首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Patterns of nucleotide substitutions in human major histocompatibility complex (MHC) class I genes were estimated by using phylogenetic trees of DNA sequences. The pattern is defined as a set of 12 parameters, each of which represents the relative frequency of substitutions from a particular nucleotide to another. The pattern at the antigen recognition sites (ARS) in functional MHC genes was remarkably different from that at the remaining coding region (non-ARS). In particular, the proportion of transitions among all the nucleotide substitutions (P s) was extremely low at the third codon positions of ARS. In the HLA-A genes, P s at the third codon positions was only 6% in ARS, whereas it was 69% in non-ARS. In HLA-B, the corresponding values were 30% in ARS and 80% in non-ARS, respectively. On the other hand, P s in a class I pseudogene (HLA-H) was 57%, which was in good agreement with P s in other pseudogenes. Because pseudogenes are selectively neutral, the pattern in pseudogenes is regarded as the pattern of spontaneous substitution mutations. In general, the pattern in functional genes that are subject to selective forces deviates from the pattern in pseudogenes. At the third codon positions in coding regions, transitions scarcely cause amino acid replacements, whereas about half of transversions do cause replacements. Accordingly, P s at the third codon positions decreases if amino acid replacements are accelerated by natural selection but increases if amino acids are conserved by functional constraint. Our observations imply that the ARS region is subject to natural selection favoring amino acid replacements, whereas the non-ARS region is subject to functional constraint. Offprint requests to: T. Gojobori  相似文献   

2.
A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm speciesOryza sativa, Zea mays, Triticum aestivum andArabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in chloroplast genes, suggesting different genomic organization and mutation pressures in nuclear and chloroplast genes. The results of Nc-plots and neutrality plots suggested that nucleotide compositional constraint had a large contribution to codon usage bias of nuclear genes inO. sativa, Z. mays, andT. aestivum, whereas natural selection was likely to be playing a large role in codon usage bias in chloroplast genomes. Correspondence analysis and chi-test showed that regardless of the genomic environment (species) of the host, the codon usage pattern of chloroplast genes differed from nuclear genes of their host species by their AU-richness. All the chloroplast genomes have predominantly A- and/or U-ending codons, whereas nuclear genomes have G-, C- or U-ending codons as their optimal codons. These findings suggest that the chloroplast genome might display particular characteristics of codon usage that are different from its host nuclear genome. However, one feature common to both chloroplast and nuclear genomes in this study was that pyrimidines were found more frequently than purines at the synonymous codon position of optimal codons.  相似文献   

3.
为了分析美丽梧桐、云南梧桐叶绿体基因组密码子的使用偏性,该研究通过筛选美丽梧桐、云南梧桐叶绿体基因组中各52条蛋白编码序列,并利用CodonW、CUSP和SPSS软件对其密码子使用模式及偏性进行了分析。结果表明:(1)美丽梧桐、云南梧桐的GC含量分别为38.12%、38.05%,表明叶绿体基因组内富含A/T碱基。(2)有效密码子数(ENC)范围为36.91~56.46、36.55~58.04,表明多数密码子偏性较弱。(3)相对同义密码子(RSCU)分析显示,RSCU1的密码子各有29个,其中28个以A、U结尾。(4)中性绘图显示,GC_3与GC_(12)的相关性不显著,回归曲线斜率分别为0.195和0.304,说明密码子偏好性主要受到自然选择的影响。(5) ENC-plot分析中大部分基因分布于曲线的周围和下方,ENC比值多分布于-0.04~0.10之间,表明突变会影响密码子偏性的形成。此外,17、18个密码子分别被鉴定为美丽梧桐、云南梧桐的最优密码子。以上结果说明美丽梧桐、云南梧桐叶绿体基因组的密码子使用偏性可能受选择和突变共同作用,且使用模式较为相似,但具有一定的差异,可能与适应环境的进化机制有关。  相似文献   

4.
In bacteria, synonymous codon usage can be considerably affected by base composition at neighboring sites. Such context-dependent biases may be caused by either selection against specific nucleotide motifs or context-dependent mutation biases. Here we consider the evolutionary conservation of context-dependent codon bias across 11 completely sequenced bacterial genomes. In particular, we focus on two contextual biases previously identified in Escherichia coli; the avoidance of out-of-frame stop codons and AGG motifs. By identifying homologues of E. coli genes, we also investigate the effect of gene expression level in Haemophilus influenzae and Mycoplasma genitalium. We find that while context-dependent codon biases are widespread in bacteria, few are conserved across all species considered. Avoidance of out-of-frame stop codons does not apply to all stop codons or amino acids in E. coli, does not hold for different species, does not increase with gene expression level, and is not relaxed in Mycoplasma spp., in which the canonical stop codon, TGA, is recognized as tryptophan. Avoidance of AGG motifs shows some evolutionary conservation and increases with gene expression level in E. coli, suggestive of the action of selection, but the cause of the bias differs between species. These results demonstrate that strong context-dependent forces, both selective and mutational, operate on synonymous codon usage but that these differ considerably between genomes. Received: 6 May 1999 / Accepted: 29 October 1999  相似文献   

