首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
The utilization of dinitrogen by legumes is influenced by thegenetic characteristics of both the plant and the Rhizobiumresident in root nodules. The number of nodules required tomeet the demand for nitrogen depends on the capacity of individualnodules to supply nitrogen and the availability of soil nitrogen.In this paper some simple equations are derived which enablethe number of nodules per unit ground area to be calculated.Further calculations are made of nodule mass, specific nodulerespiration and the work required to expand nodules againstthe impedance of the soil. Nitrogen fixation, nodules, respiration, bioenergetics  相似文献   

2.
Nodulation and nitrogen fixation in extreme environments   总被引:6,自引:0,他引:6  
Biological nitrogen fixation is a phenomenon occurring in all known ecosystems. Symbiotic nitrogen fixation is dependent on the host plant genotype, theRhizobium strain, and the interaction of these symbionts with the pedoclimatic factors and the environmental conditions. Extremes of pH affect nodulation by reducing the colonization of soil and the legume rhizosphere by rhizobia. Highly acidic soils (pH<4.0) frequently have low levels of phosphorus, calcium, and molybdenum and high concentrations of aluminium and manganese which are often toxic for both partners; nodulation is more affected than host-plant growth and nitrogen fixation. Highly alkaline soils (pH>8.0) tend to be high in sodium chloride, bicarbonate, and borate, and are often associated with high salinity which reduce nitrogen fixation. Nodulation and N-fixation are observed under a wide range of temperatures with optima between 20–30°C. Elevated temperatures may delay nodule initiation and development, and interfere with nodule structure and functioning in temperate Iegumes, whereas in tropical legumes nitrogen fixation efficiency is mainly affected. Furthermore, temperature changes affect the competitive ability ofRhizobium strains. Low temperatures reduce nodule formation and nitrogen fixation in temperate legumes; however, in the extreme environment of the high arctic, native legumes can nodulate and fix nitrogen at rates comparable to those observed with legumes in temperate climates, indicating that both the plants and their rhizobia have successfully adapted to arctic conditions. In addition to low temperatures, arctic legumes are exposed to a short growing season, a long photoperiod, low precipitation and low soil nitrogen levels. In this review, we present results on a number of structural and physiological characteristics which allow arctic legumes to function in extreme environments.  相似文献   

3.
植物的血红蛋白   总被引:5,自引:0,他引:5  
近几年来,植物血红蛋白的研究进展十分迅速,豆科植物中与共生固氮无关的血红蛋白基因和包括禾本科植物在内的许多非豆科植物血红蛋白基因的发现使人们对植物血红蛋白有了新的认识,进而把植物血红蛋白分为共生血红蛋白和非共生血红蛋白两种类型。对这两种血红蛋白的性质、功能、基因结构及表达等方面的研究不仅对共生固氮中植物与微生物的相互关系和固氮工程研究;而且对植物细胞的呼吸代谢和耐涝机理等研究有重要价值。  相似文献   

4.
豆科植物-根瘤菌共生固氮是可持续性农业氮肥的最重要来源。根瘤作为豆科植物共生固氮的一种特化植物侧生器官, 提供了根瘤菌生物固氮必需的微环境, 是根瘤菌的安身之本, 因此, 根瘤的正常发育是实现豆科植物-根瘤菌共生固氮的结构基础。根瘤器官的从头发生主要起始于根瘤菌诱导的根皮层细胞分裂。通常认为豆科植物的根皮层具备有别于非豆科植物根皮层的某种特异属性, 从而响应根瘤菌并与之建立固氮共生, 但长期以来该属性决定的分子机制一直不明确。近日, 中国科学院分子植物科学卓越创新中心王二涛团队以蒺藜苜蓿(Medicago truncatula)等豆科植物和拟南芥(Arabidopsis thaliana)等非豆科植物为研究对象, 发现豆科植物中保守的SHR-SCR干细胞模块决定了其皮层细胞分裂潜能从而赋予根瘤器官发生的命运。该研究揭示了豆科植物根瘤发育的全新机制, 提供了研究和理解植物-根瘤菌固氮共生进化的重要线索, 对提高豆科作物固氮效率和非豆科作物固氮工程具有重要意义。  相似文献   

