首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A glutathione S-transferase (GST) with activity toward 1, 2-epoxy-2-methyl-3-butene (isoprene monoxide) and cis-1, 2-dichloroepoxyethane was purified from the isoprene-utilizing bacterium Rhodococcus sp. strain AD45. The homodimeric enzyme (two subunits of 27 kDa each) catalyzed the glutathione (GSH)-dependent ring opening of various epoxides. At 5 mM GSH, the enzyme followed Michaelis-Menten kinetics for isoprene monoxide and cis-1, 2-dichloroepoxyethane, with Vmax values of 66 and 2.4 micromol min-1 mg of protein-1 and Km values of 0.3 and 0.1 mM for isoprene monoxide and cis-1,2-dichloroepoxyethane, respectively. Activities increased linearly with the GSH concentration up to 25 mM. 1H nuclear magnetic resonance spectroscopy showed that the product of GSH conjugation to isoprene monoxide was 1-hydroxy-2-glutathionyl-2-methyl-3-butene (HGMB). Thus, nucleophilic attack of GSH occurred on the tertiary carbon atom of the epoxide ring. HGMB was further converted by an NAD+-dependent dehydrogenase, and this enzyme was also purified from isoprene-grown cells. The homodimeric enzyme (two subunits of 25 kDa each) showed a high activity for HGMB, whereas simple primary and secondary alcohols were not oxidized. The enzyme catalyzed the sequential oxidation of the alcohol function to the corresponding aldehyde and carboxylic acid and followed Michaelis-Menten kinetics with respect to NAD+ and HGMB. The results suggest that the initial steps in isoprene metabolism are a monooxygenase-catalyzed conversion to isoprene monoxide, a GST-catalyzed conjugation to HGMB, and a dehydrogenase-catalyzed two-step oxidation to 2-glutathionyl-2-methyl-3-butenoic acid.  相似文献   

2.
The substrate specificity of purified rat liver glutathione S-transferases (GSTs) for a series of gamma-glutamyl-modified GSH analogues was investigated. GST isoenzyme 3-3 catalysed the conjugation of 1-chloro-2,4-dinitrobenzene with six out of the nine analogues. alpha-L-Glu-L-Cys-Gly and alpha-D-Glu-L-Cys-Gly showed catalytic efficiencies of 40% and 130% that of GSH respectively. The GSH analogue with an alpha-D-glutamyl moiety appeared to be a highly isoenzyme-3-3-specific co-substrate: kcat./Km with GST isoenzyme 4-4 was only about 5% that with GST isoenzyme 3-3, and no enzymic activity was detectable with GST isoenzymes 1-1 and 2-2. GST isoenzyme 4-4 showed some resemblance to GST 3-3: five out of nine co-substrate analogues were accepted by this second isoenzyme of the Mu multigene family. Isoenzymes 1-1 and 2-2, of the Alpha multigene family, accepted only two alternative co-substrates, which indicates that their GSH-binding site is much more specific.  相似文献   

3.
The present study was designed to explain the differences in isoprene toxicity between mouse and rat based on the liver concentrations of the assumed toxic metabolite isoprene diepoxide. In addition, extrapolation to the human situation was attempted. For this purpose, enzyme kinetic parameters K(m) and V(max) were determined in vitro in mouse, rat and human liver microsomes/cytosol for the cytochrome P450-mediated formation of isoprene mono- and diepoxides, epoxide hydrolase mediated hydrolysis of isoprene mono- and diepoxides, and the glutathione S-transferases mediated conjugation of isoprene monoepoxides. Subsequently, the kinetic parameters were incorporated into a physiologically-based pharmacokinetic model, and species differences regarding isoprene diepoxide levels were forecasted. Almost similar isoprene diepoxide liver and lung concentrations were predicted in mouse and rat, while predicted levels in humans were about 20-fold lower. However, when interindividual variation in enzyme activity was introduced in the human model, the levels of isoprene diepoxide changed considerably. It was forecasted that in individuals having both an extensive oxidation by cytochrome P450 and a low detoxification by epoxide hydrolase, isoprene diepoxide concentrations in the liver increased to similar concentrations as predicted for the mouse. However, the interpretation of the latter finding for human risk assessment is ambiguous since species differences between mouse and rat regarding isoprene toxicity could not be explained by the predicted isoprene diepoxide concentrations. We assume that other metabolites than isoprene diepoxide or different carcinogenic response might play a key role in determining the extent of isoprene toxicity. In order to confirm this, in vivo experiments are required in which isoprene epoxide concentrations will be established in rats and mice.  相似文献   

