首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
消炎痛作为一种要引起胃粘膜急性病变的药物,用分离提纯的猪胃H^+/K^+-ATPase证明,它可以显著的抑制此酶的活力,0.1mg/mL时即可抑制酶活力27%,0.5mg/mL时可抑制全部活力,其K0.5为0.18mg/mL。消炎痛对H^+/K^+-ATPase的抑制随30℃时预保温时间的延长而加剧,10min预保温可抑制总活力的50%。消炎痛并不影响H^+/K^+-TAPase的转换温度以及最适  相似文献   

2.
作为猪胃H+/K+-ATPase的非竞争性抑制剂,消炎痛明显抑制H+/K+-ATPase泡囊的质子转运功能,造成质子泄漏。在0.15mg/ml蛋白深度下,4%的消炎痛结合于H+/K+-ATPase泡囊上。它能渗入膜脂相并显著降低膜的流动性。并使H+/K+-ATPase内源荧光受到淬灭。从实验结果看来,消炎痛对猪胃H+/K+-ATPase质子转运功能的抑制来自对酶蛋白和膜结构影响两个方面,而非仅抑制  相似文献   

3.
以大豆( Glycine max L.) 下胚轴为材料, 采用二相法制得高纯度质膜微囊。实验发现,K+ 对质膜H+_ATPase水解活力和转运活力刺激差别显著,对转运活力刺激850% , 对水解活力仅刺激28 .2% 。动力学结果表明,有K+时ATP水解的Km 值为0.70 mmol/L,Vmax 为344 .8 nmol Pi·mg-1 protein·min-1 ; 无K+ 时ATP水解的Km 值为1 .14mmol/L, Vmax为285.7 nmol Pi·mg-1 protein·min-1 。K+ 对ATP水解的最适pH 值也有影响,有K+ 时为6 .5 ,无K+ 时降低到6.0 。进一步实验发现,K+ 对羟胺和钒酸钠的抑制作用影响较大,K+ 可以提高质膜H+_ATPase 对羟胺和钒酸钠的敏感性。结果表明,K+ 可以调节大豆下胚轴质膜H+_ATPase 水解与转运活力之间的偶联程度  相似文献   

4.
耐低钾水稻的根质膜ATPase和H^+分泌特性   总被引:2,自引:0,他引:2  
对耐低钾和不耐低钾的水稻(OryzasativaL.)“威优49”和“远诱1号”的根原生质膜ATPase性质的研究表明,这两种水稻的质膜ATPase活性的最适pH均为60,均在底物ATP浓度为3mmol/L时达到最大反应速度,Km值均在0.85左右。K+对这两种水稻的质膜ATPase活性均具有促进作用。当介质中[Km]≤50mmol/L时随[K+]的增大,对耐低钾品种根质膜ATPase活性的促进作用明显大于不耐低钾品种;当介质[K+]在100~200mmol/L之间时,K+对两种水稻品种质膜ATPase活性的刺激效应的差别减小。这两个水稻品种的基础H+分泌没有明显差别,但钾刺激的H+分泌存在差异,K+对耐低钾品种H+分泌的刺激效应大于不耐低钾品种。抑制剂实验表明在耐低钾和不耐低钾的水稻品种中,K+刺激的根质膜ATPase活性,K+刺激的H+分泌和K+吸收之间存在着紧密的联系。对K+刺激的质膜ATPase活性和H+分泌的抑制会减少根对K+的吸收量。推测耐低钾水稻的质膜ATPase和H+分泌对K+更为敏感,特别是在低浓度K+存在时,可能是耐低钾水稻更能利用低浓度K+、在低钾环境中能更好生长的一个原因。  相似文献   

5.
三丁基锡(TBT)是人红细胞膜上Na~+,K~+-ATPase的一种抑制剂.该化合物对Na~+,K~+-ATPase有很强的抑制能力.在正常的反应体系中,TBT浓度仅为10μmol/L时,该酶的活性全部丧失;其抑制Na~+,K~+-ATPase的IC_(50)值为2.2μmol/L.K~+能增强TBT的这种抑制作用,TBT为K~+的反竞争性抑制剂.  相似文献   

