首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
HuR is a ligand for nuclear mRNAs containing adenylate-uridylate rich elements in the 3'-untranslated region. Once bound to the mRNA, HuR is recognized by adapter proteins which then facilitate nuclear export of the complex. In the cytosol HuR is thought to function to control stability and translation of its ligand message. In the 3T3-L1 cells HuR is constitutively expressed and localized predominantly to the nucleus in the preadipocytes. However within 30 min of exposure to the differentiation stimulus, the HuR content in the cytosol increases consistent with HuR regulating the availability of relevant mRNAs for translation. Using in vitro RNA gel shifts, we have demonstrated that the C/EBPbeta message is a ligand for HuR and that the single binding site is an adenylate-uridylate rich element in the 3'-untranslated region.  相似文献   

2.
HuR is a ligand for nuclear mRNAs containing adenylate-uridylate-rich elements in the 3'-untranslated region. Once bound to the mRNA, HuR is recognized by adapter proteins that then facilitate nuclear export of the complex. In the cytosol, HuR is thought to function to control stability and translation of its ligand message. In the 3T3-L1 cells HuR is constitutively expressed and localized predominantly to the nucleus in the preadipocytes. However, within 30 min of exposure to the differentiation stimulus the HuR content in the cytosol increases, consistent with HuR regulating the availability of relevant mRNAs for translation. Using in vitro RNA gel shifts, we have demonstrated that the CCAAT enhancer-binding protein beta (C/EBPbeta) message is a ligand for HuR. Within 2 h of initiation of the differentiation process, HuR complexes containing C/EBPbeta mRNA could be isolated from the cytosolic compartment. Importantly, the process appears to be highly selective, as cyclin D1, which contains a putative HuR binding site and is expressed on the same time frame as C/EBPbeta, was not found in the immunoprecipitated messenger ribonucleoprotein complexes. The proximity of this event to adipogenic stimuli and the importance of C/EBPbeta to the differentiation process have led us to hypothesize a role for HuR in the regulation of the onset of adipogenesis. In support of this hypothesis, small interfering RNA suppression of HuR protein content resulted in an inhibition of C/EBPbeta protein expression and an attenuation of the differentiation process.  相似文献   

3.
In 3T3-L1 cells, HuR is constitutively expressed and prior to induction of differentiation localized predominantly to the nucleus. Within minutes of induction of differentiation, nuclear HuR binds to its target ligand mRNAs, and the complexes appear to move to the cytosol. One ligand mRNA is the CCAAT/enhancer-binding protein beta (C/EBPbeta) message. To examine the function and importance of the HuR-C/EBPbeta interaction, retroviral expression constructs were created in which the HuR binding site was altered by deletion (betadel) or deletion and substitution (betad/s). Expression of these constructs in murine embryonic fibroblasts resulted in significant adipose conversion relative to those cells expressing wild type C/EBPbeta. C/EBPbeta protein content was increased markedly in both betadel and betad/s, which correlated with the acquisition of the adipocyte phenotype. Analysis of the betad/s cell line demonstrated a robust expression of C/EBPalpha coincident with peroxisome proliferator-activated receptor gamma expression. Total C/EBPbeta mRNA accumulation indicated no difference between cells harboring either the wild type C/EBPbeta cDNA or betad/s construct. However, cytosolic C/EBPbeta mRNA in the cells expressing the betad/s construct was maintained at levels between 2- and 7-fold greater than in the cells expressing the wild type construct. Alteration in mRNA half-life was not responsible for the increased accumulation. Mechanistically, these data suggest that HuR binding results in nuclear retention of the C/EBPbeta mRNA and is consistent with HuR control, at least in part, of mRNA processing.  相似文献   

4.
In the nucleus HuR binds to mRNAs containing adenylate-uridylate rich elements in the 3′-untranslated region. HuR may influence expression of its ligand mRNA through regulation of polyadenylation, translocation of the message to the cytosol, stabilization of the mRNA and/or altering its translational efficiency. Suppression of HuR using siRNA resulted in an attenuation of the 3T3-L1 differentiation program, consistent with HuR control of the expression of mRNA ligand(s) critical to the differentiation process. In the present study, we begin to identify mRNA ligands of HuR whose regulated expression is necessary for adipogenesis.  相似文献   