4.
The possible role of glutathione S-transferases (GST) in detoxification of fatty acid epoxides generated during lipid peroxidation has been evaluated. Present studies showed that cytosolic human glutathione S-transferases belonging to alpha, mu, and pi classes isolated from human liver and lung catalyzed the conjugation of glutathione and 9,10-epoxystearic acid. The product of enzymatic reaction, i.e., conjugate of GSH and epoxystearic acid, was isolated and characterized. The Michaelis constant (Km) values of the alpha, mu, and pi classes of GSTs for 9,10-epoxystearic acid were found to be 0.47, 0.32 and 0.80 mM, respectively, whereas the maximal velocity (V max) values for the alpha, mu, and pi classes of GSTs were found to be 142, 256, and 52 mol/min/mol, respectively. These results indicate that even though 9,10-epoxystearic acid is a substrate for all the three classes of GSTs, the mu class isozymes have maximum activity toward this substrate and may preferentially metabolize fatty acid epoxides more effectively as compared to the other classes of GSTs.  相似文献   

5.
To gain further insight into herbicide detoxification, we studied the herbicide activity and specificity toward glutathione S-transferases from human and rice. In this study, the genes of the plant specific phi and tau class GST enzymes from Oryza sativa (OsGST) and human pi class GST enzyme (hGSTP1-1) were cloned and expressed in Escherichia coli with the pET and pKK vector systems, respectively. The gene products were purified to homogeneity by GSH Sepharose affinity column chromatography. The herbicide specificity of the enzymes was investigated by enzyme-catalyzed conjugation of GSH with chloroacetanilide, diphenylether and chloro-s-triazine herbicides. The hGSTP1-1 showed very high specific activity toward atrazine. On the other hand, the phi class OsGST enzymes showed high specific activity toward chloroacetanilide herbicides, acetochlor, alachlor and metolachlor. The tau class GST enzymes displayed remarkable activity toward the diphenylether herbicide, fluorodifen. From these results, we conclude that the phi and the tau class GST enzymes show herbicide specificities and also they play an important role in the detoxification reaction of plant toward herbicides.  相似文献   

6.
Treatment of Class Pi glutathione S-transferases (GST) such as rat GST P (7-7), human GST pi and mouse GST MII with 0.05-0.1 mM N-ethylmaleimide (NEM) in 0.1 M Tris-HCl (pH 7.8) resulted in almost complete inactivation of these forms, whereas no or less inactivation occurred for GSTs in Class Alpha and Mu under the same conditions. Inactivated GST P lost its S-hexyl-GSH-Sepharose column affinity. About 0.8 mol of [14C]NEM was found to be covalently bound to 1 mol of GST P subunit when 80% of the activity was lost. Similar treatment with N-dimethyl-amino-3,5-dinitrophenyl maleimide, a colored analogue of NEM, followed by trypsin digestion, HPLC and amino acid sequence analysis revealed that one cysteine residue at the 47th position from the N-terminal of the GST P subunit was preferentially modified. Subunits of GST P and GST pi are known to have 4 cysteine residues at the same corresponding positions. The present results suggest that the 47th cysteine residue may be located in the vicinity of the active site of Class Pi GSTs.  相似文献   

