulted in the efficient removal of lignin and crystalline structure of cellulose fibre. The enzymatic saccharification of the pretreated biomass was done by optimizing parameters for maximal saccharification leads to production of 27.50?mg/g of reduce, ng sugar. An enhanced ethanol yield of 44.46?g/l and fermentation efficiency of 58% by immobilized co-culture of Saccharomyces cerevisiae MTCC 3089 and Scheffersomyces stipitis NCIM 3498 under SHF as compared to fermentation performed with free yeast cells, i.e. 34.46?g/l of ethanol and 45% of fermentation efficiency.  相似文献   

14.
Biological pretreatment of rice straw and production of reducing sugars by hydrolysis of bio-pretreated material with Streptomyces griseorubens JSD-1 was investigated. After 10 days of incubation, various chemical compositions of inoculated rice straw were degraded and used for further enzymatic hydrolysis studies. The production of cellulolytic enzyme by S. griseorubens JSD-1 favored the conversion of cellulose to reducing sugars. The culture medium for cellulolytic enzyme production by using agro-industrial wastes was optimized through response surface methodology. According to the response surface analysis, the concentrations of 11.13, 20.34, 4.61, and 2.85 g L?1 for rice straw, wheat bran, peptone, and CaCO3, respectively, were found to be optimum for cellulase and xylanase production. Then the hydrolyzed spent Streptomyces cells were used as a nitrogen source and the maximum filter paper cellulase, carboxymethylcellulase, and xylanase activities of 25.79, 78.91, and 269.53 U mL?1 were achieved. The crude cellulase produced by S. griseorubens JSD-1 was subsequently used for the hydrolysis of bio-pretreated rice straw, and the optimum saccharification efficiency of 88.13% was obtained, indicating that the crude enzyme might be used instead of commercial cellulase during a saccharification process. These results give a basis for further study of bioethanol production from agricultural cellulosic waste.  相似文献   

15.
Bioethanol production from ammonia percolated wheat straw   总被引:2,自引:0,他引:2  
This study examined the effectiveness of ammonia percolation pretreatment of wheat straw for ethanol production. Ground wheat straw at a 10% (w/v) loading was pretreated with a 15% (v/v) ammonia solution. The experiments were performed at treatment temperature of 50∼170°C and residence time of 10∼150 min. The solids treated with the ammonia solution showed high lignin degradation and sugar availability. The pretreated wheat straw was hydrolyzed by a cellulase complex (NS50013) and β-glucosidase (NS50010) at 45°C. After saccharification, Saccharomyces cerevisiae was added for fermentation. The incubator was rotated at 120 rpm at 35°C. As a result of the pretreatment, the delignification efficiency was > 70% (170°C, 30 min) and temperature was found to be a significant factor in the removal of lignin than the reaction time. In addition, the saccharification results showed an enzymatic digestibility of > 90% when 40 FPU/g cellulose was used. The ethanol concentration reached 24.15 g/L in 24 h. This paper reports a total process for bioethanol production from agricultural biomass and an efficient pretreatment of lignocellulosic material.  相似文献   

16.
An enhanced inhibitor-tolerant strain of Pichia stipitis was successfully developed through adaptation to acid-treated rice straw hydrolysate. The ethanol production obtained by fermentation of NaOH-neutralized hydrolysate without detoxification using the adapted P. stipitis was comparable to fermentation of overliming-detoxified hydrolysate. The ethanol yield using the adapted P. stipitis with both types of hydrolysate at pH 5.0 achieved 0.45 gp gs−1, which is equivalent to 87% of the maximum possible ethanol conversion. Furthermore, the newly adapted P. stipitis demonstrated significantly enhanced tolerance to sulfate and furfural despite the fact that both inhibitors had not been removed from the hydrolysate by NaOH neutralization. Finally, the ethanol conversion could be maintained at 60% and above when the neutralized hydrolysate contained 3.0% sulfate and 1.3 g L−1 furfural.  相似文献   