5.
6.
Insulin responsiveness of adipocytes is acquired during normal adipogenesis, and is essential for maintaining whole-body insulin sensitivity. Differentiated adipocytes exposed to oxidative stress become insulin resistant, exhibiting decreased expression of genes like the insulin-responsive glucose transporter GLUT4. Here we assessed the effect of oxidative stress on DNA binding capacity of C/EBP isoforms known to participate in adipocyte differentiation, and determine the relevance for GLUT4 gene regulation. By electrophoretic mobility shift assay, nuclear proteins from oxidized adipocytes exhibited decreased binding of C/EBPalpha-containing dimers to a DNA oligonucleotide harboring the C/EBP binding sequence from the murine GLUT4 promoter. C/EBPdelta-containing dimers were increased, while C/EBPbeta-dimers were unchanged. These alterations were mirrored by a 50% decrease and a 2-fold increase in the protein content of C/EBPalpha and C/EBPdelta, respectively. In oxidized cells, GLUT4 protein and mRNA levels were decreased, and a GLUT4 promoter segment containing the C/EBP binding site partially mediated oxidative stress-induced repression of a reported gene. The antioxidant lipoic acid protected against oxidation-induced decrease in GLUT4 and C/EBPalpha mRNA, but did not prevent the increase in C/EBPdelta mRNA. We propose that oxidative stress induces adipocyte insulin resistance partially by affecting the expression of C/EBPalpha and delta, resulting in altered C/EBP-dimer composition potentially occupying the GLUT4 promoter.  相似文献   

7.
Proteolytic activation of SREBPs during adipocyte differentiation   总被引:1,自引:0,他引:1  
A member of sterol regulatory element-binding protein (SREBP) family, SREBP-1, is a key regulator of adipocyte differentiation. Expression of the SREBP-1 gene is induced during adipocyte differentiation, but proteolytic activation of the synthesized precursor form of SREBP-1 has not been well analyzed. The proteolytic processing of SREBPs is severely suppressed in sterol loaded culture cells. Here we report that a splicing isoform, SREBP-1a, is predominantly expressed in 3T3-L1 preadipocytes and adipocytes, and that the nuclear active form of SREBP-1 protein increases in adipocyte differentiation. We further show that the amount of nuclear SREBP-2 protein also increases despite no increase in SREBP-2 mRNA, suggesting that proteolytic cleavage of SREBPs is induced in lipid loaded adipocytes. Northern blot analyses reveal that mRNA levels for SREBP cleavage-activating protein (SCAP), Site-1 protease (S1P), and Site-2 protease (S2P), which participate in the proteolytic processing of SREBPs, are relatively unaffected in adipogenesis. These results demonstrate that SREBP-2 appears to promote adipocyte differentiation as well as SREBP-1 and that the proteolytic activation of SREBPs may be induced by an as-yet unidentified mechanism in lipid loaded adipocytes.  相似文献   

8.
9.
Cyclooxygenase-2 (COX-2) is an early response gene induced in renal mesangial cells by interleukin-1beta (IL-1beta). The 3'-untranslated region (3'-UTR) of COX-2 mRNA plays an important role in IL-1beta induction by regulating message stability and translational efficiency. The first 60 nucleotides of the 3'-UTR of COX-2 are highly conserved and contain multiple copies of the regulatory sequence AUUUA. Introduction of the 60-nucleotide sequence into the 3'-UTR of a heterologous reporter gene resulted in a 70% decrease in reporter gene expression. Electrophoretic mobility shift assays (EMSAs) demonstrated that mesangial cell nuclear fractions contain a multimeric protein complex that bound this region of COX-2 mRNA in a sequence-specific manner. We identified four members of the protein-RNA complex as HuR, TIA-1, TIAR, and the heterogeneous nuclear ribonucleoprotein U (hnRNP U). Treatment of mesangial cells with IL-1beta caused an increase in cytosolic HuR, which was accompanied by an increase in COX-2 mRNA that co-immunoprecipitated with cytosolic HuR. Therefore, we propose that HuR binds to the proximal region of the 3'-UTR of COX-2 following stimulation by IL-1beta and increases the expression of COX-2 mRNA by facilitating its transport out of the nucleus.  相似文献   

10.
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that exerts insulinotropic and growth and survival effects on pancreatic β-cells. Additionally, there is increasing evidence supporting an important role for GIP in the regulation of adipocyte metabolism. In the current study we examined the molecular mechanisms involved in the regulation of GIP receptor (GIPR) expression in 3T3-L1 cells. GIP acted synergistically with insulin to increase neutral lipid accumulation during progression of 3T3-L1 preadipocytes to the adipocyte phenotype. Both GIPR protein and mRNA expression increased during 3T3-L1 cell differentiation, and this increase was associated with upregulation of nuclear levels of sterol response element binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor γ (PPARγ), as well as acetylation of histones H3/H4. The PPARγ receptor agonists LY171883 and rosiglitazone increased GIPR expression in differentiated 3T3-L1 adipocytes, whereas the antagonist GW9662 ablated expression. Additionally, both PPARγ and acetylated histones H3/H4 were shown to bind to a region of the GIPR promoter containing the peroxisome proliferator response element (PPRE). Knockdown of PPARγ in differentiated 3T3-L1 adipocytes, using RNA interference, reduced GIPR expression, supporting a functional regulatory role. Taken together, these studies show that GIP and insulin act in a synergistic manner on 3T3-L1 cell development and that adipocyte GIPR expression is upregulated through a mechanism involving interactions between PPARγ and a GIPR promoter region containing an acetylated histone region.  相似文献   

