首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 266 毫秒
1.
Muller's ratchet predicts fitness losses in small populations of asexual organisms because of the irreversible accumulation of deleterious mutations and genetic drift. This effect should be enhanced if population bottlenecks intervene and fixation of mutations is not compensated by recombination. To study whether Muller's ratchet could operate in a retrovirus, 10 biological clones were derived from a human immunodeficiency virus type 1 (HIV-1) field isolate by MT-4 plaque assay. Each clone was subjected to 15 plaque-to-plaque passages. Surprisingly, genetic deterioration of viral clones was very drastic, and only 4 of the 10 initial clones were able to produce viable progeny after the serial plaque transfers. Two of the initial clones stopped forming plaques at passage 7, two others stopped at passage 13, and only four of the remaining six clones yielded infectious virus. Of these four, three displayed important fitness losses. Thus, despite virions carrying two copies of genomic RNA and the system displaying frequent recombination, HIV-1 manifested a drastic fitness loss as a result of an accentuation of Muller's ratchet effect.  相似文献   

2.
We showed earlier that transfers of large populations of RNA viruses lead to fitness gains and that repeated genetic bottleneck transfers result in fitness losses due to Muller's ratchet. In the present study, we examined the effects of genetic bottleneck passages intervening between population passages, a process akin to some natural viral transmissions, using vesicular stomatitis virus as a model. Our findings show that the pronounced fitness increases that occur during two successive population passages cannot overcome the fitness decreases caused by a single intervening genetic bottleneck passage. The implications for natural transmissions of RNA viruses are discussed.  相似文献   

3.
Genetic bottlenecks are important events in the genetic diversification of organisms and colonization of new ecological niches. Repeated bottlenecking of RNA viruses often leads to fitness losses due to the operation of Muller's ratchet. Herein we use vesicular stomatitis virus to determine the transmission population size which leads to fitness decreases of virus populations. Remarkably, the effective size of a genetic bottleneck associated with fitness loss is greater when the fitness of the parental population increases. For example, for starting virus populations with low fitness, population transfers of five-clone-to-five-clone passages resulted in a fitness increase. However, when a parental population with high fitness was transferred, 30-clone-to-30-clone passages were required simply to maintain fitness values.  相似文献   

4.
Subclonal components of consensus fitness in an RNA virus clone.   总被引:15,自引:11,他引:4       下载免费PDF全文
Most RNA virus populations exhibit extremely high mutation frequencies which generate complex, genetically heterogeneous populations referred to as quasi-species. Previous work has shown that when a large spectrum of the quasi-species is transferred, natural selection operates, leading to elimination of noncompetitive (inferior) genomes and rapid gains in fitness. However, whenever the population is repeatedly reduced to a single virion, variable declines in fitness occur as predicted by the Muller's ratchet hypothesis. Here, we quantitated the fitness of 98 subclones isolated from an RNA virus clonal population. We found a normal distribution around a lower fitness, with the average subclone being less fit than the parental clonal population. This finding demonstrates the phenotypic diversity in RNA virus populations and shows that, as expected, a large fraction of mutations generated during virus replication is deleterious. This clarifies the operation of Muller's ratchet and illustrates why a large number of virions must be transferred for rapid fitness gains to occur. We also found that repeated genetic bottleneck passages can cause irregular stochastic declines in fitness, emphasizing again the phenotypic heterogeneity present in RNA virus populations. Finally, we found that following only 60 h of selection (15 passages in which virus yields were harvested after 4 h), RNA virus populations can undergo a 250% average increase in fitness, even on a host cell type to which they were already well adapted. This is a remarkable ability; in population biology, even a much lower fitness gain (e.g., 1 to 2%) can represent a highly significant reproductive advantage. We discuss the biological implications of these findings for the natural transmission and pathogenesis of RNA viruses.  相似文献   

5.
Viral populations subjected to repeated genetic bottleneck accumulate deleterious mutations in a process known as Muller's ratchet. Asexual viruses, such as vesicular stomatitis virus (VSV) can recover from Muller's ratchet by replication with large effective population sizes. However, mutants with a history of bottleneck transmissions often show decreased adaptability when compared to non-bottlenecked populations. We have generated a collection of bottlenecked mutants and allowed them to recover by large population passages. We have characterized fitness changes and the complete genomes of these strains. Mutations accumulated during the operation of Muller's ratchet led to the identification of two potential mutational hot spots in the VSV genome. As in other viral systems, transitions were more common than transversions. Both back mutation and compensatory mutations contributed to recovery, although a significant level of fitness increase was observed in nine of the 13 bottlenecked strains with no obvious changes in the consensus sequence. Additional replication of three strains resulted in the fixation of single point mutations. Only two mutations previously found in non-bottlenecked, high-fitness populations that had been adapting to the same environment were identified in the recovered strains.  相似文献   