5.
Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole‐genome sequencing of numerous species, both prokaryotes and eukaryotes, genome‐wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole‐genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome‐sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome‐sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance.  相似文献   

6.
Selection on Codon Usage for Error Minimization at the Protein Level   总被引:1,自引:0,他引:1  
Given the structure of the genetic code, synonymous codons differ in their capacity to minimize the effects of errors due to mutation or mistranslation. I suggest that this may lead, in protein-coding genes, to a preference for codons that minimize the impact of errors at the protein level. I develop a theoretical measure of error minimization for each codon, based on amino acid similarity. This measure is used to calculate the degree of error minimization for 82 genes of Drosophila melanogaster and 432 rodent genes and to study its relationship with CG content, the degree of codon usage bias, and the rate of nucleotide substitution. I show that (i) Drosophila and rodent genes tend to prefer codons that minimize errors; (ii) this cannot be merely the effect of mutation bias; (iii) the degree of error minimization is correlated with the degree of codon usage bias; (iv) the amino acids that contribute more to codon usage bias are the ones for which synonymous codons differ more in the capacity to minimize errors; and (v) the degree of error minimization is correlated with the rate of nonsynonymous substitution. These results suggest that natural selection for error minimization at the protein level plays a role in the evolution of coding sequences in Drosophila and rodents.Reviewing Editor: Dr. Massimo Di Giulio  相似文献   

7.
王艳  赵懿琛  赵德刚 《广西植物》2021,41(2):274-282
为了解杜仲基因密码子使用模式,该文以杜仲基因组密码子为研究对象,运用CodonW软件对杜仲的320个蛋白编码基因进行同义密码子相对使用频率(RSCU)分析、ENC-GC3s关联分析编码基因的密码子ENC值、PR2-plot偏倚分析编码基因的密码子碱基使用频率,并运用CUSP软件与Codon Usage Database软件对杜仲基因密码子的GC含量、使用频率与代表性物种烟草、拟南芥、大肠杆菌和酿酒酵母的密码子GC含量和使用频率进行比较。结果表明:杜仲基因密码子的RSCU>1的密码子有30个,其中18个以G/C结尾、12个以A/U结尾,说明杜仲基因密码子偏好以G/C结尾,且偏好性较强;有效密码子数(ENC)范围为30~60,该范围内的密码子距离标准曲线较远,其ENC值小,偏好性较强;PR2-plot偏倚分析碱基使用频率显示,G>C、U>A;杜仲与代表性物种的GC含量分析显示,杜仲的GC12、GC3以及平均GC含量均高于代表性物种;杜仲与代表性物种的密码子使用频率分析显示,杜仲与烟草、酿酒酵母的密码子偏好较为接近,杜仲与拟南芥、大肠杆菌的密码子偏好差距较大。杜仲是我国特有的珍贵中药材,对其进行密码子使用模式分析,并研究其密码子偏好规律,为杜仲植物基因工程中外源基因的改良及表达提供了理论基础。  相似文献   

8.
9.
Codon usage in mitochondrial genome of the six different plants was analyzed to find general patterns of codon usage in plant mitochondrial genomes. The neutrality analysis indicated that the codon usage patterns of mitochondrial genes were more conserved in GC content and no correlation between GC12 and GC3. T and A ending codons were detected as the preferred codons in plant mitochondrial genomes. The Parity Rule 2 plot analysis showed that T was used more frequently than A. The ENC-plot showed that although a majority of the points with low ENC values were lying below the expected curve, a few genes lied on the expected curve. Correspondence analysis of relative synonymous codon usage yielded a first axis that explained only a partial amount of variation of codon usage. These findings suggest that natural selection is likely to be playing a large role in codon usage bias in plant mitochondrial genomes, but not only natural selection but also other several factors are likely to be involved in determining the selective constraints on codon bias in plant mitochondrial genomes. Meantime, 1 codon (P. patens), 6 codons (Z. mays), 9 codons (T. aestivum), 15 codons (A. thaliana), 15 codons (M. polymorpha) and 15 codons (N. tabacum) were defined as the preferred codons of the six plant mitochondrial genomes.  相似文献   