7.
Five glutathione S-transferase (GST, EC 2.5.1.18) forms were purified from human liver by S-hexylglutathione affinity chromatography followed by chromatofocusing, and their subunit structures and immunological relationships to rat liver glutathione S-transferase forms were investigated. They were tentatively named GSTs I, II, III, IV and V in order of decreasing apparent isoelectric points (pI) on chromatofocusing. Their subunit molecular weights assessed on SDS-polyacrylamide gel electrophoresis were 27 (Mr X 10(-3)), 27, 27.7,27 and 26, respectively, (26, 26, 27, 26, and 24.5 on the assumption of rat GST subunit Ya, Yb and Yc as 25, 26.5 and 28, respectively), indicating that all forms are composed of two subunits identical in size. However, it was suggested by gel-isoelectric focusing in the presence of urea that GSTs I and IV are different homodimers, consisting of Y1 and Y4 subunits, respectively, which are of identical Mr but different pI, while GST II is a heterodimer composed of Y1 and Y4 subunits. This was confirmed by subunit recombination after guanidine hydrochloride treatment. GST III seemed to be identical with GST-mu with regard to Mr and pI. GST V was immunologically identical with the placental GST-pi. On double immunodiffusion or Western blotting using specific antibodies to rat glutathione S-transferases, GST I, II and IV were related to rat GST 1-1 (ligandin), GST III(mu) to rat GST 4-4 (D), and GST V (pi) to rat GST 7-7 (P), respectively. GST V (pi) was increased in hepatic tumors.  相似文献   

8.
The developmental expression of the alpha, mu and pi class glutathione S-transferases has been defined in human liver using radioimmunoassay and immunohistochemistry. Expression of alpha and mu class isoenzymes increased significantly at birth, while that of the pi isoenzyme declined during the first trimester. Mu-class isoenzymes (GST1 1, GST1 2, GST1 2-1) were expressed in hepatocytes but not in other liver cell types.  相似文献   

9.
COS cells transiently expressing glutathione S-transferase (GST) pi, Ya, or Yb1 (human Pi, rat Alpha or Mu, cytosolic classes) were purified by flow cytometry and used in colony-forming assays to show that GST confers cellular resistance to the carcinogen benzo[a]pyrene (+/-)-anti-diol epoxide (anti-BPDE). We developed a sorting technique to viably separate recombinant GST+ cells (20%) from the nonexpressing electroporated population (80%) on the basis of a GST-catalyzed intracellular conjugation of glutathione to the fluorescent labeling reagent monochlorobimane (mClB). The concentration of mClB, length of time cells are exposed to mClB, and activity of the expressed GST isozyme determined the degree to which recombinant GST+ cells fluoresced more intensely than controls. On-line reagent addition ensured that all cells were exposed to 25 microM mClB for 30-35 s during transit before being analyzed for fluorescence intensity and sorted. The apparent Km for mClB of the endogenous COS cell GST-catalyzed intracellular reaction was 88 microM. Stained GST Ya+ or Yb1+ cells catalyzed the conjugation 2 or 5 times more effectively than GST pi+ cells. Enzyme activity in cytosolic fractions prepared from sorted recombinant GST+ cells was 1.8 +/- 0.3-fold greater than that of the control (80 +/- 4 nmol/min/mg protein). Upon a 5-fold purification of GST pi+ cells in the electroporated population, resistance to anti-BPDE in colony-forming assays increased 5 times, from 1.1-fold (unsorted) to 1.5-fold (sorted) (P less than 0.001).  相似文献   

10.
Double-reciprocal plots of initial-rate data for the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) and GSH by human placental GSH S-transferase pi were linear for both substrates. Computer modelling of the initial-rate data using nonlinear least-squares regression analysis favoured a rapid equilibrium random sequential bi-bi mechanism, over a steady-state random sequential mechanism or a steady-state or rapid equilibrium ordered mechanism. KGSH was calculated as 0.125 +/- 0.006 mM, KCDNB was 0.87 +/- 0.07 mM and alpha was 2.1 +/- 0.3 for the rapid equilibrium random model. The product, S-(2,4-dinitrophenyl)glutathione, was a competitive inhibitor with respect to GSH, and a mixed-type inhibitor toward CDNB (KP = 18 +/- 3 microM). The observed pattern of inhibition is consistent with a rapid equilibrium random mechanism, with a dead-end enzyme.CDNB.product complex, but inconsistent with the inhibition patterns of other bireactant mechanisms. Since rat liver GSH S-transferase 3-3 acts via a steady-state random sequential mechanism [1], while human placental GSH S-transferase and perhaps also rat liver GSH S-transferase 1-1 [2] exhibit rapid equilibrium random mechanisms, we conclude that the kinetic mechanism of the GSH S-transferases is isoenzyme-dependent.  相似文献   