5.
刘承武  赵忠 《植物学报》2020,55(6):661-665
豆科植物-根瘤菌共生固氮是可持续性农业氮肥的最重要来源。根瘤作为豆科植物共生固氮的一种特化植物侧生器官, 提供了根瘤菌生物固氮必需的微环境, 是根瘤菌的安身之本, 因此, 根瘤的正常发育是实现豆科植物-根瘤菌共生固氮的结构基础。根瘤器官的从头发生主要起始于根瘤菌诱导的根皮层细胞分裂。通常认为豆科植物的根皮层具备有别于非豆科植物根皮层的某种特异属性, 从而响应根瘤菌并与之建立固氮共生, 但长期以来该属性决定的分子机制一直不明确。近日, 中国科学院分子植物科学卓越创新中心王二涛团队以蒺藜苜蓿(Medicago truncatula)等豆科植物和拟南芥(Arabidopsis thaliana)等非豆科植物为研究对象, 发现豆科植物中保守的SHR-SCR干细胞模块决定了其皮层细胞分裂潜能从而赋予根瘤器官发生的命运。该研究揭示了豆科植物根瘤发育的全新机制, 提供了研究和理解植物-根瘤菌固氮共生进化的重要线索, 对提高豆科作物固氮效率和非豆科作物固氮工程具有重要意义。  相似文献   

6.
R. J. Thomas 《Plant and Soil》1995,174(1-2):103-118
Forage legumes have long been lauded for their ability to fix atmospheric nitrogen and contribute to the sustainability of agricultural production systems. However despite the benefits they bring in terms of increased herbage and animal production they are not widely used in temperate or tropical regions. In this review the amounts of biological nitrogen fixation (BNF) needed to sustain the soil-plant-animal system are discussed and related to the amounts fixed in tropical pastures. The data suggest that tropical forage legumes have the capacity to meet the requirements to balance the N cycle of grazed pastures. The actual amounts required will depend on the rate of pasture utilization and the efficiency of recycling via litter, excreta and internal remobilization. The efficiency of nitrogen fixation (% of legume N derived from fixation) is usually high in tropical pastures (>80%) and is unlikely to be affected by inorganic soil N in the absence of N fertilizer. Thus an estimate of the amoutns of N fixed could be obtained from simple estimates of legume biomass provided tissue levels of other nutrients such as phosphorus and potassium are adequate. Key factors for the achievement of sustainable grass/legume pastures include the selection of appropriate germplasm adapted to the particular environment and the judicious use of fertilizers such as phosphorus, potassium, calcium, magnesium and sulphur on acid infertile soils typical of the sub-humid and humid tropics. The main constraints to the widespread adoption of forage legumes include a lack of legume persistence, the presence of anti-quality factors such as tannins, variable Bradyrhizobium requirements and lack of acceptability by farmers. Strategies for the alleviation of these constrainst are discussed. Forage legumes can be used to recuperate degraded soils via their ability to improve the physical, chemical and biological properties of soils and these benefits could be of particular use for small-scale resource-poor farmers. The incorporation of forage legumes into agropastoral systems is discussed as an environmentally and economically attractive means to encourage the widespread adoption of legumes in the humid tropics.  相似文献   