10.
叶绿体基因组密码子偏好性使用模式往往影响基因表达效率,为促进药用植物叶绿体基因工程的发展,提高槲蕨药用品质,该研究以川滇槲蕨、栎叶槲蕨和槲蕨三个近缘药用植物为材料,使用CodonW、CUSP和SPSS等软件分析其叶绿体基因组编码基因密码子使用偏好性,筛选出三个物种的最优密码子。结果表明:川滇槲蕨、栎叶槲蕨和槲蕨叶绿体基因组的有效密码子数(ENC)范围分别为40.10~61、40.33~61和40.15~61,其密码子偏好性较弱;ndhE、rpl22、rpl14、rpl20、ccsA、rps4和rpl16编码基因的ENC值差异较大,表明近缘物种中,部分基因的密码子偏好性存在一定差异;三个物种编码基因的ENC频数集中于-0.1~0.1之间,说明槲蕨属基因密码子偏好性主要受到突变的影响。川滇槲蕨12个最优密码子有6个和栎叶槲蕨相同,分别是UCU、ACU、GCU、CAA、AAA和GAU;栎叶槲蕨10个最优密码子有2个和槲蕨相同,分别是UUA和AUU,而川滇槲蕨与槲蕨无相同的最优密码子。该研究结果可为槲蕨属药用植物基因工程中外源基因的改良及其表达奠定基础。  相似文献   

11.
In order to study the origin of the polymorphism of MHC class I molecules, we have cloned and sequenced five new Patr-A, -B, and -C loci alleles from two chimpanzees. Previous studies of sequence comparison between Patr and HLA class I alleles revealed that many of the sequence motifs were shared and the origin of class I molecules predated the divergence of chimpanzees and humans. These findings are confirmed by our current study. Additionally, our data suggest significant differences between mechanisms of evolution of the A, B, and C loci: (1) The B locus is characterized by frequent nucleotide substitutions, whereas the A and C loci are relatively more conserved; (2) However, unlike the A locus, the alpha2 domains of the C locus sequenced appear to produce MHC polymorphism between these species. These differences might imply the distinctive contributions of each locus during the evolutionary history.  相似文献   

12.
 The protein-coding sequences of the major histocompatibility complex (MHC) genes are characterized by extraordinarily high polymorphism, apparently maintained by balancing selection, which favors diversity in the peptide-binding domains of the MHC glycoproteins. Here we report that the introns flanking the polymorphic exons of the human MHC class I loci HLA-A, -B, and -C genes have been relatively conserved and have become locus-specific apparently as a result of recombination and subsequent genetic drift, leading to homogenization within loci over evolutionary time. Thus, HLA class I genes have been shaped by contrasting evolutionary forces maintaining polymorphism in the exons and leading to conservation in the introns. This study provides the first extensive analysis of the introns of a highly polymorphic gene family. Received: 10 April 1997 / Revised: 15 July 1997  相似文献   

13.
14.
Enterogenic Escherichia coli (ETEC) F18 strains are the main pathogenic bacteria causing severe diarrhea in humans and domestic animals. However, the information about synonymous codon usage pattern of ETEC F18 genome remains unclear. We conducted a genome-wide analysis of synonymous codon usage patterns in the ETEC F18 strain SRA: SAMN02471895. After filtering of the complete genome sequence, 4327 coding sequences were analyzed using multivariate statistical methods to calculate synonymous codon usage patterns and to evaluate the influence of various factors in shaping the codon usage. The mean GC content was 51.38%, with a slight preference for G/C-ending codons. Twenty-two codons were determined as ‘‘optimal codons”. ENC plots showed some of the genes were on or close to the expected curve, while only points with low-ENC values were below the curve. PR2 analysis showed that GC and AT were not used proportionally, suggesting major roles for mutational pressure and natural selection in shaping usage. Neutrality plots showed a significant correlation between GC12 and GC3, suggesting that mutational pressure is responsible for nucleotide composition in shaping the strength of codon usage. Translational selection was the main factor shaping the codon usage pattern of ETEC F18 genome, while other factors such as protein length, GRAVY and ARO values also influenced codon usage to some extent. We analyzed the codon usage pattern systematically and identified the factors shaping codon usage bias in the ETEC F18 genome. Such information further elucidates the mechanisms of synonymous codon usage bias and provides the basis of molecular genetic engineering and evolutionary studies.  相似文献   