11.
Alkylating agents are extensively used in the treatment of cancer. The clinical usefulness of this class of anticancer drugs, however, is often limited by the emergence of drug-resistant tumor cells. Increased glutathione (GSH) conjugation through catalysis by GSH S-transferases (GSTs) is believed to be an important mechanism in tumor cell resistance to alkylating agents. In the present study, we report that the allelic variants of human Pi class GST (hGSTP1-1), which differ in their primary structures at amino acids in positions 104 and/or 113, exhibit significant differences in their activity in the GSH conjugation of alkylating anticancer drug thiotepa. Mass spectrometry revealed that the major product of the reaction between thiotepa and GSH was the monoglutathionyl-thiotepa conjugate. While nonenzymatic formation of monoglutathionyl-thiotepa was negligible, the formation of this conjugate was increased significantly in the presence of hGSTP1-1 protein. The hGSTP1-1-catalyzed GSH conjugation of thiotepa was time and protein dependent and followed Michaelis-Menten kinetics. The catalytic efficiency of hGSTP1-1(I104, A113) variant was approximately 1.9- and 2.6-fold higher compared with hGSTP1-1(V104,A113) and hGSTP1-1(V104,V113) isoforms, respectively. The results of the present study indicate that the hGSTP1-1 polymorphism may be an important factor in GST-mediated tumor cell resistance to thiotepa, and that subjects homozygous for the hGSTP1-1(I104,A113) allele, which is most frequent in human populations, are likely to be at a greater risk for developing GST-mediated resistance to thiotepa than heterozygotes or homozygotes with valine 104 background.  相似文献   

12.
A mechanistic study was performed to elucidate the biochemical events connected with the cocarcinogenic effect of sulfur dioxide (SO2). Glutathione S-sulfonate (GSSO3H), a competitive inhibitor of the glutathione S-transferases, forms in lung cells exposed in culture to sulfite, the hydrated form of SO2. Changes in glutathione status (total GSH) were also observed during a 1-h exposure. Some cells were pretreated with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to inhibit glutathione reductase. In human lung cells GSSO3H formed in a concentration-dependent manner, while glutathione (GSH) increased and glutathione disulfide (GSSG) decreased as the extracellular sulfite concentration was increased from 0 to 20 mM. The ratio of GSH/GSSG increased greater than 5-fold and the GSH/GSSO3H ratio decreased to 10 with increasing sulfite concentration. GSSO3H formed in rat lung cells exposed to sulfite, with no detectable effect on GSH and GSSG. GSSO3H also formed from cellular GSH mixed disulfides. GSSO3H formed rapidly, reaching its maximum value in 15 min. The viability of both cell types was unaffected except at 20 mM sulfite. GSSO3H incubated with human lung cells did not affect cellular viability. BCNU inhibited cellular GSSO3H reductase to the same extent as GSSG reductase. These results indicate that GSSO3H is formed in cells exposed to sulfite, and could be the active metabolite of sulfite responsible for the cocarcinogenic effect of SO2 by inhibiting conjugation of electrophiles by GSH.  相似文献   

13.
Analogues of GSH in which either the gamma-glutamyl or the glycyl moiety is modified were synthesized and tested as both substrates for and inhibitors of glutathione S-transferases (GSTs) 7-7 and 8-8. Acceptor substrates for GST 7-7 were 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (ETA) and for GST 8-8 CDNB, ETA and 4-hydroxynon-trans-2-enal (HNE). The relative ability of each combination of enzyme and GSH analogue to catalyse the conjugation of all acceptor substrates was similar with the exception of the combination of GST 7-7 and gamma-L-Glu-L-Cys-L-Asp, which used CDNB but not ETA as acceptor substrate. In general, GST 7-7 was better than GST 8-8 in utilizing these analogues as substrates, and glycyl analogues were better than gamma-glutamyl analogues as both substrates and inhibitors. These results are compared with those obtained earlier with GSH analogues and GST isoenzymes 1-1, 2-2, 3-3 and 4-4 [Adang, Brussee, Meyer, Coles, Ketterer, van der Gen & Mulder (1988) Biochem. J. 255, 721-724] and the implications with respect to the nature of their active sites are discussed.  相似文献   