6.
Muller's ratchet is a principle of evolutionary genetics describing mutant accumulation in populations that are repeatedly subjected to genetic bottleneck. The immediate effect of Muller's ratchet, overall loss of fitness, has been confirmed in several viral systems belonging to different groups. This report shows that in addition to fitness loss, genetic bottlenecks also have longer-term effects, namely changes in the capacity of viral populations to adapt. Thus, vesicular stomatitis virus strains with a history of genetic bottleneck have lower adaptability than strains maintained at relatively large population sizes. This lower adaptability is illustrated by their reduced ability to regain fitness and by their inability to outcompete wild-type populations in situations where the initial fitness of the bottlenecked mutant is the same or even higher than the initial fitness of the wild-type.  相似文献   

7.
8.
We describe a sensitive, internally controlled method for comparing the genetic adaptability and relative fitness of virus populations in constant or changing host environments. Certain monoclonal antibody-resistant mutants of vesicular stomatitis virus can compete equally during serial passages in mixtures with the parental wild-type clone from which they were derived. These genetically marked "surrogate wild-type" neutral mutants, when mixed with wild-type virus, allow reliable measurement of changes in virus fitness and of virus adaptation to different host environments. Quantitative fitness vector plots demonstrate graphically that even clones of an RNA virus are composed of complex variant populations (quasispecies). Variants of greater fitness (competitive replication ability) were selected within very few passages of virus clones in new host cells or animals. Even clones which were well adapted to BHK21 cells gained further fitness during repeated passages in BHK21 cells.  相似文献   

9.
The population dynamics of RNA viruses have an important influence on fitness variation and, in consequence, on the adaptative potential and virulence of this ubiquitous group of pathogens. Earlier work with vesicular stomatitis virus showed that large population transfers were reproducibly associated with fitness increases, whereas repeated transfers from plaque to plaque (genetic bottlenecks) lead to losses in fitness. We demonstrate here that repeated five-plaque to five-plaque passage series yield long-term fitness stability, except for occasional stochastic fitness jumps. Repeated five-plaque passages regularly alternating with two consecutive large population transmissions did not cause fitness losses, but did limit the size of fitness gains that would otherwise have occurred. These results underscore the profound effects of bottleneck transmissions in virus evolution.  相似文献   

10.
Mosquito-borne alphaviruses, which replicate alternately and obligately in mosquitoes and vertebrates, appear to experience lower rates of evolution than do many RNA viruses that replicate solely in vertebrates. This genetic stability is hypothesized to result from the alternating host cycle, which constrains evolution by imposing compromise fitness solutions in each host. To test this hypothesis, Sindbis virus was passaged serially, either in one cell type to eliminate host alteration or alternately between vertebrate (BHK) and mosquito (C6/36) cells. Following 20 to 50 serial passages, mutations were identified and changes in fitness were assessed using competition assays against genetically marked, surrogate parent viruses. Specialized viruses passaged in a single cell exhibited more mutations and amino acid changes per passage than those passaged alternately. Single host-adapted viruses exhibited fitness gains in the cells in which they specialized but fitness losses in the bypassed cell type. Most but not all viruses passaged alternately experienced lesser fitness gains than specialized viruses, with fewer mutations per passage. Clonal populations derived from alternately passaged viruses also exhibited adaptation to both cell lines, indicating that polymorphic populations are not required for simultaneous fitness gains in vertebrate and mosquito cells. Nearly all passaged viruses acquired Arg or Lys substitutions in the E2 envelope glycoprotein, but enhanced binding was only detected for BHK cells. These results support the hypothesis that arbovirus evolution may be constrained by alternating host transmission cycles, but they indicate a surprising ability for simultaneous adaptation to highly divergent cell types by combinations of mutations in single genomes.  相似文献   

11.
The evolution of fitness in experimental clonal populations of vesicular stomatitis virus (VSV) has been compared under different genetic (fitness of initial clone) and demographic (population dynamics) regimes. In spite of the high genetic heterogeneity among replicates within experiments, there is a clear effect of population dynamics on the evolution of fitness. Those populations that went through strong periodic bottlenecks showed a decreased fitness in competition experiments with wild type. Conversely, mutant populations that were transferred under the dynamics of continuous population expansions increased their fitness when compared with the same wild type. The magnitude of the observed effect depended on the fitness of the original viral clone. Thus, high fitness clones showed a larger reduction in fitness than low fitness clones under dynamics with included periodic bottleneck. In contrast, the gain in fitness was larger the lower the initial fitness of the viral clone. The quantitative genetic analysis of the trait ``fitness' in the resulting populations shows that genetic variation for the trait is positively correlated with the magnitude of the change in the same trait. The results are interpreted in terms of the operation of MULLER's ratchet and genetic drift as opposed to the appearance of beneficial mutations.  相似文献   