6.
跨膜Ca~(2+)梯差对大豆下胚轴质膜H~+-ATPase活力的影响   总被引:8,自引:0,他引:8  
采用两相法得到高纯度封闭的大豆下胚轴质膜微囊,研究了跨膜Ca2+梯差对质膜H+-ATPase质子转运和ATP水解活力的影响。结果表明,在1000:0.1,1000:0.5,1000:1及1000:10(μmol/L:μmol/L)几种梯差下,随着跨膜钙梯差的减小,质膜H+-ATPase质子转运活力逐步降低。然而,上述几种梯差对H+-ATPase水解活力的影响却很小。进一步研究发现,1000:0.1及1000:1(μmol/L:μmol/L)两种梯差对Km值没有影响,但K+对H+-ATPase的激活作用在两种梯差下存在显著差别。MC540荧光、DPH荧光偏振结果表明,跨膜钙梯差影响着膜脂的聚集状态和流动性。本文对跨膜Ca2+梯差对于大豆下胚轴质膜H+-ATPase水解与质子转运活力影响的可能机制进行了讨论。  相似文献   

7.
本文发现线粒体H^+-ATPase复合体先用0.5ug/ml的DCCD(二环已基碳二亚胺预保温处理,再经12.5%(V/V)乙醇进一步保温处理,则乙醇可完全消除DCCD引起的H^+-ATPase的抑制效应。若H^+-ATPase用DCCD和乙醇同时预保温处理,则DCCD同样消失其抑制作用。用相同浓度的甲醇代替乙醇,则仅可部分的消除DCCD的抑制作用。用相同浓度的DMSO(二甲基亚砜)代替乙醇,则不  相似文献   

8.
豆壳过氧化物酶的分离纯化及其性质研究   总被引:30,自引:2,他引:28  
从豆壳抽提液经硫酸铵分级沉淀,DEAE-SephadexA-50离子交换层析,ConA-Sepharose4B亲合层析和Bio-GelP-60凝胶过滤,纯化了豆壳过氧化物酶(soybeanhulper-oxidase,ShP).纯化酶的比活力为7077U/mg,在SDS-PAGE上显示出一条蛋白质带.ShP分子量为38000,等电点为3.9;ShP为一含血红素的糖蛋白,含糖量为18.7%,光谱学分析揭示,在406nm处有一典型的Soret带,在510nm和640nm处有特征吸收峰.酶反应的最适pH在4.0附近,最适温度为45℃;在pH2.5~12.0之间较稳定,75℃,保温60min,酶活力残余68%,ShP是一种良好的耐酸碱、耐热过氧化物酶.动力学分析求得ShP的表观Km(愈创木酚)为1.62mmol/L,表现Km(H2O2)为0.34mmol/L.在所测定的化学试剂中,N-3、CN-、Fe3+、Fe2+和Sn2+对酶有较强烈的抑制作用,而重金属离子Ag+、Hg2+、Pb2+、Cu2+、Cr3+以及SDS和EDTA对酶活力无显著影响  相似文献   

9.
以亲水性两相分配法从发育菜豆子叶制备的质膜制剂经冻融循环操作,部分膜微囊可转变成密闭的翻转型。取冻融4次的质膜微囊用于H+-ATPase试验表明,ATPase活力为ABA和CaM显著地激活,但受IAA显著抑制;质子泵活力被ABA显著促进,但为CaM显著抑制,IAA对质子泵活力无显著效应。可以认为:ABA促进发育菜豆子叶吸收光合同化物可能是通过促进质膜H+-ATPase活力,从而促进质子/蔗糖同向运输而获得;IAA则可能对菜豆子叶的质膜H+-ATPase无显著效应。在激素信号传导途径中,CaM对质膜H+-ATPase活力可能无直接影响。  相似文献   