17.
We demonstrate the value of the thermotolerant yeast Issatchenkia orientalis as a candidate microorganism for bioethanol production from lignocellulosic biomass with the goal of consolidated bioprocessing. The I. orientalis MF-121 strain is acid tolerant, ethanol tolerant, and thermotolerant, and is thus a multistress-tolerant yeast. To express heterologous proteins in I. orientalis, we constructed a transformation system for the MF-121 strain and then isolated the promoters of TDH1 and PGK1, two genes that were found to be strongly expressed during ethanol fermentation. As a result, expression of β-glucosidase from Aspergillus aculeatus could be achieved with I. orientalis, demonstrating successful heterologous gene expression in I. orientalis for the first time. The transformant could convert cellobiose to ethanol under acidic conditions and at high temperature. Simultaneous saccharification and fermentation (SSF) was performed with the transformant, which produced 29 g l−1 of ethanol in 72 h at 40°C even without addition of β-glucosidase when SSF was carried out in medium containing 100 g l−1 of microcrystalline cellulose and a commercial cellulase preparation. These results suggest that using a genetically engineered thermotolerant yeast such as I. orientalis in SSF could lead to cost reduction because less saccharification enzymes are required.  相似文献   

18.

This study examined the pretreatment, enzymatic saccharification, and fermentation of the red macroalgae Gracilaria verrucosa using adapted saccharomyces cerevisiae to galactose or NaCl for the increase of bioethanol yield. Pretreatment with thermal acid hydrolysis to obtain galactose was carried out with 11.7% (w/v) seaweed slurry and 373 mM H2SO4 at 121 °C for 59 min. Glucose was obtained from enzymatic hydrolysis. Enzymatic saccharification was performed with a mixture of 16 U/mL Celluclast 1.5L and Viscozyme L at 45 °C for 48 h. Ethanol fermentation in 11.7% (w/v) seaweed hydrolysate was carried out using Saccharomyces cerevisiae KCTC 1126 adapted or non-adapted to high concentrations of galactose or NaCl. When non-adapted S. cerevisiae KCTC 1126 was used, the ethanol productivity was 0.09 g/(Lh) with an ethanol yield of 0.25. Ethanol productivity of 0.16 and 0.19 g/(Lh) with ethanol yields of 0.43 and 0.48 was obtained using S. cerevisiae KCTC 1126 adapted to high concentrations of galactose and NaCl, respectively. Adaptation of S. cerevisiae KCTC 1126 to galactose or NaCl increased the ethanol yield via adaptive evolution of the yeast.

  相似文献   

19.
Bamboo is a fast-growing renewable biomass that is widely distributed in Asia. Although bamboo is recognised as a useful resource, its utilization is limited and further development is required. Immature bamboo shoots harvested before branch spread were found to be a good biomass resource to achieve a high saccharification yield. The saccharification yield of the shoots increased (up to 98% for immature Phyllostachys bambusoides) when xylanase was used in addition to cellulase. Simultaneous saccharification and fermentation (SSF) processing converted immature shoots of P. bambusoides and Phyllostachys pubescens to ethanol with an ethanol yield of 169 and 139 g kg−1, respectively (98% and 81%, respectively, of the theoretical yields based on hexose conversion) when 12 FPU g−1 enzyme and the yeast Saccharomyces cerevisiae were used.  相似文献   

20.
Wheat straw consists of 48.57 ± 0.30% cellulose and 27.70 ± 0.12% hemicellulose on dry solid (DS) basis and has the potential to serve as a low cost feedstock for production of ethanol. Dilute acid pretreatment at varied temperature and enzymatic saccharification were evaluated for conversion of wheat straw cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from wheat straw (7.83%, w/v, DS) by dilute H2SO4 (0.75%, v/v) pretreatment and enzymatic saccharification (45 °C, pH 5.0, 72 h) using cellulase, β-glucosidase, xylanase and esterase was 565 ± 10 mg/g. Under this condition, no measurable quantities of furfural and hydroxymethyl furfural were produced. The yield of ethanol (per litre) from acid pretreated enzyme saccharified wheat straw (78.3 g) hydrolyzate by recombinant Escherichia coli strain FBR5 was 19 ± 1 g with a yield of 0.24 g/g DS. Detoxification of the acid and enzyme treated wheat straw hydrolyzate by overliming reduced the fermentation time from 118 to 39 h in the case of separate hydrolysis and fermentation (35 °C, pH 6.5), and increased the ethanol yield from 13 ± 2 to 17 ± 0 g/l and decreased the fermentation time from 136 to 112 h in the case of simultaneous saccharification and fermentation (35 °C, pH 6.0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号