14.
One of the major problems in the treatment of human cancer is the phenomenon of drug resistance. Increased glutathione (gamma-glutamylcysteinylglycine, GSH) conjugation (inactivation) due to elevated level of cytosolic glutathione S-transferase (GST) is believed to be an important mechanism in tumor cell resistance. However, the potential involvement of microsomal GST in the establishment of acquired drug resistance (ADR) remains uncertain. In our experiments, a combination of liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was employed for structural characterization of the resulting conjugates between GSH and melphalan, one of the alkylating agents. The spontaneous reaction of 1mM melphalan with 5mM GSH at 37 degrees C in aqueous phosphate buffer for 1h gave primarily the monoglutathionyl and diglutathionyl melphalan derivatives, with small amounts of mono- and dihydroxy melphalan derivatives. We demonstrated that rat liver microsomal GST presented a strong catalytic effect on the reaction as determined by the increase of monoglutathionyl and diglutathionyl melphalan derivatives and the decrease of melphalan. We showed that microsomal GST was activated by melphalan in a concentration- and time-dependent manner. Microsomal GST which was stimulated approximately 1.5-fold with melphalan had a stronger catalytic effect. Thus microsomal GST may play a potential role in the metabolism of melphalan in biological membranes, and in the development of ADR.  相似文献   

15.
The oxidation of linoleic acid leads to the generation of several products with biological activity, including 13-oxooctadeca-9,11-dienoic acid (13-OXO), a bioactive 2,4-dienone that has been linked to cell differentiation. In the current work, the conjugation of 13-OXO by human glutathione transferases (GSTs) of the alpha (A1-1, A4-4), mu (M1-1, M2-2) and pi (the allelic variants P1-1/ile, and P1-1/val) classes, and a rat theta (rT2-2) class enzyme has been evaluated. The kinetics and stereoselectivity of the production of the 13-OXO-glutathione conjugate (13-OXO-SG) have been examined. In contrast to many xenobiotic substrates, the endogenous substrate 13-OXO does not exhibit an appreciable non-enzymatic rate of conjugation under physiological conditions. Therefore, the GST-catalyzed conjugation takes on greater significance as it provides the only realistic means for formation of 13-OXO-SG in most biological systems. Alpha class enzymes are most efficient at catalyzing the formation of 13-OXO-SG with kcat/Km values of 8.9 mM(-1) s(-1) for GST A1-1 and 2.14 mM(-1) s(-1) for GST A4-4. In comparison, enzymes from the mu and pi classes exhibit specificity constants from 0.4 to 0.8 mM(-1) s(-1). Conjugation of 13-OXO with glutathione at C-9 of the substrate can yield a pair of diastereomers that can be resolved by chiral HPLC. GSTs from the mu and pi classes are the most stereoselective enzymes and there is no apparent relationship between catalytic efficiency and stereoselectivity. The role of GST in the metabolic disposition of the bioactive oxidation products of linoleic acid has implications for the regulation of normal cellular functions by these versatile enzymes.  相似文献   

16.
The Glu alpha-carboxylate of glutathione contributes to the catalytic function of the glutathione transferases. The catalytic efficiency of human glutathione transferase A1-1 (GST A1-1) in the conjugation reaction with 1-chloro-2,4-dinitrobenzene is reduced 15 000-fold if the decarboxylated analogue of glutathione, dGSH (GABA-Cys-Gly), is used as an alternative thiol substrate. The decrease is partially due to an inability of the enzyme to promote ionization of dGSH. The pK(a) value of the thiol group of the natural substrate glutathione decreases from 9.2 to 6.7 upon binding to GST A1-1. However, the lack of the Glu alpha-carboxylate in dGSH raised the pK(a) value of the thiol in the enzymatic reaction to that of the nonenzymatic reaction. Furthermore, K(M)(dGSH) was 100-fold higher than K(M)(GSH). The active-site residue Thr68 forms a hydrogen bond to the Glu alpha-carboxylate of glutathione. Introduction of a carboxylate into GST A1-1 by a T68E mutation increased the catalytic efficiency with dGSH 10-fold and reduced the pK(a) value of the active site bound dGSH by approximately 1 pH unit. The altered pK(a) value is consistent with a catalytic mechanism where the carboxylate contributes to ionization of the glutathione thiol group. With Delta(5)-androstene-3,17-dione as substrate the efficiency of the enzyme is decreased 24 000-fold while with 4-nitrocinnamaldehyde (NCA) the decrease is less than 150-fold. In the latter reaction NCA accepts a proton and, unlike the other reactions studied, may not be dependent on the Glu alpha-carboxylate for deprotonation of the thiol group. An additional function of the Glu alpha-carboxylate may be productive orientation of glutathione within the active site.  相似文献   