15.
 Lymphocytes of a New World primate, the cotton-top tamarin (Saguinus oedipus), express classical G–related major histocompatibility complex (MHC) class I molecules with unusually limited polymorphism and variability. Three G-related loci, an F locus, an E locus, and two pseudogenes (So-N1 and So-N3) have been identified by cDNA library screening and extensive PCR analysis of both cDNA and genomic DNA from the cotton-top tamarin. Furthermore, each genus of the subfamily Callitrichinae (tamarins and marmosets) appears to express its own unique set of MHC class I genes, likely due to a rapid turnover of loci. The rapid emergence of unique MHC class I genes in the Callitrichinae genera, resulting from an active process of duplication and inactivation of loci, may account for the limited diversity of the MHC class I genes in the cotton-top tamarin. To determine the nature of the entire complement of MHC class I genes in the cotton-top tamarin, we synthesized a genomic DNA library and screened it with MHC class I-specific probes. We isolated nine new MHC class I pseudogenes from this library. These newly isolated tamarin G–related MHC class I pseudogenes are not closely related to any of their functional counterparts in the tamarin, suggesting that they do not share a recent common ancestral gene with the tamarin's currently expressed MHC class I loci. In addition, these tamarin sequences display a high rate of nonsynonymous substitutions in their putative peptide binding region. This indicates that the genes from which they have derived were likely subject to positive selection and, therefore, were once functional. Our data support the notion that an extremely high rate of loci turnover is largely responsible for the limited diversity of the MHC class I genes in the cotton-top tamarin. Received: 15 September 1997 / Revised: 2 July 1998  相似文献   

16.

Background

Synonymous codon usage varies widely between genomes, and also between genes within genomes. Although there is now a large body of data on variations in codon usage, it is still not clear if the observed patterns reflect the effects of positive Darwinian selection acting at the level of translational efficiency or whether these patterns are due simply to the effects of mutational bias. In this study, we have included both intra-genomic and inter-genomic comparisons of codon usage. This allows us to distinguish more efficiently between the effects of nucleotide bias and translational selection.

Results

We show that there is an extreme degree of heterogeneity in codon usage patterns within the rice genome, and that this heterogeneity is highly correlated with differences in nucleotide content (particularly GC content) between the genes. In contrast to the situation observed within the rice genome, Arabidopsis genes show relatively little variation in both codon usage and nucleotide content. By exploiting a combination of intra-genomic and inter-genomic comparisons, we provide evidence that the differences in codon usage among the rice genes reflect a relatively rapid evolutionary increase in the GC content of some rice genes. We also noted that the degree of codon bias was negatively correlated with gene length.

Conclusion

Our results show that mutational bias can cause a dramatic evolutionary divergence in codon usage patterns within a period of approximately two hundred million years.The heterogeneity of codon usage patterns within the rice genome can be explained by a balance between genome-wide mutational biases and negative selection against these biased mutations. The strength of the negative selection is proportional to the length of the coding sequences. Our results indicate that the large variations in synonymous codon usage are not related to selection acting on the translational efficiency of synonymous codons.
  相似文献   

17.
Unequal use of synonymous codons has been found in several prokaryotic and eukaryotic genomes. This bias has been associated with translational efficiency. The prevalence of this bias across lineages is currently unknown. Here, a new method (GCB) to measure codon usage bias is presented. It uses an iterative approach for the determination of codon scores and allows the computation of an index of codon bias suitable for interspecies comparison. A server to calculate GCB-values of individual genes as well as a list of compiled results are available at . The method was applied to complete bacterial genomes. The relation of codon usage bias with amino acid composition and the choice of stop codons were determined and discussed.  相似文献   

18.
In many organisms, the difference in codon usage patterns among genes reflects variation in local base compositional biases and the intensity of natural selection. In this study, a comparative analysis was performed to investigate the characteristics of codon bias and factors in shaping the codon usage patterns among mitochondrion, chloroplast and nuclear genes in common wheat (Triticum aestivum L.). GC contents in nuclear genes were higher than that in mitochondrion and chloroplast genes. The neutrality and correspondence analyses indicated that the codon usage in nuclear genes would be a result of relative strong mutational bias, while the codon usage patterns of mitochondrion and chloroplast genes were more conserved in GC content and influenced by translation level. The Parity Rule 2 (PR2) plot analysis showed that pyrimidines were used more frequently than purines at the third codon position in the three genomes. In addition, using a new alterative strategy, 11, 12, and 24 triplets were defined as preferred codons in the mitochondrion, chloroplast and nuclear genes, respectively. These findings suggested that the mitochondrion, chloroplast and nuclear genes shared particularly different features of codon usage and evolutionary constraints.  相似文献   

19.
The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.  相似文献   

20.
It has often been suggested that differential usage of codons recognized by rare tRNA species, i.e. "rare codons", represents an evolutionary strategy to modulate gene expression. In particular, regulatory genes are reported to have an extraordinarily high frequency of rare codons. From E. coli we have compiled codon usage data for highly expressed genes, moderately/lowly expressed genes, and regulatory genes. We have identified a clear and general trend in codon usage bias, from the very high bias seen in very highly expressed genes and attributed to selection, to a rather low bias in other genes which seems to be more influenced by mutation than by selection. There is no clear tendency for an increased frequency of rare codons in the regulatory genes, compared to a large group of other moderately/lowly expressed genes with low codon bias. From this, as well as a consideration of evolutionary rates of regulatory genes, and of experimental data on translation rates, we conclude that the pattern of synonymous codon usage in regulatory genes reflects primarily the relaxation of natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号