10.
大豆液泡膜V型H^+-ATPase是ATPases中的一种,它在植物细胞的生长发育中有重要的作用。利用竹红菌乙素(HB)和KI这两种分别猝灭蛋白质疏水区域内源荧光和亲水区域内源荧光的荧光猝灭剂,在不同pH值、温度条件下对纯化的大豆液泡膜V型ATPase进行荧光猝灭实验,初步探讨了V型H^+-ATPase的水解活性同其蛋白质折叠状态间的关系。研究表明,通过比较不同pH值、温度条件下蛋白质疏水区域和亲  相似文献   

11.
本课题观察了低氧及血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)对分离培养家兔肺内小动脉平滑肌细胞(PASM-Cs)膜Ca2+-ATPase活力的影响,同时用钙通道阻断剂维拉帕米(verapamil,VP)进行干预,进一步了解细胞内钙与Ca2+-ATPase活力的关系。结果表明:PASMCs膜Ca2+-ATPase活力对低氧具有短暂的耐受性,随低氧时间延长,Ca2+-ATPase活力呈时间依赖性抑制;低氧、ANGⅡ均能抑制Ca2+-ATPase活力(P<0.01)低氧+AⅡ对Ca2+-ATPase活力的抑制具叠加效应(P<0.05);VP可逆转低氧、AngⅡ、低氧+AngⅡ对Ca2+-ATPase活力的抑制(P<0.01)。结果提示:低氧,ANGⅡ可通过抑制肺血管平滑肌细胞膜Ca2+-ATPase活力而可能削弱肺血管平滑肌舒张功能也可能是低氧性肺动脉高压(HPH)形成的原因之一。  相似文献   

12.
杜氏盐藻细胞质膜氧化还原系统与K^+吸收   总被引:3,自引:0,他引:3  
杜氏盐藻(Dunaliella salina)细胞表面存在氧化NADH 与还原Fe(CN)3-6 的氧化还原系统(redoxsystem )。该系统在氧化NADH 时,抑制K+ 的吸收,在还原Fe(CN)3-6 时, 促进K+ 的吸收,当NADH 同时存在时, 促进效应最显著, 高达735% 。外源NADH 促进藻细胞的氧吸收达165% ,而使胞质pH 下降; 当NADH 存在时, Fe(CN)3-6 被快速地还原, 同时藻细胞膜外酸化程度增加。质膜H+ -ATPase和氧化还原系统的典型抑制剂都不同程度地抑制K+ 吸收; 并且钒酸盐对K+ 吸收的抑制可以被加入NADH 和Fe(CN)3-6 而部分恢复, 表明质膜H+ -ATPase和氧化还原系统共同参与了细胞K+ 的吸收过程  相似文献   

13.
三丁基锡对人红细胞膜Na^+,K^+—ATPase活性的抑制作用   总被引:1,自引:0,他引:1  
三丁基锡(TBT)是人红细胞膜上Na^+,K^+-ATPase的一种抑制剂。该化合物对Na^+,K^+-ATPase有很强的抑制能力。在正常的反应体系中,TBT浓度仅为10μmol/L时,该酶的活性全部丧失;其抑制Na^+,K^+-ATPase的IC50值为2.2μmol/L.K^+能增强TBT的这种抑制作用,TBT为K^+的反竞争性抑制剂。  相似文献   

14.
在渗透势为-0.5和-1.0MPaPEG处理下,不抗旱的郑引一号小麦根PMH+-ATPase活性分别下降45%和65%,抗旱品种陕合六号则增加了11%和12%。小麦根组织H+分泌与PMH+-ATPase活性的变化趋势基本一致,即随着胁强增加,郑引一号H+分泌下降,陕合六号H+分泌是先升高后略降。Na3VO4和DCCD对H+分泌有不同程度的抑制,品种之间没有明显的差异。外源电子受体Fe(CN)63-的加入促进了小麦根H+分泌,陕合六号增加25%-39%,郑引一号增加21%-45%。与此同时,Na3VO4没有表现出对H+分泌的抑制作用。  相似文献   