7.
Saline agriculture provides a solution for at least two environmental and social problems. It allows us to return to agricultural production areas that have been lost as a consequence of salinization and it can save valuable fresh water by using brackish or salt water to irrigate arable lands. Sea water contains (micro) nutrients that can provide the additional benefit of a reduced need of fertilization in saline agriculture. However, nitrogen is only present in very low quantities in seawater. A salt tolerant nitrogen-fixing legume used as a vegetable crop, fodder or green manure could increase the availability of soil nitrogen as well as the sustainability of saline agriculture while minimizing the application of inorganic fertilizer. Besides the use of salt-tolerant legumes as green manure, such species could also be useful in salinized areas as fodder and/or human food.In this review, we assess the feasibility of the use of legumes in saline agriculture. Most legumes are sensitive to salinity, as is the process of nitrogen fixation by microorganisms in the nodules of the legumes. First, we identify different steps in nodulation and their respective sensitivity to salinity. We will then look at the sensitivity of the process of nitrogen fixation in various crop and non-crop legumes, differing in their tolerance to salinity. We will also look into the differential response of nitrogen fixation and biomass production to salinity. Finally, a list of salt tolerant legumes is presented (derived from the HALOPH database). We then evaluate the applicability and perspective of salt tolerant legumes in saline agriculture considering the diversity in growth forms, ecotypes and economic uses.  相似文献   

8.
新疆干旱区豆科植物结瘤的固氮特性   总被引:2,自引:0,他引:2  
调查了新疆干旱区72种豆科植物的结瘤固氮活性,其中33种尚未见报道。这些植物所结根瘤在外形上多数不规则,以皮层厚和白色、棕色者居多,与非干旱区的根瘤形态显著不同。根瘤固氮活力相差较大,但比一般豆科植物根瘤活性高,最高者可达当地大豆根瘤的42倍。根瘤活性与宿主的抗逆境能力有关。此外,从11种豆科植物根瘤观察到10种具有吸氢活性。对干旱区豆科共生固氮生理生态的特性进行了讨论。  相似文献   

9.
一氧化氮对豆科植物结瘤及固氮的影响机制   总被引:1,自引:0,他引:1  
豆科植物-根瘤菌共生过程受双方基因复杂且精细的调控, 能够产生特异的根瘤结构并可将大气中的惰性氮气(N2)转化为可被植物直接利用的氨态氮。结瘤与固氮受多种因素影响, 其中, 一氧化氮(NO)作为一种自由基反应性气体信号分子, 可参与调节植物的许多生长发育过程, 如植物的呼吸、光形态建成、种子萌发、组织和器官发育、衰老以及响应各种生物及非生物胁迫。在豆科植物中, NO不仅影响寄主与菌共生关系的建立, 还参与调控根瘤菌对氮气的固定并提高植株氮素营养利用效率。该文主要从豆科植物及共生菌内NO的产生、降解及其对结瘤、共生固氮的影响和对环境胁迫的响应, 阐述了NO调控豆科植物共生体系中根瘤形成和共生固氮过程的作用机制, 展望了NO信号分子在豆科植物共生固氮体系中的研究前景。  相似文献   

10.
A. Micke 《Plant and Soil》1984,82(3):337-357
Summary Grain legumes are an important group of crop plants. They provide an essential source of protein food for many developing countries, but their production has gone down in favour of more profitable crops like cereals. Therefore, genetic improvement of grain legumes is urgently needed. The primary aim of grain legume breeding must be the increase of production through adaptation to more advanced cropping schemes and reduction of crop losses. Symbiotic nitrogen fixation as developed by natural evolution does not always seem to be compatible with the needed substantial increase in yield: It is not supplying sufficient nitrogen and supplementation by fertilizer is rather uneconomic. By genetic manipulation of the plant's regulatory system nitrogen fixation may become more effective and tolerant to high soil nitrogen levels. Through a number of mutation breeding projects in different countries involving all important grain legume species it has been proven that mutation induction is a good tool for supplementing the genetic variation available from natural evolution and from selection by man. High-yielding cultivars have been developed from induced mutants, which eventually also possess a more efficient nitrogen fixation capacity.  相似文献   