12.
L. Chao  T. T. Tran    T. T. Tran 《Genetics》1997,147(3):953-959
When laboratory populations of the RNA bacteriophage 6 are subjected to intensified genetic drift, they experience a decline in fitness. These experiments demonstrate that the average effect of mutations is deleterious, and they are used to suggest that Muller's ratchet can operate in these viruses. However, the operation of Muller's ratchet does not alone guarantee an advantage of sex. When 6 populations were subjected to a series of bottlenecks of one individual and then crossed, the measured advantage of sex was not significant. To determine whether a small sample size, as opposed to allelism or another explanation, can account for the negative result, we repeated the 6 experiments by crossing a larger set of populations. We found that bottlenecked populations of 6 could recover fitness through mutations. However, hybrids produced by crossing the populations recovered an additional amount over the contribution of mutations. This additional amount, which represents an advantage of sex to 6, was determined to be significantly greater than zero. These results provide indirect support for an advantage of sex through Muller's ratchet. However, we also use our experimental design and results to propose an alternative to Muller's ratchet as a model for the evolution of sex.  相似文献   

13.
14.
Viral quasispecies may contain a subset of minority genomes that reflect those genomic sequences that were dominant at an early phase of quasispecies evolution. Such minority genomes are referred to as memory in viral quasispecies. A memory marker previously characterized in foot-and-mouth disease virus (FMDV) is an internal oligoadenylate tract of variable length that became dominant upon serial plaque-to-plaque transfers of FMDV clones. During large population passages, genomes with internal oligoadenylate were outcompeted by wild-type revertants but remained in the mutant spectra as memory genomes. Here, we report a quantification of relative fitness of several FMDV clones, harboring internal oligoadenylate tracts of different length, and that were retrieved at early or late times (passage number) after implementation of memory. The results show that for any given length range of the oligoadenylate, maintenance in memory resulted in an increase in relative fitness, comparable to the increase undergone by the entire population. The fitness increase is in agreement with the Red Queen hypothesis, and implies a replicative memory mechanism. Thus, permanence of memory genomes may be a source of high fitness variants despite their initial low fitness, and despite having remained hidden in mutant spectra. This reinforces the interest of diagnosing minority genomes during chronic human and animal viral infections.  相似文献   

15.
The vast majority of mutations are deleterious and are eliminated by purifying selection. Yet in finite asexual populations, purifying selection cannot completely prevent the accumulation of deleterious mutations due to Muller's ratchet: once lost by stochastic drift, the most-fit class of genotypes is lost forever. If deleterious mutations are weakly selected, Muller's ratchet can lead to a rapid degradation of population fitness. Evidently, the long-term stability of an asexual population requires an influx of beneficial mutations that continuously compensate for the accumulation of the weakly deleterious ones. Hence any stable evolutionary state of a population in a static environment must involve a dynamic mutation-selection balance, where accumulation of deleterious mutations is on average offset by the influx of beneficial mutations. We argue that such a state can exist for any population size N and mutation rate U and calculate the fraction of beneficial mutations, ε, that maintains the balanced state. We find that a surprisingly low ε suffices to achieve stability, even in small populations in the face of high mutation rates and weak selection, maintaining a well-adapted population in spite of Muller's ratchet. This may explain the maintenance of mitochondria and other asexual genomes.  相似文献   

16.
The alternating host cycle and persistent vector infection may constrain the evolution of arboviruses. To test this hypothesis, eastern equine encephalitis virus was passaged in BHK or mosquito cells, as well as in alternating (both) host cell passages. High and low multiplicities were used to examine the effect of defective interfering particles. Clonal BHK and persistent mosquito cell infections were also evaluated. Fitness was measured with one-step growth curves and competition assays, and mutations were evaluated by nucleotide sequencing and RNA fingerprinting. All passages and assays were done at 32 degrees C to eliminate temperature as a selection factor. Viruses passaged in either cell type alone exhibited fitness declines in the bypassed cells, while high-multiplicity and clonal passages caused fitness declines in both types of cells. Bypassed cell fitness losses were mosquito and vertebrate specific and were not restricted to individual cell lines. Fitness increases occurred in the cell line used for single-host-adaptation passages and in both cells for alternately passaged viruses. Surprisingly, single-host-cell passage increased fitness in that cell type no more than alternating passages. However, single-host-cell adaptation resulted in more mutations than alternating cell passages. Mosquito cell adaptation invariably resulted in replacement of the stop codon in nsP3 with arginine or cysteine. In one case, BHK cell adaptation resulted in a 238-nucleotide deletion in the 3' untranslated region. Many nonsynonymous substitutions were shared among more than one BHK or mosquito cell passage series, suggesting positive Darwinian selection. Our results suggest that alternating host transmission cycles constrain the evolutionary rates of arboviruses but not their fitness for either host alone.  相似文献   