11.
12.
The GLUT4-containing vesicles purified from rat adipocyte contain many protein species of unknown identity, some of which are likely to play a critical role in the trafficking of GLUT4. Presently, we describe an 85-kDa protein in GLUT4-vesicles of rat adipocytes as a potential GLUT4 traffic regulatory protein. MALDI-TOF MS, RT-PCR, gene cloning, protein sequence analysis, and immunoreactivity assay have identified this protein as N-acetylated alpha-linked acidic dipeptidase (NAALADase) expressed in rat adipocytes. NAALADase in rat adipocytes was mostly membrane-associated and colocalized in discrete GLUT4-compartments with enrichment in putative GLUT4-sorting endosomes (G4G(L)). Total cell lysates of adipocytes exhibited NAALADase activity. Next, we treated rat adipocytes with 2-[phosphonomethy]pentanedionic acid (2-PMPA), a potent NAALADase inhibitor, and studied its effect on the distribution of GLUT4 and 3-O-methyl glucose (3OMG) flux. In 2-PMPA-treated adipocytes, there was a significant reduction (by 40%) in the insulin-stimulated GLUT4 translocation to the plasma membrane. The 3OMG flux in insulin-stimulated adipocytes was also delayed (51% of control) by 2-PMPA treatment, indicating that 2-PMPA impairs insulin-stimulated GLUT4 recruitment and the uptake of glucose. It is suggested that NAALADase may function as a regulator required for the insulin-stimulated GLUT4 vesicle movement and/or its exocytosis, thus may regulate insulin-induced GLUT4 recruitment in rat adipocytes.  相似文献   

13.
14.
Cadmium (Cd) has been known to cause hyperglycemia with diabetes-related complications in experimental animals; however, the molecular basis underlying this Cd-induced hyperglycemia is not known. Here, we report the novel finding that the impaired glucose tolerance (IGT) in rats induced by CdCl(2) is accompanied by a drastic (by as much as 90%) and dose-dependent reduction in GLUT4 protein and GLUT4 mRNA levels in adipocytes. The effect was specific to GLUT4; neither GLUT1 nor insulin-responsive aminopeptidase in adipocytes was affected. GLUT2 in hepatocytes was also not affected. Interestingly, the effect on GLUT4 was also specific to adipocytes; the muscle tissues of the Cd-treated rats showed only a slight (<25%) reduction in GLUT4 protein level with no change in GLUT4 message level, and again with no change in GLUT1 protein and its message levels. Although the insulin-induced GLUT4 translocation in adipocytes was not affected by the Cd treatment, the 3-O-methy-D-glucose flux in insulin-stimulated adipocytes of Cd-treated rat was drastically reduced. Together these findings clearly demonstrate that Cd induces IGT in rats by selectively down-regulating GLUT4 expression in adipocytes.  相似文献   

15.
16.
17.
18.
19.
RNase-L mediates critical cellular functions including antiviral, pro-apoptotic, and tumor suppressive activities; accordingly, its expression must be tightly regulated. Little is known about the control of RNASEL expression; therefore, we examined the potential regulatory role of a conserved 3'-untranslated region (3'-UTR) in its mRNA. The 3'-UTR mediated a potent decrease in the stability of RNase-L mRNA, and of a chimeric beta-globin-3'-UTR reporter mRNA. AU-rich elements (AREs) are cis-acting regulatory regions that modulate mRNA stability. Eight AREs were identified in the RNase-L 3'-UTR, and deletion analysis identified positive and negative regulatory regions associated with distinct AREs. In particular, AREs 7 and 8 served a strong positive regulatory function. HuR is an ARE-binding protein that stabilizes ARE-containing mRNAs, and a predicted HuR binding site was identified in the region comprising AREs 7 and 8. Co-transfection of HuR and RNase-L enhanced RNase-L expression and mRNA stability in a manner that was dependent on this 3'-UTR region. Immunoprecipitation demonstrated that RNase-L mRNA associates with a HuR containing complex in intact cells. Activation of endogenous HuR by cell stress, or during myoblast differentiation, increased RNase-L expression, suggesting that RNase-L mRNA is a physiologic target for HuR. HuR-dependent regulation of RNase-L enhanced its antiviral activity demonstrating the functional significance of this regulation. These findings identify a novel mechanism of RNase-L regulation mediated by its 3'-UTR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号