11.
Efficiency of symbiotic nitrogen fixation in legumes depends on bringing together the processes of N2 fixation, assimilation of its products, supply of nitrogenase with energy, and development of nodule tissue and cellular structures. Coordination of these processes could arise from the evolutionary old functions of the nodules associated with deposition of the products of photosynthesis governed by systemic signals traveling between the above-ground organs and the roots. Further increase in symbiotic efficiency was associated with a pronounced ability to fix N2 by intracellular bacteroids that lost capability to propagate (as observed in galegoid legumes from the tribes Viciae, Trifolieae, and Galegae producing indeterminate nodules). However, efficiency of these symbioses is restricted by a slow removal from the nodules of the products of N2 fixation, which are assimilated along the same amide pathway as nitrogen compounds arriving from the soil. In legumes from the tribe Phaseoleae, such a restriction was overcome owing to a particular way of nitrogen assimilation via its incorporation into ureides (in determinate nodules). Development of symbioses where specialization of bacteroids in symbiotic fixation of atmospheric nitrogen is combined with its ureide assimilation will make it possible to produce new forms of plants highly efficient in symbiotic nitrogen fixation.  相似文献   

12.
Methods for partitioning the nitrogen assimilated by nodulated legumes, between nitrogen derived from soil sources and from N2 fixation, are described as applied in peninsular Malaysia. The analysis of nitrogenous components translocated from the roots to the shoots of nodulated plants in the xylem sap is outlined, with some precautions to be observed for applications in the tropics. Some examples of the use of the technique in surverying apparent N2 fixation by tropical legumes, in studying interrow cropping in plantation systems and in assessing effects of experimental treatments on N2 fixation by food legumes, are described. Techniques for assesing N2 fixation by means of15N abundance have been used to show that applications of nitrogenous fertilizers commonly used in Malaysia for soybeans depress N2 fixation, that similar results are obtained with natural abundance and15N-enrichment methods and that, in at least two locations in Malaysia, differences between the natural abundance of15N in plant-available soil nitrogen and in atmospheric N2 are great enough to permit application to measurement of N2 fixation by leguminous crops.  相似文献   

13.
环境因子对豆科共生固氮影响的研究进展   总被引:22,自引:0,他引:22  
慈恩  高明 《西北植物学报》2005,25(6):1269-1274
环境因子的限制一直是豆科植物一根瘤菌共生固氮体系没有在农业生产中充分发挥作用的重要原因之一。目前,研究涉及的环境因子主要行水分、矿质营养元素、温度、重金属、钠盐、CO2、土壤类型以及pH等。水分胁迫会导致豆科植物根瘤减少和固氮效率低下;矿质元素方面,除氮磷钾外,微量死素对固氮影响也很明显;不适的温度会对豆科植物的结瘤固氮产生一定的限制;重金属能从不同方面直接和间接地影响共生同氮,寻找适合作尾矿先锋植物的豆科植物是当前的一个研究热点。本文除详细阐述了这方面开展的研究以外,还浅析了这方而研究目前国内外存在的一些主要问题和发展趋势。  相似文献   

14.
Symbiosis is a complex genetic regulatory biological evolution which is highly specific pertaining to plant species and microbial strains. Biological nitrogen fixation in legumes is a functional combination of nodulation by nod genes and regulation by nif, fix genes. Three rhizobial strains (Rhizobium leguminosarum, Bradyrhizobium japonicum, and Mesorhizobium ciceri) that we considered for in silico analysis of nif A are proved to be the best isolates with respect to N2 fixing for ground nut, chick pea and soya bean (in vitro) out of 47 forest soil samples. An attempt has been made to understand the structural characteristics and variations of nif genes that may reveal the factors influencing the nitrogen fixation. The primary, secondary and tertiary structure of nif A protein was analyzed by using multiple bioinformatics tools such as chou-Fasman, GOR, ExPasy ProtParam tools, Prosa -web. Literature shows that the homology modeling of nif A protein have not been explored yet which insisted the immediate development for better understanding of nif A structure and its influence on biological nitrogen fixation. In the present predicted 3D structure, the nif A protein was analyzed by three different software tools (Phyre2, Swiss model, Modeller) and validated accordingly which can be considered as an acceptable model. However further in silico studies are suggested to determine the specific factors responsible for nitrogen fixing in the present three rhizobial strains.  相似文献   