17.
Evolution of fitness values upon replication of viral populations is strongly influenced by the size of the virus population that participates in the infections. While large population passages often result in fitness gains, repeated plaque-to-plaque transfers result in average fitness losses. Here we develop a numerical model that describes fitness evolution of viral clones subjected to serial bottleneck events. The model predicts a biphasic evolution of fitness values in that a period of exponential decrease is followed by a stationary state in which fitness values display large fluctuations around an average constant value. This biphasic evolution is in agreement with experimental results of serial plaque-to-plaque transfers carried out with foot-and-mouth disease virus (FMDV) in cell culture. The existence of a stationary phase of fitness values has been further documented by serial plaque-to-plaque transfers of FMDV clones that had reached very low relative fitness values. The statistical properties of the stationary state depend on several parameters of the model, such as the probability of advantageous versus deleterious mutations, initial fitness, and the number of replication rounds. In particular, the size of the bottleneck is critical for determining the trend of fitness evolution.  相似文献   

18.
Foot-and-mouth disease virus (FMDV), like other RNA viruses, exhibits high mutation rates during replication that have been suggested to be of adaptive value. However, even though genetic variation in RNA viruses and, more specifically, FMDV has been extensively examined during virus replication in a wide variety of in vitro cell cultures, very little is known regarding the generation and effects of genetic variability of virus replication in the natural host under experimental conditions and no genetic data are available regarding the effects of serial passage in natural hosts. Here, we present the results of 20 serial contact transmissions of the highly pathogenic, pig-adapted O Taiwan 97 (O Tw97) isolate of FMDV in swine. We examined the virus genomic consensus sequences for a total of 37 full-length viral genomes recovered from 20 in vivo passages. The characteristics and distributions of changes in the sequences during the series of pig infections were analyzed in comparison to the O Tw97 genomes recovered from serially infected BHK-21 cell cultures. Unexpectedly, a significant reduction of virulence upon pig passages was observed, and finally, interruption of the viral transmission chain occurred after the14th pig passage (T14). Virus was, however, isolated from the tonsils and nasal swabs of the asymptomatic T15 pigs at 26 days postcontact, consistent with a natural establishment of the carrier state previously described only for ruminants. Surprisingly, the region encoding the capsid protein VP1 (1D) did not show amino acid changes during in vivo passages. These data demonstrate that contact transmission of FMDV O Tw97 in pigs mimics the fitness loss induced by the bottleneck effect, which was previously observed by others during plaque-to-plaque FMDV passage in vitro, suggesting that unknown mechanisms of virulence recovery might be necessary during the evolution and perpetuation of FMDV in nature.  相似文献   

19.
It has been well established that populations of RNA viruses transmitted throughout serial bottlenecks suffer from significant fitness declines as a consequence of the accumulation of deleterious mutations by the onset of Muller's ratchet. Bottlenecks are unavoidably linked to different steps of the infectious cycle of most plant RNA viruses, such as vector-mediated transmissions and systemic colonization of new leaves. Here we report evidence for fitness declines by the accumulation of deleterious mutations in the potyvirus Tobacco etch virus (TEV). TEV was inoculated into the nonsystemic host Chenopodium quinoa, and local lesions were isolated and used to initiate 20 independent mutation accumulation lineages. Weekly, a random lesion from each lineage was isolated and used to inoculate the next set of plants. At each transfer, the Malthusian growth rate was estimated. After 11 consecutive transfers, all lineages suffered significant fitness losses, and one even became extinct. The average rate of fitness decline was 5% per day. The average pattern of fitness decline was consistent with antagonistic epistasis between deleterious mutations, as postulated for antiredundant genomes. Temporal fitness fluctuations were not explained by random noise but reflected more complex underlying processes related to emergence and self-organization phenomena.  相似文献   

20.
The great adaptability shown by RNA viruses is a consequence of their high mutation rates. The evolution of fitness in a severely debilitated, clonal population of the nonsegmented ribovirus vesicular stomatitis virus (VSV) has been compared under five different demographic regimes, ranging from severe serial bottleneck passages (one virion) to large population passages (105 virions or more) under similar environmental conditions (cell culture type and temperature). No matter how small the bottleneck, the fitness of the evolved populations was always higher than the fitness of the starting population; this result is clearly different from that previously reported for viruses with higher fitness. The reattainment of fitness under a regime of serial population passages showed two main characteristics: (1) the rate of adaptation was higher during early passages; and (2) a maximum fitness value was reached after a large number of passages. The maximum fitness reached by this initially debilitated clone was similar to the fitness of wild-type virus. The practical implications of these findings in the design of vaccines using attenuated viruses are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号