15.
用奎吖咽(quinacrine)作荧光指标剂,测定玉米(ZeamaysL.)根尖微粒体(MIC)膜囊泡的H~+-泵活性,结果表明1mmol/LNaN_3仅抑制该泵活性约8%,而0.8mmol/L钒酸盐(Van)则可抑制其活性达80%,说明MIC制剂中H~+-泵活性主要由质膜(PM)H~+-ATPase产生。此泵活性严格需要Mg~(2+),二价阳离子作用大小的顺序为Mg~(2+)>Mn~(2+)>Zn~(2+)>Ca~(2+)=0;阴离子作用大小的1顺序为Br~->Cl~->NO_3~->SO_4~(2-),并初步证实当质膜同侧发生电子传递时,没有跨膜H~+梯度(△μH~+)生成。  相似文献   

16.
水分胁迫下棉花根和下胚轴质膜H^+-ATPase和Ca^2+-ATPase活力,表现Km值以及Vmax降低。-0.3MPa和-1.1MPa胁迫下质膜AT-Pase活力随时间延长分别呈“V”字形变化和下降趋势。钙螯合剂、CaM抑制剂对棉花根和下胚轴质膜ATPase活性有明显的抑制效应,抑制程度为-1.1MPa大于-0.3MPa大于对照。  相似文献   

17.
小麦根质膜H^+—ATPase的部分纯化   总被引:2,自引:0,他引:2  
以小麦(TriticumaestivumL.)根为材料,采用不连续蔗糖密度梯度离心法制备高纯度质膜微囊。质膜经TritonX100和KCl处理后,再用Zwitergent314增溶H+ATPase,最后用硫酸铵沉淀得到部分纯化的质膜H+ATPase。SDSPAGE结果表明,经过上述步骤纯化,分子量为94kD的膜蛋白组分得到富集;与质膜相比,其含量提高15.7倍。部分纯化的质膜H+ATPase可以水解ATP,受K+刺激,并被N,N′dicyclohexylcarbodimide(DCCD)抑制;ATP水解活力被Na3VO4抑制95%,但不被NaN3、NaNO3和Na2MoO4抑制。  相似文献   

18.
研究了大豆液泡膜H+-ATPase泵质子特性。液泡膜H+-ATPase泵质子活性受NEM、NBD-Cl、DCCD和NO3-的抑制。泵质子活性由二价阳离子启动,其有效性依次为Fe2+>Mg2+>Mn2+,它以ATP为最适底物,ADP为竞争性抑制剂;最适pH为7.0,最适温度为50°C。  相似文献   

19.
盐胁迫降低无花果振荡培养细胞培养液PH添加质膜H^+-ATPase活性抑制剂Na3VO4则抑制盐诱导的培养液PH下降,表明盐诱导培养液H下降主要是细胞质膜H^+-ATPase活性增加的结果。NaCl处理提高活体细胞质膜H^+-ATPase活性,而降低膜微囊H^+-ATPase活性,培养液中添加Na3VO4 50μmol/L完全抑制盐胁迫下无花果细胞游离脯氨酸只累,但添加更高浓度Na3VO4,则提高  相似文献   

20.
玉米胚乳细胞中纯化的细胞质Hsp70蛋白有低水平的ATPase 活性,它在50 ℃、pH5 .8 、20 mmol/L的KCl 条件下活性最高,Ca2+和Mg2+ 抑制其活性。大肠杆菌DnaJ蛋白能将玉米细胞质Hsp70 的ATPase 活性提高6倍,而GrpE 蛋白对其影响很小。8 种不同的人工合成多肽均能刺激该蛋白的ATPase 活性,增加幅度从2 .5 倍到10 倍不等。亲水性不同的氨基酸对Hsp70 的ATPase 活性影响不同。玉米细胞质Hsp70 是一个三磷酸核苷酸酶,除ATP 外,它还能催化UTP、GTP、CTP和ITP的水解  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号