15.
A Quantitative Study of Fixation and Transfer of Nitrogen in Alnus   总被引:3,自引:0,他引:3  
A quantitative study of the fixation of nitrogen and of itstransfer from the nodules to the remainder of the plant hasbeen made in Alnus plants during their first season of growth.Fixation per plant reached a maximum in late August but fellrapidly with the onset of autumn, while fixation per unit dryweight of nodule tissues was greatest in young nodules and wasof the same order as in nodulated legumes. Throughout the growthseason there was a steady transfer from the nodules of some90 per cent, of the nitrogen fixed. The rate of fixation relativeto the growth of the endophyte is much higher than in free-livingnitrogen-fixing organisms and is clearly governed by the nitrogenrequirements of the entire symbiotic system. These findingsare compatible with the view that the fixation process is extracellularto the endophyte.  相似文献   

16.
Legumes are important for nitrogen cycling in the environment and agriculture due to the ability of nitrogen fixation by rhizobia. In this review, we introduce an important and potential role of legume-rhizobia symbiosis in aiding phytoremediation of some metal contaminated soils as various legumes have been found to be the dominant plant species in metal contaminated areas. Resistant rhizobia used for phytoremediation could act on metals directly by chelation, precipitation, transformation, biosorption and accumulation. Moreover, the plant growth promoting (PGP) traits of rhizobia including nitrogen fixation, phosphorus solubilization, phytohormone synthesis, siderophore release, and production of ACC deaminase and the volatile compounds of acetoin and 2, 3-butanediol may facilitate legume growth while lessening metal toxicity. The benefits of using legumes inoculated with naturally resistant rhizobia or recombinant rhizobia with enhanced resistance, as well as co-inoculation with other plant growth promoting bacteria (PGPB) are discussed. However, the legume-rhizobia symbiosis appears to be sensitive to metals, and the effect of metal toxicity on the interaction between legumes and rhizobia is not clear. Therefore, to obtain the maximum benefits from legumes assisted by rhizobia for phytoremediation of metals, it is critical to have a good understanding of interactions between PGP traits, the symbiotic plant-rhizobia relationship and metals.  相似文献   

17.
In many legumes the transition from the vegetative to the reproductivephase of development is associated with a marked increase inthe rate of symbiotic nitrogen fixation. In soya bean [Glycinemax (L.) Merr.), the removal of reproductive parts at differentstages of their development showed that the increase in nitrogenfixation rate was primarily due to the presence of flower buds.The increase in the fixation rate of intact reproductive plantswas accompanied by a rapid increase in the weight of noduleson lateral roots and it is suggested that these nodules areresponsible for much of the nitrogen fixation which occurs duringreproductive growth. Maintaining plants in the vegetative stateprovided evidence which suggests that it is the flower budsand not the flowering stimulus which are responsible for theincrease in fixation rate. The marked effects on vegetativegrowth of removing reproductive parts suggests that the mechanisminvolved in the promotion of nitrogen fixation may be hormonal. Glycine max (L.) Merr., soya bean, nitrogen fixation  相似文献   