17.
The glutathione (GSH)-conjugating activity of human class Pi glutathione S-transferase (GST pi) toward 1-chloro-2,4-dinitrobenzene (CDNB) was significantly lowered by reaction with N-acetylimidazole, an O-acetylating reagent for tyrosine residues. Further, the replacement of Tyr7 in GST pi, which is conserved in all cytosolic GSTs, with phenylalanine by site-directed mutagenesis also lowered the activities toward CDNB and ethacrynic acid. The Km values of the mutant for both GSH and CDNB were almost equivalent to those of the wild type, while the Vmax of the former was about 55-fold smaller than that of the latter. Therefore, Tyr7 is considered to be an essential residue for the catalytic activity of GST pi.  相似文献   

18.
Cunninghamella elegans grown on Sabouraud dextrose broth had glutathione S-transferase (GST) activity. The enzyme was purified 172-fold from the cytosolic fraction (120000 x g) of the extract from a culture of C. elegans, using Q-Sepharose ion exchange chromatography and glutathione affinity chromatography. The GST showed activity against 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and ethacrynic acid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel filtration chromatography revealed that the native enzyme was homodimeric with a subunit of M(r) 27000. Comparison by Western blot analysis implied that this fungal GST had no relationship with mammalian alpha-, mu-, and pi-class GSTs, although it showed a small degree of cross-reactivity with a theta-class GST. The N-terminal amino acid sequence of the purified enzyme showed no significant homology with other known GSTs.  相似文献   

19.
The in vitro interaction of the mycotoxin penicillic acid (PA) with rat liver glutathione S-transferase (GST) was studied using reduced glutathione and 1-chloro-2,4-dinitrobenzene as substrates. The inhibition of the GST activity by PA in crude extracts was dose dependent. Each of the different GST isoenzymes was inhibited, albeit at different degrees. Kinetic studies never revealed competitive inhibition kinetics. The conjugation of PA with GSH occurred spontaneously; it was not enzymatically catalyzed by GST, indicating that an epoxide intermediate is not involved in conjugation. The direct binding of PA to GST provides an additional detoxication mechanism.  相似文献   

20.
Hitchens TK  Mannervik B  Rule GS 《Biochemistry》2001,40(39):11660-11669
Glutathione transferases comprise a large family of cellular detoxification enzymes that function by catalyzing the conjugation of glutathione (GSH) to electron-deficient centers on carcinogens and other toxins. NMR methods have been used to characterize the structure and dynamics of a human class pi enzyme, GST P1-1, in solution. Resonance assignments have been obtained for the unliganded enzyme and the GSH and S-hexylglutathione (GS-hexyl) complexes. Differences in chemical shifts between the GSH and GS-hexyl complexes suggest more extensive structural differences between these two enzyme-ligand complexes than detected by previous crystallographic methods. The NMR studies reported here clearly show that an alpha-helix (alpha2) within the GSH binding site exists in multiple conformations at physiological temperatures in the absence of ligand. A single conformation of alpha2 is induced by the presence of either GSH or GS-hexyl or a reduction in temperature to below 290 K. The large enthalpy of the transition ( approximately 150 kJ/mol) suggests a considerable structural rearrangement of the protein. The Gibbs free energy for the transition to the unfolded form is on the order of -4 to -6 kJ/mol at physiological temperatures (37 degrees C). This order-to-disorder transition contributes substantially to the overall thermodynamics of ligand binding and should be considered in the design of selective inhibitors of class pi glutathione transferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号