18.
The low inherent soil fertility, especially nitrogen (N) constrains arable agriculture in Botswana. Nitrogen is usually added to soil through inorganic fertilizer application. In this study, biological nitrogen fixation by legumes is explored as an alternative source of N. The objectives of this study were to measure levels of N2 fixation by grain legumes such as cowpea, Bambara groundnut and groundnut in farmers’ fields as well as to estimated N2 fixation by indigenous herbaceous legumes growing in the Okavango Delta. Four flowering plants per species were sampled from the panhandle part of the Okavango Delta and Tswapong area. Nitrogen fixation was measured using the 15N stable isotope natural abundance technique. The δ15N values of indigenous herbaceous legumes indicated that they fixed N2 (?1.88 to +1.35 ‰) with the lowest value measured in Chamaecrista absus growing in Ngarange (Okavango Delta). The δ15N values of grain legumes growing on farmers’ fields ranging from ?1.2 ‰ to +3.3 ‰ indicated that they were fixing N2. For grain legumes growing at most farms, %Ndfa were above 50% indicating that they largely depended on symbiotic fixation for their N nutrition. With optimal planting density, Bambara groundnuts on farmers’ fields could potentially fix over 90 kg N/ha in some parts of Tswapong area and about 60 kg N/ha in areas around the Okavango Delta. Results from this study have shown that herbaceous indigenous legumes and cultivated legumes play an important role in the cycling of N in the soil. It has also been shown that biological N2 on farmer’s field could potentially supply the much needed N for the legumes and the subsequent cereal crops if plant densities are optimized with the potential to increase food security and mitigate climate change.  相似文献   

19.
Effectiveness is a term used to describe the input that a bacterial nitrogen-fixing symbiosis makes to plant nitrogen metabolism. In legumes, effectiveness is considered a polymorphic trait where specific interactions between the plant and symbiotic rhizobia contribute to the success of the interaction. Evaluation of effectiveness using model legumes like Medicago truncatula may open new avenues for genetic studies. In previous work, an isotope dilution mass spectrometry method, which uses the effect of nitrogen fixation on the nitrogen isotope composition of chlorophyll in plants grown on 15N fertilizer as a measure of effectiveness, was developed for estimating the contribution of symbiotic nitrogen fixation to plant nitrogen content. This 15N-dilution assay was used to evaluate the level of nitrogen fixation effectiveness in three Medicago truncatula lines that have been used as parents in generating recombinant inbred lines. Three Sinorhizobium meliloti strains, USDA 1600, 102F51 and MK506, differ in this measure of effectiveness on three lines of M. truncatula: Jemalong A17, DZA315.16 and F83005.5. Plant–rhizobia combinations grown in two different conditions showed comparable differences in effectiveness.  相似文献   

20.
To investigate how plant diversity loss affects nitrogen accumulation in above‐ground plant biomass and how consistent patterns are across sites of different climatic and soil conditions, we varied the number of plant species and functional groups (grasses, herbs and legumes) in experimental grassland communities across seven European experimental sites (Switzerland, Germany, Ireland, United Kingdom (Silwood Park), Portugal, Sweden and Greece). Nitrogen pools were significantly affected by both plant diversity and community composition. Two years after sowing, nitrogen pools in Germany and Switzerland strongly increased in the presence of legumes. Legume effects on nitrogen pools were less pronounced at the Swedish, Irish and Portuguese site. In Greece and UK there were no legume effects. Nitrogen concentration in total above‐ground biomass was quite invariable at 1.66±0.03% across all sites and diversity treatments. Thus, the presence of legumes had a positive effect on nitrogen pools by significantly increasing above‐ground biomass, i.e. by increases in vegetation quantity rather than quality. At the German site with the strongest legume effect on nitrogen pools and biomass, nitrogen that was fixed symbiotically by legumes was transferred to the other plant functional groups (grasses and herbs) but varied depending on the particular legume species fixing N and the non‐legume species taking it up. Nitrogen‐fixation by legumes therefore appeared to be one of the major functional traits of species that influenced nitrogen accumulation and biomass production, although effects varied among sites and legume species. This study demonstrates that the consequences of species loss on the nitrogen budget of plant communities may be more severe if legume species are lost. However, our data indicate that legume species differ in their N2 fixation. Therefore, loss of an efficient N2‐fixer (Trifolium in our study) may have a greater influence on the ecosystem function than loss of a less efficient species (Lotus in our study). Furthermore, there is indication that P availability in the soil facilitates the legume effect on biomass production and biomass nitrogen accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号